The Henry M. Jackson Federal Building (JFB) was built in 1974 in downtown Seattle, and is the largest federal office building in the GSA Northwest/Arctic Region. Approximately 1900 federal employees work in the building. The JFB and the historic Federal Office Building are situated across the street from each other on First and Second Avenue.

In 1984, GSA rededicated the building to honor Henry M. ’Scoop’ Jackson (1912-1983), a Democratic U.S. Congressman and Senator, who is best remembered for contributing to and guiding environmental legislation, including the National Environmental Policy Act of 1969. He also worked tirelessly to protect and expand the national parks and wilderness areas, backed the military, and advocated for assertive foreign policy in support of democracy.

The 37-story JFB maintains certain ornamental elements of its on-site predecessor, the former Burke Building. The property covers a steep, sloped, city block that descends towards the piers and Elliott Bay waterfront. The building has two public entrances; the Second Avenue entrance located on the fourth floor serves as the main entrance, and the First Avenue entrance opens onto the first floor. The JFB features steel frame construction with cellular steel floor decking and a precast concrete exterior. Tenants enjoy a newly renovated cafeteria, fitness center, and health unit, which they share with residents of the Federal Office Building across the street. This building will likely be considered eligible for the National Register in 2023 because of its local significance.

The JFB’s largest tenant, the Internal Revenue Service (IRS), services taxpayers in Alaska, Idaho, Washington, and Oregon through its regional telephone call center. The agency is consolidating its IRS-Criminal Investigation Unit from leased space to the JFB 23rd floor, with consolidation funding. This project will remove 10,900 square feet of leased space from the budget, and save the tax-payer close to $500,000 per year in lease costs. Other tenants include the Veteran’s Administration and the U.S. Coast Guard, who have both recently completed projects expanding their space.

During fiscal year 2005/2006 the Jackson Federal Building underwent a major upgrade that included: Seismic, more than 70 ADA compliant restrooms, a smoke management system that included a 1200 KW generator, and replacement and upgrade to 22 elevator car controls and interiors. In 2010 GSA launched a major modernization effort to create a state-of-the-art, high-performance green building designed to reduce energy and operation costs. Under the 2009 American Recovery and Reinvestment Act legislation, the JFB received $42 million in funding to replace or repair aging mechanical, electrical distribution, fire life-safety system, energy management and control systems, lighting, lighting control systems, upgrades to facility exterior glazing and insulation. The improvements are expected to reduce energy use by approximately 30 percent, saving nearly $80,000 on monthly electric costs.

The JFB received a Leadership in Energy and Environmental Design (LEED) Existing Building (EB) gold rating in June 2014. It also participates as a Gold Level Partner with Seattle City Light Renewable Energy Certificates (RECs) in support of green energy in the Region.

Recovery Act Upgrades and Sustainable Building Features

- Upgraded chilled water plant
- Upgraded steam distribution system
- Upgraded lighting and lighting control systems
- Replaced 3500 windows with insulated glazing units
- Insulated all window sills
- Replaced cooling towers and chillers
- Repaired high-pressure ductwork
- Replaced fire alarm system
- Replaced electrical switchgear
- Upgraded energy management system
- Added daylight harvesting feature, with replacement of lighting control system
- Upgraded steam converters and steam distribution system
- Implemented plug load management software
- Upgraded return and exhaust damper systems
- USGC Communication system battery back-up system
- Replaced miscellaneous pumping system
- Added heat recovery system to capture and reuse waste heat