GSA Green Building Demonstration Projects: Findings & Follow Up

Briefing for the Green Building Advisory Committee
November 12, 2013

Dr. Judith Heerwagen, Ken Sandler, Bryan Steverson
GSA Office of Federal High-Performance Green Buildings
Brief you on major findings of our two green building demonstration projects to date:

- EPA Region 8 Headquarters building (Denver, CO)
- Ft. Carson Army base (Colorado Springs, CO)

Gain your input to prioritize these findings re: their value to the Federal government’s efforts to green its building portfolio

Plus a preview of our latest demo project
Every Building is a Hypothesis Waiting to be Tested

How does the building perform?

How well does it work for people?

Does it meet expectations?
Goals of GSA Demo Projects

- Improve understanding of how sustainable technologies & practices can improve building performance:
 - Test green technologies and strategies
 - Develop benchmarks & performance metrics
 - Identify replicable, scalable best practices
 - Integrate findings into government policy, guidance and practice
 - Disseminate results government-wide & beyond

- More information, including project reports, available at www.gsa.gov/buildingresearch.
First Demonstration Project: EPA Regional HQ Denver, CO
Individual Studies

Underfloor air distribution
Acoustics
Occupant comfort
Satisfaction w/ green features
Workplace functionality
Indoor water use
Green roof
Data Center energy
Daylighting analysis
Furniture & materials
Behavioral change
Second Demonstration Project: Ft. Carson Army Base
Colorado Springs, CO

LEED® Facts

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable Sites</td>
<td>11/14</td>
</tr>
<tr>
<td>Water Efficiency</td>
<td>4/5</td>
</tr>
<tr>
<td>Energy & Atmosphere</td>
<td>15/17</td>
</tr>
<tr>
<td>Materials & Resources</td>
<td>6/13</td>
</tr>
<tr>
<td>Indoor Environmental Quality</td>
<td>11/15</td>
</tr>
<tr>
<td>Innovation & Design</td>
<td>5/5</td>
</tr>
<tr>
<td>PLATINUM</td>
<td>52*</td>
</tr>
</tbody>
</table>

Out of a possible 69 points
Fort Carson Research Projects

➤ Goal: Help Ft. Carson reach net zero energy target
➤ Behavioral Research:
 ▪ How do occupants perceive & interact with green building features?
 ▪ How to motivate energy-saving behaviors?

➤ Building Systems Research:
 ▪ Analyze performance and optimization potential of:
 ▪ Lighting & Daylighting
 ▪ Building Envelope
 ▪ Building Retrofit
EPA Behavior Studies

- Desk top plug load experiment
 - Automatic shutdown using occupancy sensors
 - Competition to motivate reduced energy use
 - An information campaign
 - Control (no behavior change)

- Indoor water
 - Dual flush toilet water use
 - Method – assessment of water volume per flush
Dual Flush toilets

Signs told occupants how to use the dual flush toilets –

but water use was higher than expected.
The Problem:
People flush down because it is what they are used to doing – it’s a strong habit.

Was this causing the greater than expected water use?
The Solution: Change the handles to fit the habit.

Results showed reduced water use on tested floors.

Economic analysis showed it was cost effective to change handles.
Behavior Change Experiment for Desktop Plug Loads

- Information campaign urging people to shut down devices when away from desk
- Competition among workstation pods to reduce desk top energy use
- Automatic shutdown using occupancy sensors to identify occupant presence

120 Subjects
Each condition tested for one month
Baseline at start
Energy use at end of experiment
Energy use results (extrapolated to whole building)

<table>
<thead>
<tr>
<th>Experimental method</th>
<th>Total annual energy savings (kWh/yr)</th>
<th>Percentage reduction from baseline</th>
<th>Percentage of whole-building electricity reduction</th>
<th>Total annual cost savings ($/yr)</th>
<th>Total CO$_2$e savings (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control system – auto shutdown</td>
<td>34,757</td>
<td>21%</td>
<td>0.9%</td>
<td>$3,476</td>
<td>30</td>
</tr>
<tr>
<td>Competition</td>
<td>9,912</td>
<td>6%</td>
<td>0.3%</td>
<td>$991</td>
<td>9</td>
</tr>
<tr>
<td>Letters</td>
<td>-407</td>
<td>0%</td>
<td>0.0%</td>
<td>-$41</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: results may have been better if people could not opt out of the auto turn off.
Ft. Carson Behavior Research

- Focus on performance impact of enhancing role of the building energy monitor
 - Energy Monitor training
 - Weekly building checks
 - Service orders for physical issues with building
 - Communication with occupants about progress, opportunities

- Targeted occupant behaviors
 - Night time computer shutdown
 - Night time temperature setback
Results: Computer Shutdown

% of Computers Shut Down Based on Network Scans

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
Week 7 Week 8 Week 9 Week 10 Week 11 Week 12

5% 18% 24% 19% 7% 8% 28% 59% 57% 51% 64% 54%

Military buildings: 9420 9447
Predominantly civilian buildings: 9427 1118 1219

% of Computers Shut Down Based on Network Scans

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
Week 7 Week 8 Week 9 Week 10 Week 11 Week 12

5% 18% 24% 19% 7% 8% 28% 59% 57% 51% 64% 54%

Military buildings: 9420 9447
Predominantly civilian buildings: 9427 1118 1219
One Building’s Energy Savings

- Total savings of 8.9%
- However, 6.3% cannot be explained
- Savings from temperature set backs was 3.1% – primarily from natural gas, not electrical

Total Observed Energy Savings in Bldg 1118: 8.9%

- Nighttime computer shutdown: 1.0%
- Setback of heating units: 1.0%
- De-lamping: 0.6%
- Remainder of savings: Unexplained 6.3%
Behavior change is difficult
Changing default conditions may be a better option in some contexts
However, behavior change can be a useful approach – but know when and how to use it and whose behavior to change
Continue to identify approaches that work best and in what contexts
Key Building Systems Findings & Recommendations

- Lighting/Daylighting Systems (Ft. Carson)
 - Savings can be raised to 90% through strategies to harvest daylight and apply control technologies to drive down loads

- Building Retrofit Optimization (Ft. Carson)
 - A lifecycle cost optimal path to deep energy retrofit

- Data Center Energy Use Reduction (EPA bldg)
 - Major opportunities with short payback periods
Successful Daylighting in Action
Daylighting Control Issues
Lighting Recommendations

- Fine tune lighting levels to meet occupant needs
- Provide consistent glare-free daylight in all spaces
- Set electric lighting and controls to provide layers of light
 - Make the lowest acceptable light level the default mode
 - Allow occupants to choose more light (controlled by vacancy sensors rather than occupancy sensors)
- Engage occupants and design the control system to serve them
 - Zone electric light systems to take advantage of perimeter daylight and occupant preferences
 - Use vacancy control in all appropriate spaces
Ft Carson Energy Retrofit Optimization

Incremental Life Cycle Cost (millions of dollars)

Energy Use Intensity (kBtu/ft²·yr)

Simulation Data

Optimization Curve

Max Tech Package (NZE +):
+ Reduce support equipment plug load density by 25%
+ Replace workstation computer equipment with high efficiency equivalents
+ Increase exterior wall insulation by R-8.7
+ Increase roof insulation by R-10 and add cool roof membrane
+ Add high SHGC window inserts

Net Zero Energy Package (NZE-Ready +):
+ Install PV on 75% of the roof area

Net Zero Ready Efficiency Package (Cost Min +):
+ Install vacancy sensors in common areas
+ Increase exterior wall insulation by R-5.7
+ Replace HVAC with GSHP and DOAS

Likely domain for Building 1219 retrofit package (~15% savings)

Cost Minimum Package (Baseline +):
+ Reduce LPD to 0.4 W/ft² (65% reduction)
+ Install vacancy sensors in enclosed offices
+ Daylight open offices
+ Install controllable plug strips in offices
Cost Minimum Package

Cost Minimum Package (Baseline +):
- Reduce LPD to 0.4 W/ft² (55% reduction)
- Install vacancy sensors in enclosed offices
- Install daylight in open offices
- Install controllable plug strips in offices

Likely domain for Building 1219 retrofit package (~15% savings)
Net Zero Ready Efficiency Package (Cost Min +):
+ Install vacancy sensors in common areas
+ Increase exterior wall insulation by R-5.7
+ Replace HVAC with GSHP and DOAS
Optimization Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>EUI/Net EUI (kBtu/ft²·yr)</th>
<th>Net Energy Savings (%)</th>
<th>Incremental TLCC (millions of $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>73.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cost Min</td>
<td>69.9</td>
<td>4%</td>
<td>-0.3</td>
</tr>
<tr>
<td>NZE Ready</td>
<td>30.9</td>
<td>58%</td>
<td>-0.1</td>
</tr>
<tr>
<td>NZE</td>
<td>30.9/–2.5</td>
<td>103%</td>
<td>0.5</td>
</tr>
<tr>
<td>Max Tech</td>
<td>20.7/–12.7</td>
<td>117%</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Baseline energy use of 73.0 kBtu/ft²·yr is indicative of a typical, minimally code compliant low rise office building.
- Net Zero Energy Ready Efficiency Package results in 58% energy savings at a negative incremental total lifecycle cost.
- Max Tech Efficiency Package results in an annual energy use intensity (not including PV) of 20.7 kBtu/ft²·yr, which is comparable to that for the RSF (not counting the data center).
EPA Building Data Center Energy Use Reduction

Return air grills located directly over the racks

Hot Aisle

Cold Aisle

Under-floor supply air diffusers

CRAC
Data Center Energy Reduction Strategy

- Improvements recommended, with estimated payback periods, include:
 - Replace, Virtualize and Consolidate IT Equipment (6.3 years)
 - Optimize Airflow Management (2.0 years)
 - Replace Uninterrupted Power Supply (UPS) with High Efficiency UPS (5.7 years)
 - Install New air handling unit (AHU) with Economizer + Evaporative Cooling (1.8 years)
 - Install Light Switch (0.23 years)
Preview: GSA’s Next Demo Project
More to Come…
How would you prioritize these research findings re: their value to the Federal government’s efforts to green its building portfolio?

Which mechanisms would be most effective to transmit these best practices for government-wide implementation: e.g., policies, guidance documents, factsheets, checklists, webinars, etc.?

What research questions should future demonstration projects pursue?