The U.S. General Services Administration is proud to present the honorees of the 2014 GSA Design Awards. While each of these 20 projects is unique, they all support the federal employees who use them and enrich the communities where they are located.

Our 2014 winners demonstrate the high quality that GSA demands of its entire real estate portfolio. Buildings make an important contribution to public service in this country, and buildings such as these play a particularly vital role in our history. They establish new benchmarks of innovation, environmental performance, and space efficiency against which all other federal investments can be measured. The GSA Design Awards gives us an opportunity to recognize the outstanding work being done with these facilities throughout our entire nation.

I want to thank the jury members for devoting so much of their time and energy to selecting this year’s winners. I also want to congratulate the 2014 winners, as well as everyone who submitted entries. Your hard work and dedication to GSA’s mission is making a difference in communities across the country and serves as an example for us all.

DAN TANGHERLINI
ADMINISTRATOR
U.S. GENERAL SERVICES ADMINISTRATION
COMMISSIONER’S MESSAGE

GSA’s Public Buildings Service makes a point to learn from experience and turn best practices into new standards. Because such self-assessment sustains leadership, one of the world’s biggest owners of real estate also ranks among the best.

The GSA Design Awards is one example of our focus. A jury of renowned industry professionals reviews the agency’s latest work, and from its insightful responses we identify where PBS is breaking ground, or needing improvement. The awards program is not merely congratulatory; it is our tool for enduring leadership.

This year the awards jury reserved Honor-level accolades for projects that embodied excellence in every area of design and execution. Paths to achievement differed: While renovation of Edith Green-Wendell Wyatt Federal Building exemplifies a holistic approach to resource efficiency, the 35 trades involved in preserving and modernizing the Dwight D. Eisenhower Executive Office Building conducted their rigorous work both collaboratively and in parallel. Citation winners also embody overall competence, albeit shining most brightly in particular disciplines. Building 1202 at Federal Center South was genuinely experimental in its approach to workplace interiors; upgrades to the fully operational IRS Enterprise Computing Center in Kearneysville, West Virginia, represent masterful choreography.

By virtue of circumstance, not every federal investment integrates all disciplines. Yet just as PBS cannot become complacent about our forerunner position, nor should we presume that traditionally limiting conditions are impossible to overcome. I encourage this agency’s dedicated employees and private-industry partners to draw lessons from the 2014 GSA Design Awards as they pursue more creative solutions and better performance in the next generation of projects.

COMMISSIONER, PUBLIC BUILDINGS SERVICE
U.S. GENERAL SERVICES ADMINISTRATION
GSA AWARDS JURY

TOP ROW, LEFT TO RIGHT:
Lucille Tenazas, RADM (ret.) Peter Marshall, Theaster Gates, Janice L. Tuchman

BOTTOM ROW, LEFT TO RIGHT:
Estevan Rael-Galvez, Pablo Savid-Buteler, Henry N. Cobb, Susannah Drake, David Adjaye
Twenty years ago I had the privilege of leading the design team for the John Joseph Moakley United States Courthouse on Boston’s Fan Pier. In addition to providing needed facilities for the Judiciary, development of this new courthouse and its adjoining Harborpark produced long-term benefits for the people of Boston. Furthermore, it had a transformative effect on the U.S. General Services Administration, by spurring GSA to establish the Design Excellence Program.

The Moakley assignment took place just when GSA was reawakening to its responsibility to the civic realm. Today Design Excellence advocates that every Public Buildings Service project at GSA produce measurable benefits for government and the public alike, and the GSA Design Awards is one means by which the program cultivates an ever-higher level of quality. Awards provide encouragement to dedicated public servants to surpass standards, and an opportunity for a jury of independent professionals to grade GSA’s overall commitment to improvement.

It is gratifying to me, personally and as this year’s jury chair, to witness the extent to which Design Excellence has influenced GSA on the occasion of the program’s 20th anniversary. Indeed, the 2014 GSA Design Awards jury made awards to more projects than had been selected in any previous cycle. This fact surely merits celebration.

Yet the achievement also imposes further responsibilities, including the obligation to weave jury insights into future project planning and delivery. How can this submission pool’s recurring successes become consistent agency-wide? What other successes should become normative rather than exceptional? Applying that critique to future challenges and opportunities will even more commendably strengthen GSA’s stewardship of the civic realm.

HENRY N. COBB
FOUNDING PARTNER, PEI COBB FREED & PARTNERS
2014 GSA DESIGN AWARDS JURY CHAIR
HONOR AWARDS

08 U.S. LAND PORT OF ENTRY
 VAN BUREN, MAINE

12 PEACE ARCH LAND PORT OF ENTRY
 BLAINE, WASHINGTON

14 EDITH GREEN-WENDELL WYATT FEDERAL BUILDING
 PORTLAND, OREGON

18 JACOB K. JAVITS FEDERAL BUILDING PLAZA
 NEW YORK, NEW YORK

20 DWIGHT D. EISENHOWER EXECUTIVE OFFICE BUILDING
 WASHINGTON, DC

24 UNITED STATES COURTHOUSE
 AUSTIN, TEXAS

26 THURGOOD MARSHALL U.S. COURTHOUSE
 NEW YORK, NEW YORK

CITATIONS

30 FEDERAL CENTER SOUTH BUILDING 1202
 SEATTLE, WASHINGTON

32 FEDERAL OFFICE BUILDING
 MIRAMAR, FLORIDA

34 11 WEST QUINCY COURT
 CHICAGO, ILLINOIS

36 50 UNITED NATIONS PLAZA FEDERAL BUILDING
 SAN FRANCISCO, CALIFORNIA

38 DR. A.H. McCoy FEDERAL BUILDING
 JACKSON, MISSISSIPPI

40 FEDERAL OFFICE BUILDING
 ANDOVER, MASSACHUSETTS

42 IRS ENTERPRISE COMPUTING CENTER
 KEARNEYSVILLE, WEST VIRGINIA

44 MINTON-CAPEHART FEDERAL BUILDING
 INDIANAPOLIS, INDIANA

46 JOHN M. ROLL UNITED STATES COURTHOUSE
 YUMA, ARIZONA

48 UNITED STATES COURTHOUSE
 BAKERSFIELD, CALIFORNIA

50 UNITED STATES COURTHOUSE ANNEX
 SAN DIEGO, CALIFORNIA

52 WAYNE N. ASPINALL FEDERAL BUILDING AND U.S. COURTHOUSE
 GRAND JUNCTION, COLORADO

54 UNITED STATES COURTHOUSE
 TOLEDO, OHIO
In spring 2008, snowmelt and heavy rain caused extensive flooding of the St. John River, forcing more than 600 residents of northern Maine to evacuate their homes. In the town of Van Buren, where the river marks an international boundary, floodwaters also destroyed the land port of entry that welcomed travelers from Canada. Relocated to a long, linear site that parallels the river bluff, the new U.S. Land Port of Entry in Van Buren counts sustainable stormwater management among its accomplishments.

Research undertaken early in this project’s development uncovered that, historically, local potato farmers had shaped the earth into low mounds to divert water flow. By combining similar landforms with a stone-lined swale, today the land-port site channels rainfall and melted snow into a sedimentation chamber and wet pond. This process slows runoff and filters it prior to release into the St. John River. The rolling landforms also enhance site security, while blurring the distinction between federal intervention and vernacular place.

Just as the land port’s site-performance features are camouflaged as agrarian landscape, so its 44,000-square-foot building blends with local forests. A repetitive pattern of joints and mullions characterizes the building’s glass-and-metal envelope: From outdoors, tonal variation in the aluminum panels and flush glazing partly conceals U.S. Customs and Border Protection agents who survey the site from inside.

The security of border agents underpinned much decision making behind this design, and the building plan exemplifies the attention paid to safety. Divided into multiple volumes united by a skylight-punctuated canopy, the land port assumes a Z shape;
the configuration allows officers the widest-possible sightlines from their primary stations, and the canopy protects them from poor weather during outdoor vehicle inspections. Optimizing work conditions was additionally important for this project, because regional staffing can be limited.

Measures were also taken to make the architecture feel welcoming to the public, such as finishing the interior with warm treatments and illuminating inspection spaces by skylight. Other gestures of community goodwill include an alternative to the typical 12-foot chain-link fence, *The Grand State of Maine* figurative bronze sculpture conceived by artist Nina Katchadourian, and an extensive sustainability portfolio. Besides stormwater management, green strategies are represented by ground-source-heat-pump and evacuated-solar-tube systems that contribute to a 48 percent reduction of energy consumption over the standard land port.

The U.S. Land Port of Entry is funded by the American Recovery and Reinvestment Act, and one requirement of the 2009 legislation was to have a fixed-bid construction contract in place by June 2010. Design-build delivery promised such speed. A lead design team delivered bridging documents for realization by a design-build team whose members included a contractor and design architect that had completed a land port together previously. The original designers remained involved throughout execution, and this larger collaboration achieved substantial completion of the project in April 2013.
Located on Semiahmoo Bay approximately 30 miles south of Vancouver, British Columbia, the Interstate-5 border crossing in Blaine, Washington, represents one of the most heavily trafficked points between the United States and Canada. It also is home of Peace Arch Park, where the first monument to world peace was erected in 1921.

Comprising 88,000 square feet of overall construction, Peace Arch Land Port of Entry defers to the historic setting. Primary inspection functions are organized along an east–west axis and inserted into a portion of landscape that slopes from east to west, so that northbound highway traffic passes directly over the building volume without seeming to disrupt topography. Secondary inspection is depressed below the interstate, as well, for uninterrupted views to the Peace Arch. From the perspective of travelers driving to Canada, the inspection areas’ rooftops flank I-5 as a gentle continuation of parkland.

Weaving architecture, infrastructure, and landscape required unique engineering and construction efforts. After excavation to better insert the project into the landscape, 150-foot piers were drilled into soft clay to support the I-5 overpass. Steel sheet-piles ruled out need for a similarly deep foundation for the land-port building itself.

Peace Arch Land Port of Entry includes the site-specific artwork Non-Sign II, by Lead Pencil Studio. The installation’s filigree of welded steel rods framing sky invites interpretation—as an anti-billboard, for example, or an environmental statement. Viewed alongside the Peace Arch, Non-Sign II suggests evolving perspectives of public works and international relations.

A suite of mutually reinforcing sustainability solutions achieves that designation. For instance, a 25,000-square-foot rooftop canopy provides shade to the uppermost part of the tower while its embedded 180-kilowatt photovoltaic array supplies 4 percent of the building’s total energy. During storms, the canopy channels rainfall into a former basement-level rifle range, which has been converted into a 165,000-gallon cistern; captured stormwater is used for flushing toilets, cooling mechanicals, and irrigation. Measured in concert with drought-tolerant landscaping and a more efficient mechanical cooling tower, stormwater reclamation reduces potable water consumption to beat state code by 60 percent.

The project’s approach to sunlight is another example of systemic environmental performance strategy. Replacing the precast-concrete exterior with a glass curtain wall achieved a 43 percent glazing-to-wall ratio and, because the new envelope occupies less slab area, the substitution increased rentable square footage dramatically. Converting to hydronic HVAC distribution raised interior ceiling heights and recovered another 6,000 square feet of interior, which was previously devoted to mechanical housing.
To prevent overtaxing of the hydronic system, the design also considered increased daylighting through the new curtain wall. On the building’s south, west, and east elevations, steel “reeds” minimize solar heat gain through the larger expanses of glass; the shading devices are customized according to orientation. A ventilator recovers heat from exhaust air before it is released, to lessen HVAC loads further. Energy-efficient light fixtures with advanced lighting controls reduce energy consumption and waste heat simultaneously.

Holistic solutions are a hallmark of integrated project delivery, a collaborative alternative to traditional linear workflow. In this case core team members co-located on site, and they coordinated their work using BIM technology to avoid duplicated efforts. In addition to sustainability strategies, the delivery method focused on efficiency. Thanks to the orchestration of team members, the project was substantially completed 39 months after design start, with a budget largely set in 2005.

Modernization of Edith Green-Wendell Wyatt Federal Building included a significant contribution to Portland’s public art sphere. The project conserved existing artwork and commissioned two new installations for the lobby: the rock ‘n’ roll-inspired acrylic sculpture *Louie Louie* by Las Vegas-based artist Tim Bavington and a camera-obscura representation of nearby forest by New York’s Vera Lutter. Here, too, attention was paid to choices made elsewhere in the renovation. Namely, artwork placement was planned in response to a new entry sequence, which was conceived as part of a more gracious process of approaching the building and undergoing security.
Subterranean parking at the Jacob K. Javits Federal Building, located at 26 Federal Plaza in Lower Manhattan, had been compromised by faulty waterproofing ever since its completion in 1967. In 2009, funds from the American Recovery and Reinvestment Act were allocated to correct the underground structure and renovate the acre of public space atop it.

The newly redesigned plaza is paved in swaths of pink granite alternating with marble slabs and cobbles. This pattern directly reflects the irregular checkerboard of limestone, granite, and glass on the Javits Building’s 45-story facade, expressing the skyscraper at the scale of pedestrian life. Treatment of the plaza’s four plant beds also mediates between the built environment and people, as two fold over the elevated plaza to the sidewalk; between them a granite stair leads to the plaza’s outdoor rooms.

All four plant beds define these upper spaces. Surrounded by evergreen shrubs and groundcover, mature saucer magnolias shelter the landforms. The trees’ canopies extend shade to nearby marble seating whose rectangular, circular, and crescent shapes are optimized for different uses, such as laptop work and lunch breaks. In addition to working and lounging, the plaza scheme provides a hierarchy of spaces that can accommodate activities ranging from food concessions to arts performance.

To that end, the renovation team directed its attention to every new detail of the plaza, such as black granite benches that nestle between the columns of the Javits Building to discreetly secure it. Features predating the project did not escape notice. An air-intake structure was re clad and illuminated to complement the building. Existing structure was repaired and reinforced where new soil loads exceeded original capacity.
The Dwight D. Eisenhower Executive Office Building is one of the most significant landmarks in the United States. When it was completed in 1888 as the State, War, and Navy Building, it was the largest office in the nation’s capital. Today the Eisenhower Executive Office Building houses administrators of the Executive Office of the President, and provides ceremonial spaces for the nation’s two highest-ranking elected officials. Its design by Alfred B. Mullett is considered a leading example of Second Empire-style architecture in America.

Over eight years, this iconic 692,000-square-foot structure was completely modernized without compromising historic character or disturbing full operations. The undertaking is GSA’s first major security upgrade to an important, fully functioning building using design-build delivery, and its first design-build modernization of an occupied National Historic Landmark.

Beyond security enhancements, this project brought telecommunications, HVAC, electrical power, and fire protection in line with current guidelines and standards; electrical distribution and back-up systems and lighting also were replaced. Accommodating the updated and new systems required construction of a 4-story, 21,000-square-foot central utility plant within an existing courtyard, and natural ventilation shafts were outfitted with utility risers from which piping, ducts, and conduits were extended to rooms via raised access flooring.

Exterior restoration encompassed granite cleaning and repair of roof elements that included cast-iron chimneys, skylights, and decoration. Inside, infrastructure upgrades were made to 28 historic rooms. Unexpected discovery of the Secretary of
War’s original ceiling mural exemplifies the vigilance with which this work was executed. Upon detection of the portrayal of Mars and Nike, art conservators removed the multiple layers of paint covering the mural and restored it, and a final barrier coat was applied.

In addition to renewing original spaces, the project updated 11 rooms with sensitivity to Mullett’s design. Paint colors were drawn from the Victorian era; walls, floors, lighting, and ceilings include materials inherent to the building; energy-efficient and secure windows replicate the previous windows in profile; and strategically placed office partitions complement historic finishes. Modernization also prepared the Eisenhower Executive Office Building for the future. In particular, thanks to the raised access floors, office space can be adapted to fast-paced changes in workspace technology and culture.

The work required orchestrating 12 design disciplines and 35 trades overall. Team contributions were synchronized using BIM and computational fluid dynamics models—which identified potential clashes between infrastructure systems, and balanced energy performance with occupant comfort—and by more traditional construction mockups. Exploratory demolition and in-situ analysis safeguarded the historical accuracy of parquet flooring, elaborate cornices, plasterwork, and other preserved features, as well as the integrity of new design decisions. Furthermore, all construction workers were required to attend a preservation orientation. This program underscored the importance of the building, surveyed its architectural features, and ensured construction protocol.
Measuring 252,000 square feet, the new United States Courthouse in downtown Austin contains one special proceedings courtroom, four district courtrooms, four magistrate courtrooms, chambers, jury assembly, and ancillary spaces for users that range from the U.S. Marshals Service to GSA.

The courthouse is located directly west of Republic Square Park, on a full city block measuring 276 feet in every direction. In turn, the design team conceived a midrise building with an approximately square footprint, whose cubic mass is meant to communicate the strength and dignity of the American judicial system. The simple mass also belies a complex, interlocking interior, in which courtrooms achieve requisite ceiling heights by penetrating the floors above. District and magistrate courtrooms occupy separate stacks within the building, and they open to double-height public lobbies that alternate diagonally in plan. Southwest lobbies frame views to Austin’s Lady Bird Lake and the Texas Hill Country while northwest lobbies perch above Republic Square Park and downtown Austin. This interior organization was effectively more cost-efficient than a traditional tower scheme.

In its reinvention of San Antonio Street as a plaza, the project extends into the public realm. Today monumental stairs cascade from the courthouse’s east elevation and into the plaza. Interwoven with pavers and native plants, this new extension of Republic Square Park hosts cultural and civic events. Meanwhile, in the courthouse lobby, The Austin Wall reminds visitors of the natural setting in which vibrant city life takes place. The creation by Clifford Ross depicts the Texas Hill Country in 9,000 pounds of stained glass and stainless steel. Opening the artwork’s lower portion joins the lobby and jury assembly room to form a gracious public events space.
GSA HONOR AWARD
In 1931 architect Cass Gilbert received the commission for a new federal courthouse in Lower Manhattan. While similar in Neoclassical style to the U.S. Supreme Court Building he designed during the same period, this 590-foot-tall U.S. Courthouse at Foley Square prototyped vertical organization for the building type. Gilbert set the courthouse’s tower back on a 6-story base, to prevent it from visually overpowering the streetscape, and capped it in a lantern-topped pyramid of gold-leafed terra cotta. It was renamed the Thurgood Marshall U.S. Courthouse in 2001.

The 37-story, 611,000-square-foot building has operated continuously as the seat of the U.S. District Court Southern District of New York and the U.S. Court of Appeals for the Second Circuit, and it has undergone several significant upgrades to do so. Yet these projects never introduced air-conditioning to upper floors, and other infrastructure was held over from 1936. In this first-ever comprehensive renovation, the building’s mechanical, electrical, fire protection, plumbing, security, audiovisual, and telecommunications systems were all improved.

To minimize impact to the original building, 50-year mechanical systems were incorporated into the building discreetly. Unused elevator shafts were repurposed as pathways to distribute HVAC to upper floors. A rainwater harvest tank located under the main entry stairs provides makeup water to the courthouse’s chilled water loop. Installation of retrofit sprinklers, lighting, and life-safety devices minimized impact to ornamental plaster and decorative painting.
The project also increased the visibility of historic elements, by removing or limiting inappropriate infill like an unused sally port, which was dismantled and reconfigured into a new service entrance. Meanwhile, in the monumental Main Lobby—which bears a striking resemblance to the main hall of the U.S. Supreme Court Building—contemporary security checkpoints could not be eliminated. Instead, screening equipment and barricades were consolidated within underutilized spaces to clarify public entrances, organize pedestrian flow, and optimize the screening process. Wood and stone finishes in this and other public corridors then received a careful cleaning.

Indeed, respect for Gilbert’s feat was practiced at all scales of the building, and where historic fabric could not be preserved or did not exist, teams paid homage to the 1930s scheme rigorously. Restoring existing decorative painting took place alongside selective recreation of lost panels, and in addition to updating existing lighting, replica fixtures were manufactured to boost illumination levels in courtrooms, offices, and public corridors. Similarly, egress doors were replaced with new fire-rated wood doors that incorporate historic decorative motifs, and decorative plaster ceilings throughout the courtrooms and public spaces were repainted according to a color scheme based on the building’s original palette. An all-new magistrate’s courtroom evokes its precursors.

The mechanical-electrical upgrade went from the cellar all the way to the top. It’s a phenomenal example of making a 70-year-old building effective for the next 50 years or more.

Peter Marshall

All tasks relied upon archival research, an extensive conditions survey, and on-site probing. Yet this project’s accomplishments are not limited to historical sympathy. The cafeteria was relocated to the street entrance to improve access and daylighting for occupants, and a replacement green roof harvests the rainwater for the chilled loop.
Building 1202 is a 209,000-square-foot office for the U.S. Army Corps of Engineers Northwest District. Located within the Federal Center South campus on the edge of downtown Seattle, the new regional headquarters redevelops 4.6 acres along the Duwamish Waterway. It is adjacent to the Ford Motor Company Assembly Plant designed by Albert Kahn, on a brownfield site previously occupied by a non-historic warehouse.

Funded by the American Recovery and Reinvestment Act, Building 1202 was planned, programmed, and constructed in less than two and a half years. An early 2010 design competition commenced the design-build project, and the ensuing performance-based contract included a 0.5 percent incentive payment to verify energy efficiency a year into operation (which has since been met). Consequently, every major element of the completed building takes environmental performance into account. Because the building sits on sedimentatious soil, for example, its piles reach 160 feet below grade; these deep piles incorporate hydronic loops for geothermal heating and cooling.

Coupling of strategies is particularly notable in Building 1202’s interior, which prioritizes employee well-being and workplace interaction alongside sustainability. The oxbow-shaped floor plate is 60 feet wide to maximize daylight penetration, and 50-inch-high cubicles guarantee individual workers’ access to sunshine and views. At the building’s heart, meanwhile, a dramatic atrium serves as a social center, daylight source, and exhaust vent for perimeter officers in equal measure. This community space is clad in timber salvaged from the previous warehouse, and accented by a water feature flowing with reclaimed rainfall.
This federal office nearing completion in Miramar, Florida, will become the new South Florida headquarters of a major government agency; in mid-2015 it will shift operations from a field office it had occupied for 30 years.

The 375,000-square-foot building comprises a pair of 60-foot-wide curving glass structures, which link at their midpoint to create two distinct courtyards. Aligned on an east–west axis, the configuration maximizes interior daylight penetration while minimizing solar heat gain. On top of this foundational approach to passive sustainability, green strategies that include distinctive external shading elements and a unique, expandable photovoltaic system will help the office achieve its anticipated net-zero-energy status by 2030.

In addition to relieving space constraints through high-performance construction, the project makes an important environmental contribution to the region, namely by returning 20 acres of the property to wetlands and vegetation common to the nearby Everglades. The building is elevated on 18 inches of repositioned gravel to support this wetland restoration, and it incorporates cisterns to manage stormwater in tandem with the renewed, indigenous habitat. The water features and overall landscape design benefit the office, in turn, with natural site security that also creates a beautiful first impression. GSA has enrolled the project as a pilot of the Sustainable Sites Initiative with a goal of a two-star rating.
The Bond Department Store in downtown Chicago has undergone several dramatic alterations since opening in 1948. A 1980 renovation completely replaced the infill building’s east-facing State Street elevation, moving its front entrance to Jackson Boulevard to the south. Five years later Sol LeWitt’s powder-coated aluminum sculpture *Lines in Four Directions* was mounted to a west elevation. Purchased by GSA in 2005 and modernized with funds from the American Recovery and Revitalization Act, today the building combines retail and federal office spaces in the energetic Loop streetscape.

The Recovery Act-funded renovation also integrated the mixed-used building into the adjacent Chicago Federal Center campus, in part by again relocating the main entrance. A former loading dock on the north side is now the front door for federal workers, placing them within the more intimate urban space of Quincy Court and in direct sight of the Everett M. Dirksen U.S. Courthouse. The new entrance effectively extends the courthouse plaza into city fabric: It activates Quincy Court as a public stage and creates direct pedestrian dialogue between the federal campus and State Street.

With that move, too, the piecemeal changes of previous eras were resolved. Glazing around the new north entrance transforms former loading-dock storage into light-filled workspace, and additional glazing of the west elevation, as well as replacement of the curtain wall overlooking State Street, unifies the building’s appearance. Scrutiny of this glass will reveal ceramic fritting that invokes *Lines in Four Directions*, which was conserved as part of the overall undertaking. In the main lobby, meanwhile, floor-to-ceiling colored glass panels are etched in a pattern similar to the public artwork and illuminated like beacons.

IT’S A VERY ELEGANT BUILDING THAT FEELS IN LINE WITH THE ARTS CLUB OF CHICAGO AND OTHER INTERESTING SITES IN THAT AREA. IT’S ONE OF THE BEST RETROFITS I’VE SEEN IN OUR CITY.

THEASTER GATES
In the reconstruction that followed the Great 1906 San Francisco Earthquake, city officials adopted a plan to consolidate government services in one location. The seventh and final component of this San Francisco Civic Center was the Second Renaissance Revival-style federal building designed by Arthur Brown, Jr. and completed in 1936. The federal building was renamed 50 United Nations Plaza in 1975 and the entire Civic Center was listed on the National Register of Historic Places in 1987.

Two years later, San Francisco sustained damage from the Loma Prieta Earthquake. While the event spawned another wave of development through the city, in the Civic Center it initiated historically sympathetic modernizations of buildings like San Francisco City Hall. GSA decided to undertake seismic retrofits of 50 UN Plaza after moving occupants into a new San Francisco Federal Building, which opened in 2007. The federal renovation was subsequently funded by the American Recovery and Reinvestment Act.

The 50 UN Plaza modernization goes well beyond structural bracing. It is the first major upgrade of the 350,000-square-foot landmark since origination, and work was performed with sensitivity to its status as a beloved community fixture. The building’s granite exterior, as well as significant interior spaces like the entry lobby, main stairways, and the Nimitz Suite, are imperceptibly changed. As part of a multifaceted sustainability program, operable windows are refurbished with higher-performing glass; historic light fixtures are completely rewired; and steam radiators now feature controls to minimize unnecessary heating.

There are very good reasons for keeping this building, even in spite of what it’s gone through, and this project provided the opportunity to bring it into the next century. It was readily adapted without compromising its soul.

Estevan Rael-Galvez
constructed in 1979, the Dr. A.H. McCoy Federal Building in downtown Jackson, Mississippi, allotted generous space to the urban realm, but did little to fill it with city life. The building entrance was located far from the site perimeter—complicating wayfinding for visitors arriving on foot—and the tower’s imposing character and barren plaza discouraged public activity.

Modernization of the 15-story building offered the chance to reimagine the visitor experience. In addition to accessibility improvements, waterproofing, and renovation of mechanical and electrical systems, the program included construction of an entry pavilion to accommodate up-to-date security protocols. The new pavilion reaches into the broad plaza, activating the space with a curving glass form that contrasts with the angular concrete surfaces of the tower. Alongside new site landscaping, the inviting 3,000-square-foot pavilion also reestablishes the street edge. Inside, integrated lighting accentuates the undulating geometry of the space and directs visitors intuitively through security and to the elevator bank.

The pavilion draws its inspiration from the meanders of the Mississippi River. The project team executed this historic reference in a highly contemporary fashion. The structure, which is cantilevered over a large storm culvert, has a water jet-cut aluminum skin finished in 1,078 glass shingles locked into place by flat aluminum quills. All work was coordinated via 4D BIM model, in a collaborative arrangement that private industry is celebrating as a paradigm for future construction.
In the 1960s, a major federal agency invested in a records-processing facility in Andover, Massachusetts. The operation required few administrative offices, and those spaces were installed in the 390,000-square-foot, single-story building with little thought. Corresponding with digital conversion of the agency’s paperwork, the Andover building was modernized, turning the ostensible warehouse into a professional office for accounts management, compliance services, and support.

The modern transformation took its cues from historic city planning. Today the building interior is organized into six neighborhoods, and within each, workstations are clustered according to a street-like grid. Users travel along diagonal boulevards to their neighborhoods, and lighting, soffits, and millwork outline arteries and neighborhood amenities. The project also includes new glass entry pavilions and adjoining lobbies, four dining areas, interior spaces like gardens, and new exterior courtyards and parkscape that serve as landmarks and programming destinations between neighborhoods.

Improvements in circulation and wayfinding evidence an overall commitment to the well-being of 1,800 employees. In that vein, the existing roof was reconstructed so that skylights harvest daylight for 90 percent of the building; insulated windows replace old glazing for user comfort; and raised flooring and power distribution units were installed so the workplace can be easily reconfigured. All of these features improve environmental as well as human performance. The reconceived regional headquarters uses no fossil fuels for heating, cooling, or hot water as a result of the emphasis on sustainability. In BTUs, the project has cut energy consumption by more than half.
The Internal Revenue Service Enterprise Computing Center in Kearneysville, West Virginia, operates 24 hours a day. To support this intensive work, the rotary power system constructed at the time of the facility’s origination was the largest of its kind in the world. Recent conversion to static uninterruptible power required building a 2-story, 51,667-square-foot replacement utility plant, without disrupting service to the data center.

Phasing of the project—which employed a 3D model of existing systems and the designed utility plant—was detailed for ongoing operations. Planning accounted for temporary equipment and connections, demolition of equipment, and transfer of extant equipment to the new building, and it specified redundancy levels. Electrical equipment was mostly replaced while mechanical equipment was relocated, based on the results of life-cycle analysis. The phasing plan also included civil design of adjacent property that would function as an access road and a relocation site for existing utility mains.

The new central utility plant permits preventive equipment maintenance without outages, and boasts other upgrades for reliability and robustness. High-efficiency mechanical systems comprise water-cooled chillers with variable frequency drives. The plant’s lower-level floor was constructed over a 24-inch void space, into which pyretic shale can expand over time: Expansion caused heaving of the floor slab in the old utility plant. This comprehensive upgrade improved upon existing supervisory control and data-acquisition systems, as well, integrating them into the new infrastructure.
Practicing in Indianapolis from 1955 until his 2001 retirement, Evans Woollen is considered one of that city’s greatest modernist architects. Woollen fully came into prominence when GSA tapped him to design a new office in downtown Indianapolis, on the east side of Veterans Memorial Plaza; schemes of the building first went public in 1967 and construction began in 1972. Trying to better define the edge of the plaza and to convey government’s permanence, Woollen substituted a 6-story, Brutalist-style ziggurat for the narrower tower planned for the site.

While primarily interested in his design as an urbanism solution, Woollen advocated incorporating an artwork that would make the new public building “cheerful, disarming, fresh, welcoming, friendly and inviting.” GSA’s Art in Architecture program commissioned Milton Glaser for this project, and Woollen worked closely with the pioneering graphic designer to ensure the installation’s success. Completed in 1975, Color Fuses wrapped the 27-foot-tall, 672-foot-long arcade level in 35 bands of blended color. In evenings the mural was to be illuminated by gently pulsating lights, to create the illusion of movement.

Reinvestment in the Minton-Capehart Federal Building encompassed renovation of office interiors, installation of efficient mechanical systems, and reorganization of the lobby to expedite secure entry. With Glaser’s participation, the project team also analyzed weathering of Color Fuses, determined a historically sympathetic color palette, and cleaned and repainted the mural. Its original incandescent lighting, which was never fully capable of fulfilling Glaser’s vision, was replaced with a computer-controlled LED system. For the first time since it was installed, the artwork will be seen as the artist intended.
The newly completed John M. Roll United States Courthouse provides much-needed space for the U.S. District Court for the District of Arizona to manage its expanding immigration caseload. Located near Main Street in downtown Yuma, the 55,700-square-foot facility is fully woven into the urban fabric, aligning with the historic City Hall next door: Its shaded entry plaza provides a public space with seating areas and desert landscaping, which also fulfills a 50-foot security setback requirement.

The building design reinterprets classic courthouse elements in materials that can withstand the hot, dry climate. The symmetrical main facade is composed of locally sourced, flanking sandstone masses inset with a double-height glass lobby. At the entrance, a 10,000-square-foot canopy of photovoltaic panels held up by naturally weathering steel columns produces approximately 21 percent of the courthouse’s electricity. This community “front porch” also resembles ramadas, which the Quechan people historically assembled from indigenous plants like saguaros and ocotillos.

The plaza and perimeter further the conversation with regional identity, with drought-resistant plantings native to the Sonoran Desert and a 29,000-cubic-foot arroyo that collects and filters stormwater. Site elements include stone walls that double as security barriers and steel spans traversing the arroyo that make reference to Yuma’s historic bridges. Among the courthouse’s many energy-conserving features, snail vine- and grapevine-planted trellises mounted on the east and west elevations also reflect vernacular building traditions.
The United States Courthouse in Bakersfield, California, interprets the tradition of the courthouse on the village green through the lens of regional architecture. The one-courtroom building stands on the edge of Mill Creek Park in downtown Bakersfield and, in the spirit of California modernism, it blurs the boundaries between outside and within.

The south-facing entry immediately calls attention to both relationships. Here, the classic courthouse portico is expressed as an inverted, tapered volume, and it is finished in wood and bronze cladding more typically seen inside courtrooms. Entrants to the courthouse will notice how nature also comes indoors, in the form of abundant daylight that filters through the building and into the magistrate courtroom, which is outfitted entirely in LEDs for supplemental lighting.

Employment of site-cast tilt-up concrete for both building frame and envelope pays further homage to the modernism legacy. On the western elevation of the 33,400-square-foot building, the concrete panels are configured diagonally to maximize views to Mill Creek Park and Kern River while shading occupants. Seen from outside, this arrangement frames five paintings by Lucinda Parker, who worked with the design-build team to ensure the presence of art in the public realm. The project team's overall collaboration is embodied by the tilt-up concrete, whose benefits reach across disciplines—increasing thermal mass, providing lateral stability and blast resistance, conveying craftsmanship in finish—and which contributed to the building's overall energy use intensity of an efficient 38.6.

THE DESIGN IS DECEPTIVELY SIMPLE; IT UNDERSTANDS HOW TO USE VERY LITTLE TO CREATE A VERY CIVIC BUILDING.
DAVID ADJAYE
UNITED STATES COURTHOUSE ANNEX
SAN DIEGO, CALIFORNIA

Measuring 467,000 square feet on 16 floors, the United States Courthouse Annex in San Diego serves as an expansion of the adjacent Edward J. Schwartz Federal Building and U.S. Courthouse. The project promotes wider urban-design goals for San Diego’s downtown, as well, by integrating buildings, landscape, water features, public art, and pedestrian paths in a comprehensive master plan.

The new structure combines a slender terracotta-and-glass tower rising above a transparent and translucent base. The tower is composed in response to program and solar orientation, while its thin profile supports daylighting the volume in its entirety. Organized into two courtrooms per floor, the tower also eliminates traditional long corridors and gives human scale to the passage from entry to courtroom. That this circulation is placed along the glazed east elevation offers exceptional views to users, and makes the judicial process appear dynamic and accessible to pedestrians occupying the civic plaza developed between the Schwartz and annex buildings.

Set apart from the rectilinear tower for optimal visibility from all approaches, the light-filled annex lobby receives and redirects staff and visitors to multiple courthouse destinations. The lobby and jury assembly are designed to be naturally ventilated, taking advantage of San Diego’s temperate climate. This feature, alongside daylighting and other sustainability strategies, contributes to the building’s excellent environmental performance. Its material palette, selected as symbols of the courthouse’s strength and permanence, further convey the Mediterranean quality of place.
Thanks to design-build modernization, the Wayne N. Aspinall Federal Building and U.S. Courthouse in Grand Junction, Colorado, is poised to be GSA’s first net-zero-energy building. The 3-story judicial and administrative facility was constructed in 1918 by the Treasury Department under acting supervising architect James A. Wetmore, and today it is listed on the National Register of Historic Places.

Installation of a 123-kilowatt rooftop photovoltaic array exemplifies the equal priority given to environmental performance and historic fabric. The building possessed inadequate roof area for a solar installation of this size, due to interference from an existing elevator penthouse and HVAC equipment. Instead, photovoltaic panels were mounted in an overhead canopy, which was set back from the principal south elevation to maintain that facade’s original appearance. To lessen visual intrusion further, the underside of the canopy is sheathed in metal, and it was configured to minimize visibility from the east and west.

The modernization responded to restrictive conditions in multiple respects. Partnering with the municipality, the project team adapted heating and cooling to site constraints, by drilling 12 of 32 passive geo-exchange wells in adjacent alleyways. New mechanical, electrical, and life-safety systems were installed without disturbing arched lobby openings or interfering with restoration of historic volumes. Interiors underwent complete updating to embody contemporary workplace design criteria, while the shells of tenant spaces were restored according to forensic analysis of original color and finish palettes. The careful balance of old and new honors heritage and secures future relevance.
The City Beautiful movement flourished in the United States after Chicago hosted the World’s Columbian Exposition in 1893, and of its many impacts on the nation’s cities, civic malls are a lasting remnant. While these linear plazas are most famously associated with the National Mall in Washington, DC, and the San Francisco Civic Center, the device swept into places as small as county seats like Toledo. In that Ohio city, the concept of a civic center mall entered public dialogue in 1909 and was formalized in a 1924 master plan. To realize the scheme, in 1925 local government purchased a quadrangle anchored by the 1897 Lucas County Courthouse, to which it added the City Safety Building the following year. The federal government would make its own contribution to the pedestrian area, by completing a new courthouse and custom house on site in 1932.

Although Toledo’s civic mall has continually evolved in the decades since its establishment, the outdoor space has not fulfilled its potential as a vital community center. A new federal courthouse elevates the eminence of the mall, by bookending its northern edge in a scale that matches neighboring civic buildings. This planning process relied heavily on the input of Toledoans, to ensure residents’ interest in place. While its planning strengthens a historic downtown asset, the project’s approach to architecture is more transformative, radically reinterpreting iconic courthouse elements to serve programmatic needs. For example, the design’s mounded roof and glass atrium reinvent the classic dome and portico, respectively, and an undulating curtain wall slatted in fiber-reinforced panels offers shade and blast protection while evoking fluting on a column.
PHOTOGRAPHS AND RENDERINGS

PAUL CROSBY (PAGES 8, 9, 10)
PAUL WARCHOL (PAGE 11)
BENJAMIN BENSCHNEIDER (PAGES 12, 13/RIGHT, 30, 31)
NICOLAS LEHOUX (PAGES 13/LEFT, 15/CENTER, 17/LEFT)
JEREMY BITTERMANN/BITTERMANNPHOTOGRAPHY.COM (PAGE 14)
JENNIFER TAYLOR (PAGES 16, 17/RIGHT)
ALEXANDER S. MACLEAN/LANDSLIDES AERIAL PHOTOGRAPHY (PAGE 18)
ALEXANDER SEVERIN/RAZUMMEDIA (PAGE 19/LEFT AND CENTER)
ELIZABETH FELICELLA (PAGE 19/RIGHT)
GSA, NATIONAL CAPITAL REGION (PAGES 20, 21, 22, 23/LEFT)
GRUNLEY CONSTRUCTION COMPANY, INC. (PAGE 23/RIGHT)
TIMOTHY HURSLEY (PAGES 24, 25)
TIMOTHY SCHENCK (PAGES 26, 27, 28, 29)
KRUECK+SEXTON (PAGES 32, 33)
CHRISTOPHER BARRETT (PAGES 34, 35)
BLAKE MARVIN/HKS, INC (PAGES 36, 37)
ALAN KARCHMER (PAGES 38, 39)
DAVID LENA (PAGES 40, 41)
AL WEKELO PHOTOGRAPHY (PAGES 42, 43)
STEINKAMP PHOTOGRAPHY (PAGES 44, 45)
EHRLICH ARCHITECTS (PAGES 46, 47)
FRANK OOMS (PAGE 48, 49)
TIM GRIFFITH (PAGES 50, 51)
KEVIN G REEVES PHOTOGRAPHER (PAGES 52, 53)
YAZDANI STUDIO (PAGES 54, 55)
TAYLOR LEDNUM/GSA (PAGE 4)

U.S. GENERAL SERVICES ADMINISTRATION
PUBLIC BUILDINGS SERVICE
OFFICE OF THE CHIEF ARCHITECT
DESIGN EXCELLENCE AND THE ARTS
1800 F STREET NW
WASHINGTON, DC 20405
202.501.1888