April 16, 2021

Diane Czarnecki
Industrial Hygienist
Facilities Management Division
GSA Public Buildings Service – Heartland Region
2300 Main Street
Kansas City, MO 64108

Re: Goodfellow Federal Center – Building 104 DISC Generators Wipe Sampling Evaluation
Project No. 121244

Dear Ms. Czarnecki:

Thank you for the opportunity to provide the General Services Administration (GSA) with the above referenced environmental sampling activities. The following is our report.

INTRODUCTION

As requested, Burns & McDonnell conducted dust wipe sampling and testing for the presence of lead within the DISC emergency generator enclosures outside of Building 104 of the Goodfellow Federal Center located at 4300 Goodfellow Boulevard in St. Louis, Missouri. The purpose of the investigation was to provide sampling data regarding existing conditions to supplement previous investigation reports prepared for the facility. Dust wipe sampling was conducted on April 16, 2021 by Emily Ahlemeyer of Burns & McDonnell.

DUST WIPE SAMPLING AND RESULTS

Dust wipe sampling was conducted in accordance with ASTM Standard E1728: *Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Lead Determination* and ASTM Standard D6966: *Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Determination of Metals*. ASTM Standards E1728 and D6966 are consistent with the methodology described in the Housing and Urban Development Guidelines-Appendix 13.1 and 40 CFR 745.63. The Brookhaven National Laboratory’s Surface Wipe Sampling Procedure (IH75190) was also used as a guideline.

A representative surface area of approximately one square foot (1 SF) was measured and delineated. The dust wipe samples were collected using dedicated dust wipe cloths meeting ASTM E1792 Standard. Each dust wipe cloth was pre-moistened and individually wrapped. Each sample was collected by wiping in a back and forth “S” pattern over a measured sampling area using a clean, disposable glove. Then, the wipe was folded over itself and the area was wiped again in a direction perpendicular to the first wipe orientation. Then, the wipe folded over itself again and the area was wiped around the perimeter. The wipe samples were then placed into labeled, sealed containers. Dust wipe samples were submitted to EMSL Analytical, Inc. in St. Louis, MO for Lead in Dust by Flame Atomic Absorption analysis using Environmental Protection Agency (EPA) method SW846-3050B/7000B.
Dust wipe sampling for the presence of lead was conducted at eight (8) distinct locations within the DISC generator enclosures. A total of nine (9) samples were obtained including one (1) field blank sample.

Eight (8) samples exceeded the lead clean area limit of 10 micrograms per square foot (μg/sq. ft). The specific sample locations and analytical results are presented in Appendix A. The complete laboratory report for the wipe sampling from EHS is attached in Appendix B.

LIMITATIONS
The scope of this assessment was limited in nature. Burns & McDonnell collected samples from a representative number of surfaces in an effort to minimize cost while providing a general overview of site conditions. Sample locations do not encompass all equipment surfaces at the site. Additionally, samples were only analyzed for a select number of potential contaminants. Burns & McDonnell is not responsible for potential contaminants not identified in this report.

Burns & McDonnell appreciates the opportunity to work GSA on this project. Please contact us if you have any questions regarding this report or if we may be of any additional service.

Sincerely,

Matt Shanahan, CHMM
Project Manager

Attachments:
Appendix A – Wipe Sampling Summary Table
Appendix B – Wipe Sampling Laboratory Report

Information in Appendix B is not accessible for people using screen reader technology. If this information is required, it can be furnished upon request by contacting 816-223-6198 or r6environmental@gsa.gov.
APPENDIX A – WIPE SAMPLING SUMMARY TABLE
Appendix A

Wipe Sample Summary Table

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Location</th>
<th>Area Description</th>
<th>Analyte</th>
<th>Result</th>
<th>Units</th>
<th>Clean Area Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>104-W-01</td>
<td>DISC Generator D</td>
<td>Floor inside east doors</td>
<td>Lead</td>
<td>73</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-02</td>
<td>DISC Generator D</td>
<td>Floor inside north door</td>
<td>Lead</td>
<td>76</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-03</td>
<td>DISC Generator C</td>
<td>Cross beam inside east door</td>
<td>Lead</td>
<td>160</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-04</td>
<td>DISC Generator C</td>
<td>Floor inside northwest door</td>
<td>Lead</td>
<td>270</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-05</td>
<td>DISC Generator B</td>
<td>Floor inside east doors</td>
<td>Lead</td>
<td>250</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-06</td>
<td>DISC Generator B</td>
<td>Floor inside northwest door</td>
<td>Lead</td>
<td>1,200</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-07</td>
<td>DISC Generator A</td>
<td>Cross beam inside east door</td>
<td>Lead</td>
<td>660</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-08</td>
<td>DISC Generator A</td>
<td>Floor inside northwest door</td>
<td>Lead</td>
<td>540</td>
<td>µg/ft²</td>
<td>10</td>
</tr>
<tr>
<td>104-W-09</td>
<td>Field Blank</td>
<td>--</td>
<td>Lead</td>
<td><10</td>
<td>µg</td>
<td>--</td>
</tr>
</tbody>
</table>

* Clean Area Limit: Brookhaven references EPA/HUD limit for floors, set at 10 µg/sq. ft. as of January 2020.

** Indicates results at or above the Clean Area Limit

µg/ft² - micrograms per square foot
APPENDIX B – WIPE SAMPLING LABORATORY REPORT
<table>
<thead>
<tr>
<th>Client Sample Description</th>
<th>Collected</th>
<th>Analyzed</th>
<th>Area Sampled</th>
<th>RDL</th>
<th>Lead Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>104-W-01</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>10 µg/ft²</td>
<td>73 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-02</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>10 µg/ft²</td>
<td>76 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-03</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>10 µg/ft²</td>
<td>160 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-04</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>10 µg/ft²</td>
<td>270 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-05</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>10 µg/ft²</td>
<td>250 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-06</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>50 µg/ft²</td>
<td>1200 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-07</td>
<td>4/15/2021</td>
<td>97.5 in²</td>
<td>15 µg/ft²</td>
<td>660 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-08</td>
<td>4/15/2021</td>
<td>144 in²</td>
<td>50 µg/ft²</td>
<td>540 µg/ft²</td>
<td></td>
</tr>
<tr>
<td>392103789-0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-W-09</td>
<td>4/15/2021</td>
<td>N/A</td>
<td>10 µg/wipe</td>
<td><10 µg/wipe</td>
<td></td>
</tr>
<tr>
<td>392103789-0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) (6)

Jeff Siria, Laboratory Manager
or other approved signatory