Chapter 7

Demographic Overview of the African Burial Ground and Colonial Africans of New York

Introduction

The origins of Africans in colonial New York and some conditions encountered upon their arrival have been explored in the two preceding chapters. The objective of the current chapter is to reconstruct who these diverse Africans became as a single population/community (that used a common cemetery) once in New York City. This chapter serves as both a historical demographic (based on documents) and paleodemographic (based on skeletal assessments) overview of the structure of the African population of colonial New York.

The overview is based on the synthesis of the research outcomes that is presented in Volume 3 of this series, Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora— which are related mainly to municipal censuses—and the analyses and interpretations of the skeletal biological research team that are concerned primarily with mortality. The goals of the analyses presented herein are to: (1) establish population profiles and demographic trends for the New York African Burial Ground skeletal sample that integrate these two data sets; (2) reveal the New York African population in relation to its surrounding temporal, political, economic, and sociocultural landscape; (3) place the New York African Burial Ground skeletal sample within the biohistorical framework of the African Diaspora in America; and (4) provide a conceptual framework for the archaeological research work.

The research presented in this chapter is not based on a set of hypotheses but instead begins to track relationships among demographic variables and between the demography and historical attributes of this sample. This sample is unique compared to the other African Diaspora skeletal series, differing in such features as sample size, time period, and a regime of urban enslavement. The only ubiquitous demographic trait identified in all series is high infant mortality rates. The political economic, environmental, and sociocultural context of each sample produces a variety of patterns that will be discussed near the end of the chapter. A more comprehensive and etiological discussion of demographic political economy is presented in Chapter 13 of this report. The current chapter is to provide a sufficient demographic background to facilitate the reader’s evaluation of the health effects discussed in Chapters 8–13.

This chapter is organized into three sections. The first section presents a brief discussion on paleodemography and its limitations, followed by the paleodemographic data, including the age and sex composition of the New York African Burial Ground sample, mortality patterns of subadults and adults, life expectancy, and sex ratios. The second section summarizes the historical demographic data within a historical context. This includes population size, age and sex composition, sex ratio, and mortality trends identified in living people for the colonial period. The third presents comparative population parameter assessments from the African Diaspora and colonial New York.

The sum of demographic research on the New York African Burial Ground consists of data on migration, fertility, mortality, and population structure. Demographic profiles can reasonably document the movements of Africans into and out of colonial New York City; the proportions of men, women, and children of different ages who made up the African community; their frequency of death and life expectancy at different ages; and changes in population size and composition. Therefore, these population profiles provide
Paleodemography

Paleodemography is the study of archaeological populations based on skeletally determined age and sex. Paleodemographic analyses provide a means for assessing mortality but are less effective with some other demographic variables. For example, estimates of and discussions concerning fertility cannot generally rely on skeletal remains; factors such as high levels of forced and/or voluntary migration and trading of enslaved African people would only further complicate assessment.

In the 30 years since Angel’s (1969) article, “The Bases of Paleodemography,” there have been several phases of intense criticism, followed by discourse and proposed solutions to the intrinsic problems of paleodemographic studies. In the 1970s, the major focus was on the uses—and problems of using—life tables with skeletal populations (e.g., Buikstra 1976; Moore et al. 1975).

In the 1980s, there were two major critiques of paleodemography, the most significant by Bocquet-Appel and Masset (1982), who stated that paleodemographic techniques were so flawed that the field should be abandoned, and they heralded their “farewell” to its “death.” Their criticisms were based on two major points. They maintained that (1) the age structures of skeletal samples reflect only the age structures of reference populations by which skeletal aging criteria have been established, and (2) age estimates of adults lack sufficient accuracy to allow for demographic analysis. Age estimates, then, are seen as mere ‘random fluctuations and errors of method’ by these authors. This launched extensive debates into the early 1990s by numerous authors, for example, Van Gerven and Armelagos (1983), Buikstra and Konigsberg (1985), and Greene et al. (1986), who dispelled the idea that age assessment was so flawed it rendered paleodemography as a dead area of research.

The second major critique in the 1980s by Sattenspiel and Harpending (1983) and Johansson and Horowitz (1986) brought to the forefront the concept that the fundamental assumption of nonzero population growth of life tables and other demographic models and analyses could actually distort age at death distributions so that they reflect fertility more than mortality (Milner et al. 2000).

In the early 1990s, Wood et al. (1992) documented three critical problems in paleodemography using archaeological data sets and models to establish their...
argument. These three problems are: demographic nonstationary populations (populations are not stable, or stationary, as previous models assumed); selective mortality (only those that succumb at any given age are represented in a skeletal population); and hidden heterogeneity in risks (the unknown mix of individuals with mixed susceptibilities makes aggregate data almost impossible to interpret).

These changes and developments lead us to a variety of possible solutions, questions, and modeling to explore in paleodemographic studies, according to Wood et al. (1992). Others have begun to explore, both methodologically and theoretically, the direction of paleodemographic research in the future (e.g., McCaa 2002; Saunders and Hoppa 1993b). Notwithstanding the limitations of paleodemographic assessments, cautious and substantive inferences from the population structure of the dead to that of the living can be developed.

New York African Burial Ground Skeletal Sample

The New York African Burial Ground sample consisted of 419 recovered burials of which 301 were available for demographic study based on preservation (see Appendix C). Determinations of age and sex were based on multiple methods of aging and sexing for adults and aging methods for subadults, as discussed in Chapter 4. Therefore, paleodemographic assessments are based on these 301 individuals. The adult skeletal remains available for study totaled 171 individuals for whom age and sex could be determined, including 102 males and 69 females. In addition, there were 130 ageable subadult skeletons. Therefore, subadults were 43.2 percent of the total sample and adults were 56.8 percent (see Chapter 4 for detailed discussion of aging).

Mortality

New York African Burial Ground overall mortality, based on the total demographic skeletal sample \(n = 301 \), was elevated in the first 2 years of life. This was followed by a decreased mortality until late adolescence/early adulthood (with a slight increase at age 4–5 that may or may not be relevant), and then mortality remained elevated throughout adulthood. Mortality was highest for infants 0–6 months (9.6 percent), adults in the 30–34 age group (9 percent), and 45–49-year-olds (8.3 percent) (Figure 50).

Adult Mortality

Adult mortality was highest in the fourth and fifth decades of life when 28.1 percent of adults died in each decade. Female mortality (37.6 percent) was highest in the 30–39 age group, close to double the rate of males (21.6 percent). Male mortality was highest (34.3 percent) in the fifth decade (40–49); female mortality was lower almost by half (18.8 percent). Thus, a differential mortality trend by sex can be observed with approximately two-thirds of the females (62 percent) dying by the end of the fourth decade, compared to 45 percent of the males. Notably, many young adults, aged 15–19, were present in the burial ground.

In general, females entering their reproductive years have higher biological risks than males under non-stressful socioeconomic and environmental circumstances. In the New York African Burial Ground, both groups have similar and high rates. In general, demographers consider the ages 12–35 a “trauma bump” in mortality, especially for males both in historical and contemporary populations (Bogue 1969). Therefore, the apparent death rates for 15–19 and 20–24-year-old males may be a typical phenomenon, with other factors—such as interpersonal violence, accidents, and high-risk behaviors—contributing to young male adult mortality. Yet, these data indicate that females were under stress during a period of their lives when they should have been reproducing, not dying (Figure 51 and Table 15). Several explanations can be proposed here: (1) similar mortality rates for young men and women may result from their having been a greater proportion of the captives imported to New York, which were therefore represented in the skeletal sample in greater numbers; (2) these young adults may have represented newly arrived captives who were unsuccessful in adapting to a new environment and the lifestyle of enslavement; (3) there may be possible bias in the skeletal sample; (4) enslaved Africans entered into young adulthood biologically compromised and were at greater risk of susceptibility; or (5) an interaction of all the above factors.

Subadult Mortality

Subadult mortality is an important factor in overall population stability and viability that eventually affects natural population growth. If, indeed, as Sat-
Figure 50. New York African Burial Ground mortality.
Figure 51. New York African Burial Ground mortality by sex and age.

Table 15. New York African Burial Ground Adult Mortality

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Male</th>
<th>Female</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent Male</td>
<td>Percent Total Population</td>
</tr>
<tr>
<td>15–19</td>
<td>7</td>
<td>6.9</td>
<td>2.3</td>
</tr>
<tr>
<td>20–24</td>
<td>10</td>
<td>9.8</td>
<td>3.3</td>
</tr>
<tr>
<td>25–29</td>
<td>7</td>
<td>6.9</td>
<td>2.3</td>
</tr>
<tr>
<td>30–34</td>
<td>10</td>
<td>9.8</td>
<td>3.3</td>
</tr>
<tr>
<td>35–39</td>
<td>12</td>
<td>11.8</td>
<td>4.0</td>
</tr>
<tr>
<td>40–44</td>
<td>18</td>
<td>17.6</td>
<td>6.0</td>
</tr>
<tr>
<td>45–49</td>
<td>17</td>
<td>16.7</td>
<td>5.6</td>
</tr>
<tr>
<td>50–54</td>
<td>15</td>
<td>14.7</td>
<td>5.0</td>
</tr>
<tr>
<td>55+</td>
<td>6</td>
<td>5.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>100.0</td>
<td>33.9</td>
</tr>
</tbody>
</table>
tensspiel and Harpending (1983) have argued, subadult skeletal remains actually represent subadult birthrates rather than deaths, then birthrates can be inferred as being high; yet overall African population growth in New York City was low and gradual. The majority of subadult deaths (39.2 percent) occurred during the first year of life, followed by another 16.1 percent in the second year. Therefore, 55.3 percent of all the subadults died by age 2. A sharp decline between ages 2 and 4, with a doubling at age 4–5, is followed by a radically decreased mortality until adulthood (Table 16).

Historical Demography of Africans in Early New York

It has been estimated that at a minimum, 6,800 Africans were imported into New York colony between 1700 and 1774, with approximately 2,800 coming directly from Africa and 4,000 from the Caribbean and Southern colonies. Perhaps one-fifth to one-quarter of them remained within the city of New York (Lydon 1978:382–383, 388). Many lived there for the rest of their lives, had children, and were eventually buried in the African Burial Ground. Some gained legal freedom, gradually building a free African population (which nevertheless had to fight to attain basic civil liberties), but most died enslaved.

The county of New York did not maintain official death records prior to the early nineteenth century. The quantitative data available, therefore, are from church records and are for the European rather than the African community; only nine deaths of Africans appear among the thousands recorded in the surviving colonial New York church records. Most of these available church records provide limited information. Age at death is given by only a few denominations and for limited time periods. For example, the Dutch Reformed Church only provided categories (male, female, child, and infant), thus rendering the records unquantifiable. Overall demographic research on the

Table 16. New York African Burial Ground Subadult Mortality

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Number</th>
<th>Percent of Subadults</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–6 months</td>
<td>29</td>
<td>22.31</td>
<td>9.6</td>
</tr>
<tr>
<td>7–12 months</td>
<td>22</td>
<td>16.92</td>
<td>7.3</td>
</tr>
<tr>
<td>12–24 months</td>
<td>21</td>
<td>16.10</td>
<td>7.0</td>
</tr>
<tr>
<td>2–3</td>
<td>6</td>
<td>4.60</td>
<td>2.0</td>
</tr>
<tr>
<td>3–4</td>
<td>7</td>
<td>5.30</td>
<td>2.3</td>
</tr>
<tr>
<td>4–5</td>
<td>13</td>
<td>10.00</td>
<td>4.3</td>
</tr>
<tr>
<td>5–6</td>
<td>3</td>
<td>2.30</td>
<td>1.0</td>
</tr>
<tr>
<td>6–7</td>
<td>3</td>
<td>2.30</td>
<td>1.0</td>
</tr>
<tr>
<td>7–8</td>
<td>5</td>
<td>3.80</td>
<td>1.7</td>
</tr>
<tr>
<td>8–9</td>
<td>3</td>
<td>2.30</td>
<td>1.0</td>
</tr>
<tr>
<td>9–10</td>
<td>5</td>
<td>3.80</td>
<td>1.7</td>
</tr>
<tr>
<td>10–11</td>
<td>4</td>
<td>3.10</td>
<td>1.3</td>
</tr>
<tr>
<td>11–12</td>
<td>0</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>12–13</td>
<td>4</td>
<td>3.10</td>
<td>1.3</td>
</tr>
<tr>
<td>13–14</td>
<td>3</td>
<td>2.30</td>
<td>1.0</td>
</tr>
<tr>
<td>14–15</td>
<td>2</td>
<td>1.50</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>100.00</td>
<td>43.2</td>
</tr>
</tbody>
</table>

Note: Age category is in years unless otherwise noted.
Middle Atlantic colonies is severely limited and does not provide a broad basis for comparative studies.

New York County’s population grew steadily between 1698 and 1800, actually increasing almost twelvefold. The African population only grew eightfold during the same period. The proportion of Africans in New York fluctuated throughout the period, actually declining between 1786 and 1800. The Euroamerican population remained fairly constant (around 80–85 percent of the total population) until 1786 when it increased to 91.1 percent (Table 17 as revised by Medford).

Age and Sex Structure

The proportion of men to women (sex ratio) is utilized for assessing a population’s “stability.” Relatively equal numbers between the sexes within each age group often suggest that the population has been in place long enough to affect the equilibrium produced through natural fertility. An equal sex ratio (presented as 100 on a scale in which lower numbers represent an underrepresentation of males) also indicates a favorable availability of marital partners for the establishment of families. There are no standards for “normal” or “abnormal” sex ratios per se; it is the relationship of sex ratios with birthrates and death rates that are significant to population growth and age-sex structure. For example, a sex ratio of 110 would indicate that there is a preponderance of males; a sex ratio of 89 would indicate a shortage of males in the population. Of course, the sex ratio in the reproductive age group would have the greater short-term impact on overall population growth. In many enslaved sugar, coffee, and/or tobacco plantations of the Caribbean, despite the lower sex ratios (more females), the combination of birth, death rates, and health care quality led to declining enslaved populations (e.g., Higman 1991; Fraginals 1977).

Historically, the earliest phases of voluntary migration often produce sex ratios far in excess of 100 because of the initial large migration of men prior to the migration of women. Recent immigrants also tend to have fewer children, and the elders tend not to migrate. Essentially, the majority of first-wave immigrants tend to come from the most economically productive age groups.

Table 17. Population of New York County, 1698–1800

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Black</th>
<th>Percent Black</th>
<th>White</th>
<th>Percent White</th>
</tr>
</thead>
<tbody>
<tr>
<td>1698</td>
<td>4,937</td>
<td>700</td>
<td>14.2</td>
<td>4,237</td>
<td>85.8</td>
</tr>
<tr>
<td>1703*</td>
<td>4,391</td>
<td>799</td>
<td>18.2</td>
<td>3,592</td>
<td>81.8</td>
</tr>
<tr>
<td>1712</td>
<td>5,861</td>
<td>975</td>
<td>16.6</td>
<td>4,886</td>
<td>83.7</td>
</tr>
<tr>
<td>1723</td>
<td>7,248</td>
<td>1,362</td>
<td>18.8</td>
<td>5,886</td>
<td>81.2</td>
</tr>
<tr>
<td>1731</td>
<td>8,622</td>
<td>1,577</td>
<td>18.3</td>
<td>7,045</td>
<td>81.7</td>
</tr>
<tr>
<td>1737</td>
<td>10,664</td>
<td>1,719</td>
<td>16.1</td>
<td>8,945</td>
<td>83.9</td>
</tr>
<tr>
<td>1746</td>
<td>11,717</td>
<td>2,444</td>
<td>20.9</td>
<td>9,273</td>
<td>79.1</td>
</tr>
<tr>
<td>1749</td>
<td>13,294</td>
<td>2,368</td>
<td>17.8</td>
<td>10,926</td>
<td>82.2</td>
</tr>
<tr>
<td>1756</td>
<td>13,046</td>
<td>2,278</td>
<td>17.5</td>
<td>10,768</td>
<td>82.5</td>
</tr>
<tr>
<td>1771</td>
<td>21,863</td>
<td>3,137</td>
<td>14.3</td>
<td>18,726</td>
<td>85.7</td>
</tr>
<tr>
<td>1786</td>
<td>23,614</td>
<td>2,107</td>
<td>8.9</td>
<td>21,507</td>
<td>91.1</td>
</tr>
<tr>
<td>1790</td>
<td>31,225</td>
<td>3,092b</td>
<td>9.9</td>
<td>28,133</td>
<td>90.1</td>
</tr>
<tr>
<td>1800</td>
<td>57,663</td>
<td>5,867c</td>
<td>10.2</td>
<td>51,796</td>
<td>89.8</td>
</tr>
</tbody>
</table>

Note: From Foote (1991:78) and White (1991:26), except 1703. Both Foote and White have corrected the raw figures. See also Kruger (1985:131), though there are some discrepancies in the percentages for 1786, 1790, and 1800.

* From census of households in New York City (see below). These figures differ from those given in the 1703 census of the colony of New York, which listed only 630 blacks.

b Includes 1,036 free and 2,056 enslaved blacks.

c Includes 3,333 free and 2,534 enslaved blacks.
These populations tend to grow rapidly as time goes on and women arrive in large numbers and children proliferate, especially in agrarian communities. A population’s growth and fertility are more dependent upon the number of reproductive females than on the number of reproductive males. When considering enslaved populations in many cases, these historical and contemporary identified trends occur in the early phases of capture and trade; as trade in human cargo escalates, the needs of the prevailing political economy shapes the age-sex composition and sex ratio of the enslaved population. Several of the same population trends associated with voluntary migration are also observed in the New York African population, despite the fact that involuntary migration of enslavement was based on a selective process external to the captive men, women, and children. In 1626, the Dutch Colony of New Netherlands initially imported 11 men, followed by the first 3 enslaved African women in 1628 (McManus 1966). This selection process of captors focused on able-bodied, economically productive males and, eventually, females and excluded those segments of low labor value—namely, the very young, the old, and the infirm. This phenomenon also had an impact on African demographic patterns by establishing a pattern of underpopulation and under-development of the African continent.

Eighteenth-century censuses identified by project historians provide a data source for New York inhabitants, including Africans. As in all historical documents, the potential for inaccuracy is recognized, understanding that undercounts of both enslaved Africans and EuroamERICANS is probable. The selective nature of the slave trade is further substantiated in the New York eighteenth-century censuses, in which the proportional rates of African adults relative to children (excluding 1731 and 1737 when adults were defined by 10 years of age and older) were highest (Table 18). New York’s African adult population was fairly consistent around 60–65 percent; in 1746, it decreased to 53 percent followed by a return to the earlier higher rates.

Sex Ratio

Throughout the eighteenth century, based on historical documents and contemporary literature (Kruger 1985), sex ratios tended to indicate an excess of females or numbers equivalent to males (Table 19). A substantially greater number of males were reported only for 1746 (126.7 percent) and 1737 (110.7 percent). The proportion of males (but not their absolute numbers) decreased most markedly following periods of political upheaval in the Americas (see Table 19) (see Chapter 13 for further discussion). Low sex ratios have been observed as an urban phenomenon during enslavement and antebellum periods in several states and the Caribbean. For example, Higman (1984, 1991) observed low sex ratios in blacks in West Indian towns, and Morgan (1984) observed a preponderance of women in many years in Charleston, South Carolina. Because females were of great value as domestics within towns and cities, women were actively sought by slaveholders and by early urbanites in non-slaveholding states. Domestic work was not an easier work regime; domestics were engaged in strenuous physical labor, as evidenced by skeletal biological and paleodemographic assessments of the First African Baptist Church cemetery, a nineteenth-century urban ‘free people of colour’ (Rankin-Hill 1997).

Comparisons with the New York Colonial European Community

Historical records provide few contemporary comparative populations, European or African, for the eighteenth century. The best potential source for mortality data was the Trinity Church and burial ground records. Trinity Church, an Anglican Church near the African Burial Ground site, is one of the oldest churches in New York City. Many of those buried in the cemetery were most probably the slaveholders of those interred in the African Burial Ground. The project’s Office of Public Education and Information compiled the data set from a publication of existing church records that cover the period from 1700 to 1777 (Corporation of Trinity Church 1969). Although records and epitaphs were available for a greater length of time, these were excluded because of the turmoil and subsequent evacuation of New York City during the Revolutionary War. These church records, as any historical document, can have intrinsic flaws and/or biases; these can include non-recording, interment elsewhere, or religious, social, and/or political exclusion from the cemetery, among other reasons. The Trinity Church burial population consisted of 327 interments, 187 adults and 140 children; of the adults, there were 100 male and 87 female adults.

Adult mortality patterns between the two populations differ somewhat dramatically; to some extent, they are inverse images of each other (Figure 52). In comparing adults by age and sex and subadults, a
differential pattern between European and African New Yorkers can be observed. The Trinity Church males had moderate death rates during middle age (30–49) and primarily died in later life (with great longevity into the 80s and 90s). The only age group where Trinity mortality exceeded the New York African Burial Ground males was in the 25–29 and 55-and-older age groups (Figure 53). This higher rate of death in the mid 20s may be explained by the in-migration of young men, who would have constituted a larger segment of the population, would have been subjected more frequently to interpersonal violence, and proportionally would have died in greater numbers. Other reasons for the early mortality of English men are still under investigation by historians. African male mortality was the highest at 40–49 followed by 50–54. Therefore, New York African Burial Ground males were experiencing significantly higher mortality rates in early adulthood.

Female mortality for Trinity Church peaked at ages 55 and older and 25–29; the longevity of English women was only slightly less than that of males and, of course, much higher than the New York African Burial Ground women. High mortality in the 25–29 age group was a repeated pattern throughout the eighteenth and nineteenth centuries in America, primarily based on the stresses of reproduction; this pattern did not decline until the early twentieth century. The New York African Burial Ground women died at proportionately higher numbers throughout early adulthood; by age 40, 62 percent of New York African Burial Ground women and 54 percent of their European counterparts had died. Yet the women of Trinity Church had a reduced mortality regime after the 25–29 peak and went on to live to older ages; very few African women made it to old age (see Figure 53).

Subadult mortality for Trinity Church exceeded the New York African Burial Ground in the 0–5 years of life, whereas the New York African Burial Ground was slightly higher in the 5–9 age group and exceeded Trinity Church subadult mortality in ages 10–14.

<table>
<thead>
<tr>
<th>Year</th>
<th>Male Adults</th>
<th>Female Adults</th>
<th>Male Children</th>
<th>Female Children</th>
<th>Age Cutoff</th>
<th>Label in Census</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1703</td>
<td>298</td>
<td>276</td>
<td>124</td>
<td>101</td>
<td>≤16</td>
<td>negroes</td>
<td></td>
</tr>
<tr>
<td>1712</td>
<td>321</td>
<td>320</td>
<td>155</td>
<td>179</td>
<td>≤16</td>
<td>slaves</td>
<td></td>
</tr>
<tr>
<td>1723</td>
<td>408</td>
<td>476</td>
<td>220</td>
<td>258</td>
<td>not given</td>
<td>negroes and other slaves</td>
<td>presumed 16</td>
</tr>
<tr>
<td>1731</td>
<td>599</td>
<td>607</td>
<td>186</td>
<td>185</td>
<td>≤10</td>
<td>blacks</td>
<td></td>
</tr>
<tr>
<td>1737</td>
<td>674</td>
<td>609</td>
<td>229</td>
<td>207</td>
<td>≤10</td>
<td>black</td>
<td></td>
</tr>
<tr>
<td>1746</td>
<td>721</td>
<td>569</td>
<td>419</td>
<td>735</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 76 males over 60</td>
</tr>
<tr>
<td>1749</td>
<td>651</td>
<td>701</td>
<td>460</td>
<td>556</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 41 males over 60</td>
</tr>
<tr>
<td>1756</td>
<td>672</td>
<td>695</td>
<td>468</td>
<td>443</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 68 males over 60</td>
</tr>
<tr>
<td>1771</td>
<td>932</td>
<td>1,085</td>
<td>568</td>
<td>552</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 42 males over 60</td>
</tr>
<tr>
<td>1786</td>
<td>896</td>
<td>1,207</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>slaves, negroes</td>
<td></td>
</tr>
</tbody>
</table>

Note: From United States Bureau of the Census (1909), checked against Brodhead (1856–1887). Some discrepancies in the numbers appearing in Kruger (1985) and Foote (1991) have been corrected.
The overall mortality regime for the New York African Burial Ground and Trinity Church were almost identical in pattern with high early-childhood mortality and a dramatic decline for ages 5–9 and 10–14 (Figure 54).

Young children and infants are always underrepresented in historical cemetery populations but the underrepresentation in archaeological cemeteries with varied preservation conditions, such as the New York African Burial Ground, tend to be dramatically higher. Most of the Trinity Church mortality data used here derive from archival records, and Corruccini et al. (1982) clearly showed that such records of infant mortality in contemporary (eighteenth-century) Barbados were several times greater than the numbers of infant skeletons they observed; the numbers of better-preserved adults skeletons were comparable to archival figures. Hence, the pattern of mortality fits what is known about the colonial period, characterized by epidemics and unhealthy sanitary conditions that affected the morbidity and mortality of all colonial Americans. The overall impact on this enslaved population was more dramatic.

It is very clear from these data that the factors affecting age at death were very different among enslaved Africans and the prominent English parishioners of Trinity Church who held them in bondage. Both English men and women lived to old age up to 10 times more often than did Africans.

Comparative Skeletal Biological Studies of the African Diaspora

The limited skeletal series of Africans in the Diaspora that have been studied represent a broad spectrum of lifestyles and biohistory throughout the eighteenth, nineteenth, and early twentieth centuries (Table 21). These skeletal biological series include: South Carolinian plantation enslaved (Rathbun 1987); Maryland industrial enslaved (Kelley and Angel 1983); ex-slaves and their descendants from rural Arkansas.
Figure 5.2. Adult mortality NYAG and Trinity Church.
(Rose 1985); urban slaves from New Orleans (Owsley et al. 1987); poor and destitute urban dwellers from Reconstruction-period Atlanta (Blakely and Beck 1982); slaves from several small (containing from one to nine burials) southern Colonial farms or plantations (Angel et al. 1987); Philadelphia urban “free people of colour” (Angel et al. 1987; Crist et al. 1999; Rankin-Hill 1997); and the only Caribbean series, the enslaved at a Barbadian sugar plantation (Handler and Corruccini 1986). Availability of the majority of these African American skeletal populations for analysis has been limited (2 weeks to several years) because of their historical status and/or exhumation conditions. Only one skeletal series has been curated, that of Catoctin Furnace (Kelley and Angel 1983); the remainder have been reburied or are scheduled for reinterment.

There are three general trends observed in all African Diaspora skeletal series, which concur with biohistorical lifestyle and health analyses (e.g., see Kiple and Kiple 1980; Rankin-Hill 1997): (1) high infant and child mortality, (2) periods of malnutrition and disease

![Mortality NYABG and Trinity Church](image)

Figure 53. Mortality NYABG and Trinity Church by sex and age.

Table 20. NYABG and Trinity Church Subadult Mortality

<table>
<thead>
<tr>
<th>Age</th>
<th>NYABG</th>
<th>Percent Subadults</th>
<th>Trinity</th>
<th>Percent Subadults</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>98</td>
<td>75.4</td>
<td>119</td>
<td>85.0</td>
</tr>
<tr>
<td>5–9</td>
<td>19</td>
<td>14.6</td>
<td>15</td>
<td>10.7</td>
</tr>
<tr>
<td>10–14</td>
<td>13</td>
<td>10.0</td>
<td>6</td>
<td>4.3</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>100.0</td>
<td>140</td>
<td>100.0</td>
</tr>
</tbody>
</table>
indicated by linear enamel hypoplasias and nonspecific infectious lesions, and (3) high incidences of degenerative joint diseases and muscle-attachment-area hypertrophy, evidencing the physically strenuous lives of Africans in the New World. Differential patterns are observed among and between these African Diaspora skeletal series in longevity (by sex), general health status, type, and incidence of trauma. These studies demonstrate the need for regionally, temporally, historically, and culturally focused studies of Africans in the New World. Comparisons and conclusions regarding African Diaspora skeletal biological studies have varied based on several factors: the preservation of the skeletal remains, which affects the types of analyses possible; the methodologies undertaken by different investigators; and the presentation of data. The following section encapsulates provenience and demography of the major African Diaspora skeletal series. These skeletal series provide comparisons for the New York African Burial Ground where data were available and appropriate.

Newton Plantation, Barbados, West Indies

Corruccini and coworkers (1982) undertook the only large study of an African American enslaved population from the Caribbean. This series represents a population involved in an intensive sugar-plantation economy. This slave cemetery, associated with the Newton plantation in Barbados, consisted of 104 individuals interred between 1660 and 1820. The analyses indicated a mean age at death of 29.3 years; owing to poor preservation, the sample was not differentiated by sex. Historical data available on the Newton plantation’s captives aided the evaluation of the demographic patterns determined from the scarce skeletal remains. These data “show vastly greater infant and child mortality, stability with relatively low mortality ages 10–35, then consistently greater mortality by age 40 than is indicated by skeletal aging” (Handler and Lange 1978:286).

St. Peter Street Cemetery, New Orleans, Louisiana

The St. Peter Street Cemetery in New Orleans, Louisiana, dating ca. 1720–1810, was studied by Owsley et al. (1987). St. Peter served as New Orleans’s principal cemetery during the city’s first 70 years under both Spanish and French rule. Until the discovery of the New York African Burial Ground, this cemetery represented the earliest urban African American skeletal population that had become available for study.

The sample consisted of 29 individuals, 23 adults aged 20 and over, and 6 subadults (1 infant, 2 aged...
5–9, and 3 aged 15–19); of these, 13 (45 percent) were identified as African Americans and were most probably enslaved people. Females appear to have had a shorter life span than males, with peak mortality at 20–24 years of age and slightly higher rates of death; male mortality peaked at 40–49 years. But Owsley et al. (1987:10) cautioned that an “inherent sample bias may misrepresent the actual mortality curve of the colonial population” due to small sample size and the underrepresentation of infants and children.

Catoctin Furnace, Maryland

The Catoctin Furnace Cemetery in Frederick County, Maryland, dates from the late 1790s to 1820. The skeletal population studied represented only one-third of the cemetery population because the rest of the cemetery had been covered by a state highway. This skeletal material was recovered during the widening of the highway and constituted a small sample of 31 individuals (15 adults, 14 children under the age of 12, and 2 teenagers). These individuals were members of an enslaved ironworking community, and primarily represented kin (Kelley and Angel 1983). Females were at greater risk of early death in this industrial slave community, as indicated by a mean age at death of 35.2 years for females and 41.7 for males, a pattern of earlier female mortality comparable to post-Reconstruction Cedar Grove.

38CH778, South Carolina

Inadvertently discovered during construction-related ground leveling, Site 38CH778 was the slave cemetery associated with a plantation outside of Charleston, South Carolina (Rathbun 1987). Thirty-six individuals,
Interred between 1840 and 1870, were recovered and subsequently reinterred. Skeletal remains consisted of 28 adults (13 male, 15 female) and 8 subadults. Males appear to have been at greater risk of earlier mortality, with a mean age at death of 35 years, versus 40 years for females.

First African Baptist Church (1821–1843)
8th and Vine Streets, Philadelphia, Pennsylvania

The First African Baptist Church (FABC) Cemetery, located in what is today known as Center City, Philadelphia, was discovered in November 1980 during the excavation of the Philadelphia Commuter Rail tunnel. The cemetery was in use ca. 1822–1843 until the Board of Health closed it down. The members of the FABC congregation buried in the cemetery represent a community of ex-slaved and freeborn African Americans. The FABC cemetery consisted of 144 burials; of these, 135 skeletons were recovered. There were 75 adult and 60 subadult skeletons. The adults consisted of 36 males and 39 females. The majority of subadults (55 percent) were infants (0–6 months). Females, in general, died earlier than males. The mean age at death for FABC females was 38.9 years and 44.8 years for males (Kelley and Angel 1987; Rankin-Hill 1997).

Cedar Grove, Arkansas

The Cedar Grove Baptist Church Cemetery (Rose 1985) was the burial site of a post-Reconstruction (1890–1927) rural African American population that consisted of descendants of the local plantation freedmen. The revetment of the Red River by the U.S. Army Corps of Engineers led to the salvage excavation of burials scheduled for destruction. The 79 burials were excavated from the section that was in jeopardy of eroding out and targeted for salvage removal. These burials comprised 73.6 percent of the total cemetery population and represented 40 percent of the time the cemetery had been in use since its founding in 1834 by enslaved people (prior to the establishment of the Baptist Church and cemetery).

Demographic patterns suggested that the Cedar Grove sample represented a highly stressed population. Females and infants constituted a high percentage of the cemetery population, an indication of high infant mortality (27.5 percent) and of a life expectancy of 14 years at birth. Adult (above age 20) mean age at death was 41.2 years for males and 37.7 years for females. Thus, females had an earlier and higher mortality rate than males, a pattern opposite to that of the enslaved at 38CH778, South Carolina, but similar to that of other African Diaspora skeletal series (e.g., Catoctin Furnace).

Mean Age at Death

The mean age at death for the New York African Burial Ground sample was 22.3. The low mean age at death reflects the high childhood mortality in the New York population. The New York African Burial Ground mean age at death by sex was 38.0 for males and 35.9 for females. The slight advantage of males is common in many African Diaspora skeletal populations (Table 22), with the exception of enslaved plantation South Carolinians and the New Orleans urban enslaved; however, in these cases, the results may be artifacts of small skeletal samples and preservation status. An independent-samples t-test was run in SPSS using the composite ages for adult New York African Burial Ground males and females to test for difference in the mean age at death; no significant difference was found, t = 1.190; p > .05 (p = 2.36).

New York African Burial Ground women have a lower mean age at death than the women from the ironworking Catoctin Furnace, Maryland, site where women were devalued as workers because they only contributed domestic chores. In each of the comparisons, the maximum age of 55 and older was used, therefore making the comparisons possible and avoiding one of the potential biases of this calculation. All of the skeletal series with the exception of the Newton plantation had a range of preservation status that allowed for multiple methods of aging and sexing (in order to increase accuracy and reliability), as did the New York African Burial Ground sample. In attempting to test whether there was a statistically significant difference among sample mean ages at death considering the difference in sample size, a one-way ANOVA was undertaken in SPSS for New York African Burial Ground, FABC, and Catoctin Furnace. The analysis was limited to these three samples because composite ages were not available for the others and mean ages were based on published data. The ANOVA yielded no significant differences in mean ages of death among the three populations, F = 0.791; df = 2, 260; p > .05 (p = 0.454). In addition, population
size had no significant effect on mean age of death, $F = 0.791; df = 2, 260; p > .05 \ (p = 0.454)$.

In determining whether there was a statistically significant difference between male and female means at death within populations, an independent-samples t-test was run to see if there were sex differences across all samples for mean age at death. This test yielded significant sex differences in mean age at death across all samples, $t = 2.964; df = 261; p < .05 \ (p = .003)$. This was followed by individual independent-samples t-tests for within-sample differences by sex for the three samples. As reported above, there was no significant difference between the sexes for the New York African Burial Ground sample; for Catoctin Furnace, there was also no significant difference in mean age of death for males and females, $t = 1.285; df = 13; p > .05 \ (p = .221)$. However, for the FABC, there was a significant difference in mean age of death between the sexes, $t = 3.16; df = 75; p < .05 \ (p = .002)$.

Mortality

The New York African Burial Ground infant mortality rate (under 12 months) was low at 15.2 percent of all individuals who were assigned ages or 16.9 percent of the 301 best-preserved individuals (assessed for both age and sex) compared to FABC at 25 percent. Because the New York population only represents a segment of a large cemetery population, and FABC represents the entire cemetery, the underrepresentation of infants due to excavation selection and poor preservation associated with site conditions may partly explain the lower infant mortality. Other possibilities could include burial of infants outside of the cemetery, lower fertility, or that a greater number of infants survived and eventually died in later childhood or early adolescence.

New York African Burial Ground early-childhood mortality did not appear to have a bimodal tendency as observed in both the Cedar Grove post-Reconstruction African American population (Rose 1985) and the FABC nineteenth-century free African Americans in Philadelphia (Rankin-Hill 1997). In both of these populations, there was a high infant-mortality rate during the first 6 months followed by a decline and then an increase again during the second year, which may have been associated with a weaning period. In the New York African Burial Ground sample, however, early childhood mortality remained high throughout the first 2 years of life (Table 23).

Survivorship and Life Expectancy

Life table data, such as age-specific probability of dying and life expectancy, may be compared to other unsmoothed life table data for other regionally, temporally, or socioculturally comparable populations or to the patterns observed in model life tables. Examples of commonly used model life tables are those developed by Weiss (1973), based on both ethnohistorical and skeletal populations, and those developed by Coale

Table 22. Adult Mean Age at Death for African American Skeletal Populations

<table>
<thead>
<tr>
<th>African American Skeletal Populations</th>
<th>Mean Age or Age Range at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
</tr>
<tr>
<td>Newton Plantation, Barbados, West Indies</td>
<td>—</td>
</tr>
<tr>
<td>New York African Burial Ground</td>
<td>38</td>
</tr>
<tr>
<td>St. Peter Street Cemetery, Louisiana</td>
<td>40–49</td>
</tr>
<tr>
<td>Catoctin Furnace, Maryland</td>
<td>41.7</td>
</tr>
<tr>
<td>First African Baptist Church Cemetery</td>
<td>44.8</td>
</tr>
<tr>
<td>38CH778, South Carolina</td>
<td>35.0</td>
</tr>
<tr>
<td>Cedar Grove, Arkansas</td>
<td>41.2</td>
</tr>
</tbody>
</table>

\(a\) From Corruccini et al. 1982
\(b\) From Owsley et al. 1987
\(c\) From Kelley and Angel 1983
\(d\) From Angel et al. 1987 and Rankin-Hill 1997
\(e\) From Rathbun 1987
\(f\) From Rose 1985
and Demeny (1966) for isolating abnormal characteristics in mortality profiles (Moore et al. 1975). Through these demographic analyses, we can generate population parameters and examine long-term trends in adaptation, health, and disease.

As discussed earlier, life tables in particular have generated severe criticism in recent years because of the inherent problems of reduced accuracy in aging skeletons and whether the skeletal samples meet the fundamental assumptions of model life tables. These assumptions are: (1) there is a stable static population, (2) mortality is not selective, and (3) risk is constant throughout the population (Wood et al. 1992). In actuality, very few, if any, prehistoric, historical-period, or contemporary populations would meet these criteria. In prehistoric and historical-period skeletal populations, one or more of these criteria are either violated or are unknown to the researcher. In the New York African Burial Ground sample and most African Diaspora collections, all of the criteria are not met (whether working with historical documents or skeletal data). In recent years, sophisticated statistical modeling techniques have been undertaken in order to ameliorate problems created by failure to meet the criteria. In the case of samples that do not meet the criteria, there are also greater issues. These issues are primarily associated with their biological heterogeneity and whether they are actually a biological population simply because they had similar life experiences and ended their lives interred in the same cemetery. Further discussion will be explored in another context. Therefore, with clear knowledge of the limited “value” of life table analysis, some basic observations will be presented herein.

A life table using unsmoothed data was constructed for the New York African Burial Ground sample using an Excel database computerized-life table (Table 24). In addition, we generated life tables for FABC and Cedar Grove to use for comparisons (Rankin-Hill 1997). Survivorship was higher for the New York African Burial Ground sample compared to Cedar Grove until age 45, although paralleling FABC and Weiss’s (1973) model MT30–60.0 in adulthood. The New York African Burial Ground sample had higher survivorship in early childhood than Cedar Grove, FABC, and both model tables. Nevertheless, survivorship (lx) for New York African Burial Ground, FABC, Cedar Grove (MT15.0–45.0) [The best fit model life table as reported by Rose et al. (1985)], and MT30–60.0 clearly demonstrate the impact of infant mortality on the overall pattern (Figure 55).

An independent-samples t test yielded no significant sex differences in survivorship within the New York African Burial Ground sample, \(t = 0.339; df = 16; p > .05 (p = .739) \). A one-way ANOVA was run for New York African Burial Ground, FABC, and Cedar Grove, but the analysis yielded no significant differences in survivorship among the three groups, \(F = 1.282; df = 3, 68; p > .05 (p = .288) \).

Table 23. NYABG, FABC, and Cedar Grove Subadult Mortality by Age Group

<table>
<thead>
<tr>
<th>Age(^a)</th>
<th>NYABG</th>
<th></th>
<th>FABC</th>
<th></th>
<th>Cedar Grove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deaths</td>
<td>Percent of Total Subadults</td>
<td>Number of Deaths</td>
<td>Percent of Total Subadults</td>
<td>Number of Deaths</td>
<td>Percent of Total Subadults</td>
</tr>
<tr>
<td>0–6 months</td>
<td>29</td>
<td>22.3</td>
<td>26</td>
<td>43.3</td>
<td>17</td>
</tr>
<tr>
<td>7–12 months</td>
<td>22</td>
<td>16.9</td>
<td>8</td>
<td>13.4</td>
<td>5</td>
</tr>
<tr>
<td>Subtotal, <1</td>
<td>51</td>
<td>39.2</td>
<td>34</td>
<td>56.7</td>
<td>22</td>
</tr>
<tr>
<td><2</td>
<td>21</td>
<td>16.1</td>
<td>11</td>
<td>18.3</td>
<td>11</td>
</tr>
<tr>
<td>3–5</td>
<td>26</td>
<td>20.0</td>
<td>4</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>6–15</td>
<td>32</td>
<td>24.6</td>
<td>11</td>
<td>18.3</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>100.0</td>
<td>60</td>
<td>100.0</td>
<td>44</td>
</tr>
</tbody>
</table>

\(a\) In years unless otherwise indicated.

Life Expectancy

Life expectancy (\(E^x\)) at birth for the New York African Burial Ground members was 24.2 years. By ages
3–4, life expectancy rose to 30.38 years, reflecting the higher incidence of death for subadults under 2 years old, therefore the impact of higher risk of dying. Two life tables for adults by sex were also generated for the New York African Burial Ground. A comparison of these tables indicates different trends based on sex. Males in the 15–19 and 20–24 age groups had life expectancies of 24.41 and 21.03, respectively. By age 25–29, male life expectancy was 18.21 (Table 25).

At ages 15–19 and 20–24, females had life expectancies of 22.21 and 19.80, respectively; by age 25–29, female life expectancy was 16.34 (Table 26).

An independent-samples t-test in SPSS indicated no statistically significant differences between the sexes in life expectancy within the New York African Burial Ground sample, \(t = .051; df = 16; p > .05 \) (\(p = .960 \)).

New York African Burial Ground life expectancy was compared to Weiss’s (1973:175, 118) model life tables MT30.0–60.0 and to MT15.0–45.0, reported by Rose as the most comparable table to the Cedar Grove mortality experience. The MT15.0–45.0 table exemplifies a highly stressed subadult population, although infant mortality was actually higher. The New York African Burial Ground life expectancy curve fits closely to the FABC from ages 10–45. Subadult life expectancy clearly points to the perils of surviving early childhood in New York. The initial childhood years from birth to age 10–15 are lower than the Weiss MT30.0–60.0 and FABC, but higher than that for Cedar Grove. New York African Burial Ground and FABC are similar from age 20, declining at comparable rates. New York African Burial Ground life expectancy declines even more rapidly than for the “highly stressed” Cedar Grove group after age 45. The differences between New York African Burial Ground, Cedar Grove, and FABC life expectancy and mortality experience are significant. Clearly, post-Reconstruction Cedar Grove rural Arkansas African Americans were at highest risk

<table>
<thead>
<tr>
<th>Age Interval (x)</th>
<th>No. of Deaths (Dx)</th>
<th>% of Deaths (dx)</th>
<th>Survivors Entering (lx)</th>
<th>Probability of Death (qx)</th>
<th>Total Years Lived Between X and X + 5 (Lx)</th>
<th>Total Years Lived After Lifetime (Tx)</th>
<th>Life Expectancy (e0x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5 months</td>
<td>29</td>
<td>9.63</td>
<td>100.00</td>
<td>0.0963</td>
<td>9.518</td>
<td>2420.316</td>
<td>24.20</td>
</tr>
<tr>
<td>6–12 months</td>
<td>22</td>
<td>7.31</td>
<td>90.37</td>
<td>0.0809</td>
<td>8.671</td>
<td>2410.797</td>
<td>26.68</td>
</tr>
<tr>
<td>1–2</td>
<td>21</td>
<td>6.98</td>
<td>83.06</td>
<td>0.0840</td>
<td>90.664</td>
<td>2402.126</td>
<td>28.92</td>
</tr>
<tr>
<td>3–4</td>
<td>26</td>
<td>8.64</td>
<td>76.08</td>
<td>0.1135</td>
<td>358.804</td>
<td>2311.462</td>
<td>30.38</td>
</tr>
<tr>
<td>5–9</td>
<td>19</td>
<td>6.31</td>
<td>67.44</td>
<td>0.0936</td>
<td>321.429</td>
<td>1952.658</td>
<td>28.95</td>
</tr>
<tr>
<td>10–14</td>
<td>13</td>
<td>4.32</td>
<td>61.13</td>
<td>0.0707</td>
<td>294.850</td>
<td>1631.229</td>
<td>26.68</td>
</tr>
<tr>
<td>15–19</td>
<td>15</td>
<td>4.98</td>
<td>56.81</td>
<td>0.0877</td>
<td>271.595</td>
<td>1336.379</td>
<td>23.52</td>
</tr>
<tr>
<td>20–24</td>
<td>15</td>
<td>4.98</td>
<td>51.83</td>
<td>0.0962</td>
<td>246.678</td>
<td>1064.784</td>
<td>20.54</td>
</tr>
<tr>
<td>25–29</td>
<td>11</td>
<td>3.65</td>
<td>46.84</td>
<td>0.0780</td>
<td>225.083</td>
<td>818.106</td>
<td>17.46</td>
</tr>
<tr>
<td>30–34</td>
<td>27</td>
<td>8.97</td>
<td>43.19</td>
<td>0.2077</td>
<td>193.522</td>
<td>593.023</td>
<td>13.73</td>
</tr>
<tr>
<td>35–39</td>
<td>21</td>
<td>6.98</td>
<td>34.22</td>
<td>0.2039</td>
<td>153.654</td>
<td>399.502</td>
<td>11.67</td>
</tr>
<tr>
<td>40–44</td>
<td>23</td>
<td>7.64</td>
<td>27.24</td>
<td>0.2805</td>
<td>117.110</td>
<td>245.847</td>
<td>9.02</td>
</tr>
<tr>
<td>45–49</td>
<td>25</td>
<td>8.31</td>
<td>19.60</td>
<td>0.4237</td>
<td>77.243</td>
<td>128.738</td>
<td>6.57</td>
</tr>
<tr>
<td>50–54</td>
<td>20</td>
<td>6.64</td>
<td>11.30</td>
<td>0.5882</td>
<td>39.867</td>
<td>51.495</td>
<td>4.56</td>
</tr>
<tr>
<td>55+</td>
<td>14</td>
<td>4.65</td>
<td>4.65</td>
<td>1.0000</td>
<td>11.628</td>
<td>11.628</td>
<td>2.50</td>
</tr>
<tr>
<td>Total</td>
<td>301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crude Mortality Rate: 41.32

\(^a \) In years unless otherwise indicated.
Table 25. New York African Burial Ground Male Life Table

<table>
<thead>
<tr>
<th>Males Age Interval (In Years)</th>
<th>No. of Deaths (Dx)</th>
<th>% of Deaths (dx)</th>
<th>Survivors Entering (lx)</th>
<th>Probability of Death (qx)</th>
<th>Total Years Lived Between X and X+5 (Lx)</th>
<th>Total Years Lived After Lifetime (Tx)</th>
<th>Life Expectancy (e0x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–19</td>
<td>7</td>
<td>6.86</td>
<td>100.00</td>
<td>0.0686</td>
<td>482.843</td>
<td>2,441.176</td>
<td>24.41</td>
</tr>
<tr>
<td>20–24</td>
<td>10</td>
<td>9.80</td>
<td>93.14</td>
<td>0.1053</td>
<td>441.176</td>
<td>1,958.333</td>
<td>21.03</td>
</tr>
<tr>
<td>25–29</td>
<td>7</td>
<td>6.86</td>
<td>83.33</td>
<td>0.0824</td>
<td>399.510</td>
<td>1,517.157</td>
<td>18.21</td>
</tr>
<tr>
<td>30–34</td>
<td>10</td>
<td>9.80</td>
<td>76.47</td>
<td>0.1282</td>
<td>357.843</td>
<td>1,117.647</td>
<td>14.62</td>
</tr>
<tr>
<td>35–39</td>
<td>12</td>
<td>11.76</td>
<td>66.67</td>
<td>0.1765</td>
<td>303.922</td>
<td>759.804</td>
<td>11.40</td>
</tr>
<tr>
<td>40–44</td>
<td>18</td>
<td>17.65</td>
<td>54.90</td>
<td>0.3214</td>
<td>230.392</td>
<td>455.882</td>
<td>8.30</td>
</tr>
<tr>
<td>45–49</td>
<td>17</td>
<td>16.67</td>
<td>37.25</td>
<td>0.4474</td>
<td>144.608</td>
<td>225.490</td>
<td>6.05</td>
</tr>
<tr>
<td>50–54</td>
<td>15</td>
<td>14.71</td>
<td>20.59</td>
<td>0.7143</td>
<td>66.176</td>
<td>80.882</td>
<td>3.93</td>
</tr>
<tr>
<td>55+</td>
<td>6</td>
<td>5.88</td>
<td>5.88</td>
<td>1.0000</td>
<td>14.706</td>
<td>14.706</td>
<td>2.50</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crude Mortality Rate: 40.96</td>
</tr>
</tbody>
</table>
Table 26. New York African Burial Ground Female Life Table

<table>
<thead>
<tr>
<th>Females Age Interval (In Years)</th>
<th>No. of Deaths (Dx)</th>
<th>% of Deaths (dx)</th>
<th>Survivors Entering (lx)</th>
<th>Probability of Death (qx)</th>
<th>Total Years Lived Between X and X+5 (Lx)</th>
<th>Total Years Lived After Lifetime (Tx)</th>
<th>Life Expectancy (e₀x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–19</td>
<td>8</td>
<td>11.59</td>
<td>100.00</td>
<td>0.1159</td>
<td>471.014</td>
<td>2,221.014</td>
<td>22.21</td>
</tr>
<tr>
<td>20–24</td>
<td>5</td>
<td>7.25</td>
<td>88.41</td>
<td>0.0820</td>
<td>423.913</td>
<td>1,750.000</td>
<td>19.80</td>
</tr>
<tr>
<td>25–29</td>
<td>4</td>
<td>5.80</td>
<td>81.16</td>
<td>0.0714</td>
<td>391.304</td>
<td>1,326.087</td>
<td>16.34</td>
</tr>
<tr>
<td>30–34</td>
<td>17</td>
<td>24.64</td>
<td>75.36</td>
<td>0.3269</td>
<td>315.217</td>
<td>934.783</td>
<td>12.40</td>
</tr>
<tr>
<td>35–39</td>
<td>9</td>
<td>13.04</td>
<td>50.72</td>
<td>0.2571</td>
<td>221.014</td>
<td>619.565</td>
<td>12.21</td>
</tr>
<tr>
<td>40–44</td>
<td>5</td>
<td>7.25</td>
<td>37.68</td>
<td>0.1923</td>
<td>170.290</td>
<td>398.551</td>
<td>10.58</td>
</tr>
<tr>
<td>45–49</td>
<td>8</td>
<td>11.59</td>
<td>30.43</td>
<td>0.3810</td>
<td>123.188</td>
<td>228.261</td>
<td>7.50</td>
</tr>
<tr>
<td>50–54</td>
<td>5</td>
<td>7.25</td>
<td>18.84</td>
<td>0.3846</td>
<td>76.087</td>
<td>105.072</td>
<td>5.58</td>
</tr>
<tr>
<td>55+</td>
<td>8</td>
<td>11.59</td>
<td>11.59</td>
<td>1.0000</td>
<td>28.986</td>
<td>28.986</td>
<td>2.50</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crude Mortality Rate: 45.02

Figure 56. Life expectancy.
of dying earlier. However, at the end of the life span, life expectancy was dramatically reduced for the New York African Burial Ground sample.

Summary of Findings for the New York African Burial Ground Sample

Paleodemography

- Mortality was highest for:
 - Infants 0–5 months (29 of 301, or 9.6 percent)
 - Adults 30–34-year-olds (27 of 301, or 8.97 percent).
 - Adults 45–49-year-olds (25 of 301, or 8.3 percent).
 - Young adults aged 15–19 made up 8.8 percent of the adult sample or approximately 5 percent of the total 301 well-preserved skeletons.
- A differential mortality trend by sex was observed:
 - 62 percent of the females died by the end of the fourth decade.
 - 45 percent of the males died by the end of the fourth decade.
 - Female mortality (26 of 69, or 37.7 percent) peaked at age 30–39.
 - Male mortality (35 of 102, or 34.3 percent) peaked at age 40–49.
- Subadult mortality was 43.2 percent for the New York African Burial Ground (n = 301).
 - 39.2 percent of the subadult population (51 of 130) died during the first year of life.
 - 16.1 percent of the subadult population (21 of 130) died in the second year.
 - 55.3 percent of all the subadults (72 of 130) died by age 2.

Historical Demography

- Age-sex composition and sex ratio were shaped by the prevailing political economy.
- New York Africans had a high sex ratio and slow population growth, similar to the Caribbean plantation pattern.
- Sex ratios indicate either more females or equal numbers of males and females.
- The proportion of African males decreased markedly following periods of political upheaval in the Americas.

Colonial European Comparison

- High mortality in women 25–29, based on reproductive stress, was a ubiquitous American pattern throughout the eighteenth and nineteenth centuries that declined in the early twentieth.
- Observed is a differential pattern between European and African New Yorkers.
- Trinity Church males had moderate death rates during middle age and great longevity.
- Trinity female mortality peaked at 55 and older and at 25–29, with longevity slightly less than that of males and higher than that of New York African Burial Ground women.
 - 54 percent of European women died by age 40.
- Trinity Church women had a reduced mortality regime after the 25–29 age peak until age 55 and older.

Skeletal Biological Comparisons

- Mean age at death for the New York African Burial Ground cemetery sample was 22.3, including all ageable adults and subadults (n = 301).
- Low mean age at death reflects high childhood mortality.
- New York African Burial Ground mean age at death was 38.0 for males and 35.9 for females.
- The bimodal tendency of childhood mortality observed in Cedar Grove and FABC was not present at the New York African Burial Ground. Both had high infant mortality rates during the first 6 months, followed by a decline, then followed by an increase again during the second year. The New York African Burial Ground early-childhood mortality remained high throughout the first 2 years of life.
• New York African Burial Ground women had a comparable mean age at death to the women from the ironworking Maryland Catoctin Furnace, who were devalued as workers.

• Life expectancy (E^x) at birth for the New York African Burial Ground sample was 24.2 years, and by ages 3–4, life expectancy rose to 30.38 years.

• New York African Burial Ground life expectancy (24.2) was considerably higher than the 14 years reported for Cedar Grove, and slightly lower than 26.59 for FABC.

• The differences between New York African Burial Ground, Cedar Grove, and FABC life expectancy and mortality experiences are significant:
 ~ Cedar Grove post-Reconstruction rural Arkansas African Americans were at highest risk of dying earlier.
 ~ At the end of the life span, life expectancy was significantly reduced for the New York African Burial Ground sample.
Section III:
Life and Death in Colonial New York
Dental enamel hypoplasias are defects in crown development that appear as transverse grooves or series of pits that are partially or entirely around the circumference of the tooth. Hypoplastic defects, although they manifest in the teeth, result from metabolic disturbances of malnutrition and disease elsewhere in the body. Enamel hypoplasias thus provide evidence of general stress that may have been brought about by many different kinds of stressors. Like other “general stress indicators” such as life expectancy, infant mortality, or growth-retardation rates, frequencies of hypoplastic defects can be compared among different populations as a gross index of physical well-being and the adequacy of societal resources upon which the physical quality of life may depend. Of particular value, enamel hypoplasias develop in childhood and adolescence, when both the deciduous and permanent teeth are formed.

The evidence of these early stresses remains apparent in adult skeletons in which teeth have been retained. The defects on different teeth and in different locations on teeth represent stresses at different ages during childhood and adolescent growth, similar to the analysis of tree rings for a record of droughts during the lifetime of a tree. These defects have been observed in archaeological collections and living populations representing a very broad range of human experiences, from those of early hominids to industrial nations. Included among these are a number of studies from African American and Afro-Caribbean archaeological sites (Blakey and Armelagos 1985; Blakey et al. 1994; Clarke 1982; Condon and Rose 1992; Corruccini et al. 1985; Goodman and Armelagos 1985; Goodman et al. 1984).

This chapter puts forward an analysis of hypoplasia frequencies in the New York African Burial Ground sample. Comparisons are made of enamel defect frequencies in different age groups and sex/gender groups. We also compare individuals with culturally modified teeth who were probably born in Africa and those with unmodified teeth whose origins are unknown. Finally, we compare the New York sample with skeletal collections from other diasporic archaeological sites. Questions regarding the physical quality of life in childhood are central, as is our assessment of these data for evidence of health differences or transitions among Africa, the Caribbean, and New York, which take place at different points in the life cycles of New York Africans.

Deciduous dental enamel begins to develop during the fifth month in utero, completing development by the end of the first year of postnatal life. Permanent dental enamel begins formation at birth and continues into the sixteenth year of age. General stress indicators are visible in dental enamel because of the process of enamel formation. Ameloblastic (enamel-producing) activity involves cellular production of a protein-rich matrix that mineralizes, forming the crystalline enamel of teeth. If the development of the enamel crown is interrupted by physiological insult, a transverse groove or series of pits (hypoplasia) or discolored enamel (hypocalcification) results in the “rings” of enamel being laid down at that time (Figures 57 and 58).

Hypoplasia results from differential thickness in the enamel, whereas hypocalcification occurs during interruption within the final stages of ameloblastic activity and results in discoloration of the tooth enamel (Blakey et al. 1994:372). Dental enamel is acellular and, therefore, lesions and discolorations due to physiological stress are permanent and are not obliterated through cellular renewal. In addition to general identification of stress incidence during enamel formation, the rate of enamel matrix formation provides a mechanism for estimating the developmental stage at which the growth arrest occurred (Blakey et al. 1994:372; Goodman and Armelagos 1985). Hypoplasia provides
an estimation of stress severity and/or duration by the size of the malformation. With rare exception, dental enamel hypoplasia is a result of systemic metabolic stress associated with infectious disease, insufficient calcium, protein, or carbohydrates, and low birth weight, characterized together as “general stress” (Blakey et al. 1994; Goodman et al. 1988).

Materials and Methods

A subsample was selected from the New York African Burial Ground sample to study the occurrence and frequency of hypoplasia within adults and children (Table 27). Within this study, the presence of hypoplasia within an individual was defined by the presence of linear or nonlinear hypoplasia in one of the teeth selected for analysis. The absence of hypoplasia was defined by the absence of hypoplasia in all teeth selected for analysis. According to research conducted by Goodman and coworkers, permanent canines and incisors display 95 percent of enamel hypoplasia observed when all available dentition is represented (Goodman et al. 1980). The current study employed this “best tooth” method; we selected individuals with a permanent left or right maxillary central incisor and

Figure 57. Linear enamel hypoplastic lesions in the anterior maxillary permanent dentition in a female aged 20–25 years (Burial 1).

Figure 58. Bands of discoloration caused by hypocalcification in the anterior maxillary permanent dentition in a 24–32-year-old female (Burial 51) (left); magnification (right).
a left or right mandibular canine. The presence for permanent teeth was defined according to Codes 1, 2, and 7 within Standards (Buikstra and Ubelaker 1994) indicating that teeth are fully developed, in occlusion, and observable. A total of 65 individuals within the New York African Burial Ground were selected for analysis of permanent dentition, which represents the developmental period between birth and 6.5 years of age. A separate selection was conducted for individuals with permanent third molars, left or right, mandibular or maxillary, where presence was defined by Codes 2 and 7 within Standards (Buikstra and Ubelaker 1994: 49). One hundred and eleven individuals are included within this third-molar analysis, which represents the developmental period in life from 9 years to approximately 16 years of age.

A subsample was selected from the permanent canine and incisor study and from the third-molar study to control for age- or sex-related differences in dental attrition that might affect hypoplasia frequencies. Individuals with moderate to severe dental wear and individuals for whom dental wear could not be scored (including inability to score because of cultural modifications such as filing and pipe notches), were removed from the canine and incisor sample and from the third-molar sample. Individuals with a dental wear score of 5 or greater, according to Smith (1984), were removed from the permanent incisor and canine sample, resulting in 48 observable individuals. Individuals with a dental wear score of 7 or greater, according to Scott (1979), were removed from the third-molar sample, resulting in 97 observable individuals.

Deciduous dentition was studied by selecting individuals older than 1 year with one left or right central maxillary incisor, one left or right mandibular canine, and one second molar (Figure 59). The presence of deciduous teeth was defined by Codes 1, 2 and 7 within the Standards where the teeth were fully developed and observable. Thirty-four subadults were selected to assess hypoplasia in deciduous dentition. Developmental stages spanning approximately 5 months in utero to 16 or 17 years of life are represented by the dentition selected for analysis within this study. Statistical analysis for each study employed SPSS software version 11.5.

Twenty-three individuals were assessed for the chronology of physiological stress episodes that resulted in hypoplastic lesions. Chronology was determined for defects in the left permanent mandibular canines; however, right mandibular canines were used when the left was absent or unobservable. Measurements for the beginnings and endings of hypoplastic lesions had been recorded by members of the New York African Burial Ground Project in the late 1990s (Figure 60). The distance from the dental cervix to the onset of the incisal (beginning) aspect of the lesion was recorded, followed by the measurement of the cervical (latest developing) aspect of the lesion. A midpoint for this episode was calculated, and this measurement was used in conjunction with the total crown height measurement to estimate the age at which each stress episode occurred.

Total crown height was divided by the number of years the mandibular canine develops (6 years), and this figure served as an index representing an increment of growth in 1 year. The midpoint measurement was divided by the yearly incremental growth index, which provided the number of years prior to the end of enamel development (6.5 years of age) at which the incident occurred. Next, this figure was subtracted from 6.5 to arrive at the age of occurrence for each episode. For analysis within this study, the midpoint of the canine, representing the developmental period of 3.5 years, was calculated for each tooth. Episodes were coded as occurring before 3.5 years and after 3.5 years (Table 28). Three and a half years is also the age at which central incisal crown development

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Dentition</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoplasia and hypocalcification</td>
<td>canines and incisors, permanent</td>
<td>65</td>
</tr>
<tr>
<td>Hypoplasia and hypocalcification</td>
<td>canines and incisors, deciduous</td>
<td>34</td>
</tr>
<tr>
<td>Hypoplasia controlled for attrition</td>
<td>canines and incisors, permanent</td>
<td>48</td>
</tr>
<tr>
<td>Hypoplasia controlled for attrition</td>
<td>third molars</td>
<td>97</td>
</tr>
<tr>
<td>Canine chronology for hypoplasia</td>
<td>canines, permanent</td>
<td>23</td>
</tr>
<tr>
<td>Hypoplasia and hypocalcification</td>
<td>third molars</td>
<td>111</td>
</tr>
</tbody>
</table>
Figure 59. Deciduous mandibular dentition with a single non-linear hypoplastic pit in the right canine of a subadult aged 3–5 years (Burial 7). This individual also appears to have been anemic.

Figure 60. Permanent mandibular canine and lateral incisor with linear hypoplasia in a male aged 35–45 years (Burial 9).
ends, providing a comparison of frequencies represented between the incisor and canine and between the correspondent ages of crown development within the canine.

Results

Among the 65 individuals with permanent dentition, 70.8 percent were hypoplastic. Frequencies for hypoplasia in permanent dentition were higher in the New York African Burial Ground sample than those observed in the enslaved populations of Catoctin Furnace, Maryland (Kelley and Angel 1987), or Newton Plantation in Barbados (Corrucini et al. 1985). The New York frequencies were lower than the total frequencies observed in the largely free and freed nineteenth-century Philadelphia First African Baptist Church (FABC) cemetery sample (Blakey et al. 1994) or enslaved African Americans buried in nineteenth-century Charleston, South Carolina, 38CH778 (Rathbun 1987). The Blakey et al. (1994) study of the Catoctin site indicates that women had higher frequencies of slight linear enamel hypoplasias; however, men had a greater frequency of moderate to severe hypoplasias (68 percent of males [n = 17] and 37.9 percent of females [n = 11]). Among the populations compared within this study, Rathbun (1987) reported the highest frequencies in men and women at the Charleston, South Carolina, site (71 percent in women and 100 percent for men). Tables 29 and 30 provide comparative frequencies and other data for the studies just discussed, and frequency data for the New York African Burial Ground sample are presented in Table 31.

Among the 99 New York African Burial Ground individuals within the canine and incisor studies (permanent and deciduous), 37.4 percent (n = 37) died before the age of 15 years, 86.5 percent of whom

Table 28. NYABG Canine Chronology Formula and Example Calculation: \(CH/6 = YGI \ 6.5 - (MID/YGI) = \text{Age of Occurrence} \)

<table>
<thead>
<tr>
<th>Crown Height (CH) (mm)</th>
<th>Total Years of Development</th>
<th>Yearly Growth Increment (YGI)</th>
<th>Crown Midpoint at 3.5 Years</th>
<th>Hypoplastic Lesion Midpoint (mm)</th>
<th>Formula</th>
<th>Age of Occurrence (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.71</td>
<td>6</td>
<td>12.71/6 = 2.12</td>
<td>6.36</td>
<td>3.93</td>
<td>3.93/2.12 = 1.85</td>
<td>6.5–1.85 = 4.65</td>
</tr>
</tbody>
</table>

Table 29. Frequency of Hypoplasias in Males and Females at NYABG (n = 59)

<table>
<thead>
<tr>
<th></th>
<th>Males (n = 35)</th>
<th>Females (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>74.3% (n = 26)</td>
<td>62.5% (n = 15)</td>
</tr>
<tr>
<td>Absent</td>
<td>25.7% (n = 9)</td>
<td>37.5% (n = 9)</td>
</tr>
</tbody>
</table>

Note: Six of the 65 individuals with adult dentition were too young to determine sex. Therefore, these individuals are not represented in the total number of males and females.
Table 30. Comparison of Frequencies Reported in Skeletal Populations

<table>
<thead>
<tr>
<th>Site/Location</th>
<th>Region</th>
<th>Rural/Urban</th>
<th>Historical Period</th>
<th>Hypoplasia Frequency/Secondary Dentition (%)</th>
<th>Hypoplasia in Females (%)</th>
<th>Hypoplasia in Males (%)</th>
<th>Hypoplasia in Subadults/Deciduous Dentition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYABG, New York</td>
<td>Northeast, North America</td>
<td>urban</td>
<td>1694–1794</td>
<td>70.8 (n = 46)</td>
<td>62.5 (n = 15)</td>
<td>4.3 (n = 26)</td>
<td>85.3 (n = 34)</td>
</tr>
<tr>
<td>Newton Plantation, Barbados</td>
<td>Barbados, West Indies</td>
<td>rural</td>
<td>1660–1820</td>
<td>54.5 (n = 56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABC, Pennsylvania</td>
<td>Northeast, North America</td>
<td>urban</td>
<td>1821–1843</td>
<td>89 (n = 54)</td>
<td>86 (n = 29)</td>
<td>92 (n = 25)</td>
<td>92.5 (n = 30)</td>
</tr>
<tr>
<td>Catoctin Furnace, Maryland</td>
<td>Southeast, North America</td>
<td>urban</td>
<td>1790–1820</td>
<td>46 (n = 7)</td>
<td>43</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Charleston, South Carolina (38CH778)</td>
<td>Southeast, North America</td>
<td>rural</td>
<td>1840–1870</td>
<td>85 (n = 23)</td>
<td>71 (n = 10)</td>
<td>100 (n = 13)</td>
<td></td>
</tr>
</tbody>
</table>

* Newton Plantation site frequencies from Corruccini et al. (1985).
* First African Baptist Church (FABC) adult frequencies reported from Blakey et al. (1994).
* Catoctin site frequencies reported from Kelley and Angel (1987) for overall frequencies.
* Frequencies by sex for Catoctin Furnace are from Angel et al. (1987) and Blakey et al. (1994).
* Frequencies reported by Blakey et al. (1994), representing frequencies of slight hypoplasia or moderate to severe hypoplasia within the Catoctin Furnace site.
* South Carolina 38CH778 site frequencies for males and females from Rathbun (1987). Combined secondary dentition frequency calculated from male and female frequencies reported by Rathbun.
Young adults who died between the ages of 15 and 24 years of age represent 17.2 percent of the population, 76.5 percent of whom had hypoplasias. A total of 45.5 percent of the people who died after the age of 25 years (n = 45), 66.7 percent (n = 30) of whom had hypoplasias. The frequency of childhood growth disruption is lowest in the oldest age-at-death groups.

Most of this sample experienced generalized stress in their childhood years. Individuals with permanent dentition (n = 65) representing the period of childhood between birth and 6.5 years of age had hypoplasia in 70.8 percent (n = 46) of the cases, overall. Notably, this frequency is about 20 percent lower than that for the Philadelphia FABC remains. Among children with deciduous dentition, 85.3 percent of the children (29 of 34) had hypoplasia, representing disrupted development between the fifth month in utero through the end of the first year of life. In contrast with the permanent dentition findings, this frequency is more than 20 percent higher than for the FABC.

If the FABC can serve as an operational reference point, one can ask why it is that the childhoods of those who died as adults in New York were relatively less stressed, and those who died as children in New York were relatively more stressed, in comparison with the Philadelphians who died in the 1830s and 1840s. The interpretation of this issue bears on the specific histories of in-migration in the two cities that will be addressed later in this chapter.

The foregoing data suggest that the individuals who experienced early stress episodes resulting in enamel hypoplasia were more likely to have died in childhood and that enslaved children in colonial New York experienced high levels of stress. The lower frequency of individuals with hypoplasia among those who were older than age 25 at death may reflect the forced migration of enslaved men and women arriving in colonial New York. These individuals seem more likely to have experienced childhood stress episodes in Africa than in New York, and their lower defect frequencies might reflect childhood experiences elsewhere. The brisk importation, low fertility, and high child mortality of eighteenth-century New York meant that an African who lived there as an adult was more likely to have been born in Africa (or possibly the Caribbean) than to have been born and survived to adulthood in New York. Although some children were imported, those who died as children in New York seem more likely to have been born there than those who died there as adults. Hypoplasia frequencies in the dead children, therefore, seem most likely to reflect the conditions of New York. The data on lead and strontium content in teeth (see Chapter 6) support those assumptions about the nativity of young children.

Those who died between 15 and 24 years of age had intermediate frequencies of defects in the teeth that developed during early childhood, as shown in Figure 61. We also examined frequencies of hypoplasia in third molars that develop between 9 and approximately 16 years of age. The late childhood and adolescence stress represented by hypoplastic third molars was present in 44.4 percent (n = 12) of those who died between 15 and 24 years and was present in only 10.7 percent (n = 9) of those who died at 25 years of age and older, in whom we could observe third molars (Figure 62). These differences were statistically significant (Pearson chi-square with Yates Continuity Correction = 13.035, df = 1, p < .0005). Interestingly, the 15–24-year-olds would have died quite close to the time when these late stresses were occurring. The analysis of 111 individuals with third molars was conducted apart from our usual analysis of incisors and canines. The third molars are less sensitive to hypoplasia than are the anterior teeth and cannot be directly compared with them; however, these hypoplastic lesions may represent more severe episodes of stress (Goodman and Armelagos 1985).

Based on historical documentation of importation ages, we suspect that many of the 15–24-year-olds

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Men (n = 35)</th>
<th>Women (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–14 (n = 37)</td>
<td>86.5% (n = 32)</td>
<td></td>
</tr>
<tr>
<td>15–24 (n = 17)</td>
<td>76.5% (n = 13)</td>
<td>83.3% (n = 5 of 6)</td>
</tr>
<tr>
<td>25–55+ (n = 45)</td>
<td>66.7% (n = 30)</td>
<td>72.4% (n = 21 of 29)</td>
</tr>
</tbody>
</table>

Note: Three children within the 1–14 age category had permanent dentition.
were likely, because of age, to have been new arrivals through the trade in human captives, with the Middle Passage constituting another plausible stressor for them. Fifteen years of age was also the beginning of adulthood in most eighteenth-century censuses in New York; 10 years of age was the criterion of adulthood less frequently used. Studies of active periosteal lesions in this group showed more new infection in the 15–24-year age range than among the older individuals who exhibited a preponderance of sclerotic and healed lesions. Mortality was also very high among the 15–24-year-old males and females, as is detailed in other chapters. Changing conditions of life either through forced migration or/and adult status may be involved in these effects.

The skewing of subadult nativity toward New York, and the skewing of adult nativity toward central and West Africa may help explain low frequencies of
hypoplasia in adults and high frequencies in subadults, when compared to nineteenth-century Philadelphians. The FABC, conversely, shows relatively low frequencies in subadults and high frequencies in adults. This may also be related to different places and conditions of childhood for those who died as children and those who died as adults in Philadelphia, as African births probably were not a major factor in mid-nineteenth-century Pennsylvania. Among the FABC sample, subadult nativity should be skewed toward Philadelphia, as similarly those who died as children in New York were also often born there. Philadelphia in the mid-nineteenth century can be characterized as having a free, disenfranchised, predominantly impoverished, unskilled wage-laboring black community. There was mobility toward greater economic stability among some blacks in the early part of that century, but this was halted during a peak period of Irish immigration into the city at about the time the FABC cemetery was in use (Du Bois 1899; Rankin-Hill 1997). These conditions were stressful, yet hypoplastic stress effects in these dead Philadelphian children were less frequent than in the enslaved children of colonial New York City.

The FABC adults, however, contained a large number of persons who were born and raised in bondage both in late-eighteenth-century slaveholding Pennsylvania and on the eighteenth- and nineteenth-century Southern plantations from which they were given manumission, bought their freedom, or escaped to Philadelphia (Rankin-Hill 1997).

For these FABC adults, their hypoplastic indicators of childhood stress were higher relative to those who died as New York Africans but whose childhoods were frequently spent in Africa. This interpretation of the data is assisted by the facts that the same researchers (and methodological training) were involved in both studies, both archaeological samples are sizable, both primary and secondary dentition were observed, and both sites are in the urban Northeast, thus greatly improving the reliability of comparisons.

Because much of this interpretation relies on the relation of hypoplasia frequency to age, one should examine the extent to which age-related occlusal wear might play a role in reducing our ability to observe hypoplasias, thus reducing the count of defects in older individuals. Subsets of the permanent dentition samples were created to control for the possible effect of dental attrition on hypoplasia frequencies between age and sex groups because of the loss of observable data through tooth wear. The incisor and canine study, as well as the third-molar study, displayed the previously reported pattern of hypoplasia frequencies when attrition was controlled. The highest frequencies were found in individuals aged 15–24 years, and lower frequencies were found in individuals who lived to be 25 years of age and older. These differences were statistically significant in the third-molar analysis only (Pearson chi-square with Yates Continuity Correction = 10.678, df = 1, p < .002). Men had higher frequencies of hypoplasia than women within both age groups in the canine and incisor study. These gender differences were not statistically significant. Tables 32 and 33 provide a summary of hypoplasia frequencies within each study. These findings show that the observed decrease in hypoplasia frequencies for older age groups and the differential frequencies between men and women were not a result of lost data because of tooth attrition.

Maxillary central incisors are intrinsically the most sensitive to developing hypoplasias, among all teeth, followed by the mandibular canine (Goodman and Armelagos 1985a, 1985b). Within this study, we compared hypoplasia frequencies in the permanent maxillary central incisors and the mandibular canines in the New York African Burial Ground. Among the 65 individuals, 26 (40 percent) evinced hypoplasia in the maxillary central incisor versus 41 (63.1 percent) in the mandibular canines. Utilizing the overlap in developmental periods represented by these teeth (birth to 3.5 years in the central incisor and 0.5–6.5 years in the mandibular canine) while taking into analytical consideration the intrinsic sensitivity of incisors to hypoplasia in comparison with canines, we sought to assess the periods most stressful in early childhood between birth and 6.5 years for the New York African Burial Ground population.

Hypoplasia chronologies were calculated for the mandibular canines of 23 individuals (Table 34). Among the 37 hypoplasias recorded for these individuals, 73 percent occurred between the ages of 3.51 and 6.5 (n = 27). Analyzed by individual (n = 23) and age, hypoplasias developed between the ages of 3.51 and 6.5 years of age in 95.7 percent of the cases (n = 22). The maxillary incisor frequency may be compared with the mandibular canine chronology frequencies by individual for an analysis of hypoplasia within the most sensitive teeth, by age range—that is, between birth and 3.5 years (evinced by the most sensitive tooth, the maxillary central incisor) and between 3.51 and 6.5 years of age (evinced by the canine, the most sensitive tooth for this developmental period). The
The difference between these two hypoplasia frequencies—40 percent (maxillary central incisors) and 95.7 percent (mandibular canines, between ages 3.51 and 6.5)—is, we believe, substantial when utilizing these data to understand stress episode frequency and quality of life in early childhood (Table 35).

Another factor that must be considered in the interpretation of the canine chronology data is the variability of susceptibility within tooth types. Goodman and Armelagos (1985b:485), studying the Dickson Mounds population, found mandibular canines to be most sensitive to enamel disruption between ages 3.5 and 4 years of age. Among the 23 New York African Burial Ground individuals in this canine chronology study, only 13.5 percent (n = 5) of the stress episodes occurred during this peak period of enamel susceptibility. However, 59.5 percent (n = 22) of the hypoplasias occurred between 4.1 years and 6.5 years of age. These patterns are not consistent with Goodman and Armelagos (1985b). Thus, our finding that 95.7 percent of individuals developed hypoplasias in the mandibular canine between 3.51 and 6.5 years of age is likely a reflection of real age-related differences in stress frequencies, and not simply an artifact of enamel sensitivity.

The individuals within the age category of 1–14 years were more likely to have been born in New York than individuals who were older at the time of death.

Table 32. NYABG Frequency of Hypoplasias in Canines and Incisors (Controlling for Attrition), by Age and Sex (n = 48)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Frequency within Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men (n = 24)</td>
</tr>
<tr>
<td>15–24 (n = 16)</td>
<td>81.3% (n=13)</td>
</tr>
<tr>
<td>25–55+ (n = 32)</td>
<td>71.9% (n=23)</td>
</tr>
</tbody>
</table>

Note: Three individuals with adult dentition in the 15–24 age group were too young to determine sex. Thus, these individuals are not represented in the total number of males and females.

Table 33. NYABG Frequencies of Hypoplasias in Third Molars by Age Group, Controlling for Attrition (n = 97)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Frequency within Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–24 (n = 26)</td>
<td>46.2% (n = 12)</td>
</tr>
<tr>
<td>25–55+ (n = 71)</td>
<td>12.7% (n = 9)</td>
</tr>
</tbody>
</table>

Table 34. NYABG Frequency of Hypoplasia by Age Intervals in Mandibular Canines, by Age Intervals (n = 37 Hypoplasias)

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5–1</td>
<td></td>
</tr>
<tr>
<td>1.01–2</td>
<td></td>
</tr>
<tr>
<td>2.01–3</td>
<td>16.2% (n = 6)</td>
</tr>
<tr>
<td>3.01–4</td>
<td>18.9% (n = 7)</td>
</tr>
<tr>
<td>4.01–5</td>
<td>46.0% (n = 7)</td>
</tr>
<tr>
<td>5.01–6</td>
<td>18.9% (n = 7)</td>
</tr>
<tr>
<td>6.01–6.5</td>
<td></td>
</tr>
</tbody>
</table>
Their early deaths and high levels of stress indicators, such as hypoplasia, support an interpretation that these children were born into the arduous conditions of enslavement and therefore experienced greater levels of diseases and illnesses, possibly a consequence of being forced to work at young ages. The peak frequencies of hypoplasia between the ages of 3 and 4 years in secondary dentitions observed by Corruccini et al. (1985) among enslaved Barbadians were attributed to weaning at ages 2–3. Blakey et al. (1994) tested the weaning hypothesis within African American enslaved groups to argue that enslaved children experienced physiological stress from multiple sources and that weaning did not account for the peak in hypoplasia frequencies. Furthermore, Blakey’s study suggests the need for historical and cultural contexts to be considered within a biocultural interpretation. The high frequencies of hypoplasia during the fifth year demonstrate that this stage was a vulnerable and stressful age for children who survived early infancy and who died as adults. This window on childhood appears to be most pertinent for those who were born in Africa, although childhoods in the Caribbean, New York, and other locations were doubtlessly mixed into our adult sample. How much more stressful the fifth year of age was compared to earlier ages, however, has not been confirmed using enamel defects because of variation in hypoplastic sensitivity across different parts of the crown. Moreover, these data represent the experiences of survivors, whereas the high death toll of infants clearly represents vulnerability and stress among those who did not survive to exhibit developmental defects in secondary teeth. Those deaths (see Chapter 7) clearly resulted from conditions in New York City, albeit precipitated partly by the poor health of captured mothers whose own experiences of childhood stress were relatively less frequent.

The project has used a political-economic framework for explaining biological variations in the New York African Burial Ground sample. For example, Susan Goode-Null’s (2002) study of childhood health and development in the New York African Burial Ground sample found that the enslaved people brought into New York between the years of 1664 and 1741 were largely from the Caribbean. Following McManus’s *A History of Negro Slavery in New York* (1966), Goode-Null explained that between 1741 and 1770, because of the cessation of slave trading between the British and Spanish colonies and the fear that a slave revolt aborted in 1741 might repeat the events of the 1712 slave revolt in New York, enslaved Africans were imported directly from Africa, rather than via the Caribbean and were largely young women aged 13–40 years and children preferably of 9–10 years of age, rather than adult males. Adult enslaved men from the Caribbean were considered the strategists behind the successful and aborted revolts (Goode-Null 2002:28; see also Chapter 13 in this volume and Medford [2009] for further reference to these factors).

These historical data suggest at least two additional interpretations. One explanation assumes that many children experiencing stress episodes during the ages of 3.5–6.5 years and who lived to adulthood, were born within the colony of New York. Goode-Null’s study reported that enslaved children in New York were frequently sold by the age of 6 years (Goode-Null 2002:37–38; Medford 2009). Advertisements indicated that domestic skills promoted the marketability of enslaved children. Therefore, it is likely that children approaching the age of 6 years may have experienced trauma related to separation from their parents, differential nutrition provisions provided by nonparental custodians or slaveholders, or stresses and increased exposure to disease from induction into domestic or other labor duties. Children under the age of 15 were highly stressed, and approaching the age of 6 may have been a significant stage within the

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Developmental Period/ Age (in years)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary central incisor</td>
<td>0–3.5</td>
<td>40% (n = 26 of 65)</td>
</tr>
<tr>
<td>Mandibular canines</td>
<td>0.5–6.5</td>
<td>63.1% (n = 41 of 65)</td>
</tr>
<tr>
<td>Mandibular canine chronology</td>
<td>0–3.5</td>
<td>26.2% (n = 6 of 23)</td>
</tr>
<tr>
<td></td>
<td>3.51–6.5</td>
<td>95.7% (n = 22 of 23)</td>
</tr>
</tbody>
</table>

Note: Five individuals within the mandibular canine chronology study had multiple hypoplasias and are represented in both the 0–3.5 and the 3.5–6.5 developmental period/age category frequencies.
life histories of children born within the legal status of “slave” in colonial New York. Furthermore, legal definitions of “adult” were applied to children over the age of 10 years in the 1731 and 1737–1738 censuses, and at 16 years in the census data prior to 1731 and after 1737–1738, including the 1810 census (see Chapter 13) (Goode-Null 2002). This legal status as “adult” would most likely have affected the character of labor expected of young enslaved Africans under the age of 15 and within the age group of 15–24. These data further suggest that a child approaching the age of 9 or 10 may have been prepared for an occupational position through entry into labor training and work. Substantial third-molar defect frequencies, especially for those who died between 15 and 24 years of age, characterize stresses of older children and adolescents whether or not they were born in New York.

A second interpretation assumes the inclusion of children imported from Africa to New York, again around the age of 9 or 10, as enslaved laborers. These children may have experienced high levels of physiological stress during their earlier childhood, related to shifts in political power and socioeconomic upheaval within the Atlantic slave trade networks that may have factored into their enslavement. Also, children under the age of 15 years could have experienced the Middle Passage prior to their arrival in New York. Any of a host of other possible inadequacies of the large, stratified agrarian societies from which they derived may have contributed to moderately high hypoplastic frequencies in the childhoods of those who died as adults in New York. Consistent with other findings of this study, most of the stresses shown by adult teeth were likely produced by factors within their native African environments with a minority of the adult teeth developing during childhoods in New York. The high frequency of third-molar hypoplasias in those who died between 15 and 24 years of age also suggests effects deriving from arrivals in New York between 9 and 16 years of age in at least 44 percent of the individuals. Those who lived to old age showed far less stress during 9–16 years of age than those who died shortly after arrival in New York.

Our observation that those who lived the longest also had the lowest evidence of childhood stressors may suggest that higher chances of survival to adulthood are associated with having lower stress in childhood, irrespective of where the childhood took place. An attrition of hypoplastic individuals that is associated with age has been postulated elsewhere (Blakey and Armelagos 1985). These are not mutually exclusive propositions; those born in Africa may have had fewer childhood stressors and survived to older ages at death in New York than those who were born in New York City.

One approach to this question has been to compare hypoplasia frequencies for individuals with culturally modified teeth to those without such modifications (Figure 63 and Table 36). Handler’s historical study (1994) and our chemical research (see Chapter 6) strongly suggest that modified teeth most frequently indicate African birth. Individuals without cultural modification (probably both African and non-African born) had higher frequencies of hypoplasia than individuals with modified teeth (modified, 66.7 percent [n = 6]; unmodified, 71.4 percent [n = 40]).
The mean ages at death for individuals with modified and unmodified teeth were comparable, although slightly older for individuals with modified teeth (34 years of age for individuals with modified teeth and 31 years for individuals with unmodified teeth). Although consistent with the association between African birth and lower defect frequencies, these differences were not statistically significant at the $p < .05$ level. Chemical and mtDNA analyses will provide greater insight into these interpretations. Indeed, chemical sourcing data would add greatly to the conclusiveness of these tests by providing an independent method of identifying place of birth in at least 200 New York African Burial Ground individuals; this should be done in a future study.

The highest levels of hypoplasia were found within the individuals with deciduous dentition and may therefore represent effects of prenatal stress experienced by the mother during pregnancy. Furthermore, the decreasing frequencies of hypoplasia exhibited by individuals who lived longer suggest a relationship between stress episodes indicated by hypoplasias and a decreased life span.

Dental Enamel Hypocalcification

A study of dental enamel hypocalcification was conducted to assess frequencies within a subsample of 99 individuals. This subject had permanent dentition, including a left or right maxillary central incisor and a left or right mandibular canine, and also included children with deciduous left or right maxillary incisors, left or right mandibular canines, and a second molar.

Within this study of the New York African Burial Ground sample, 67.6 percent (n = 23) of the 34 children with deciduous dentition had hypocalcification (Table 37). Among the 65 individuals with permanent dentition, 18.5 percent (n = 12) had hypocalcification. Women had a higher frequency of hypocalcification than did men (72.7 percent of the 24 females versus 27.3 percent of the 35 males).

Within this subsample, 60.5 percent (n = 23) of the 38 children under the age of 15 years had hypocalcification (see Table 37), whereas only 10 percent (n = 2) of the 20 young adults aged 15–24.9 years and 28.6 percent (n = 10) of the adults aged 25 and older had hypocalcification (see Table 37). These differences were statistically significant (Pearson chi-square = 19.84, df = 2, $p < .0005$) and mainly reflects the change from predominantly primary to secondary teeth by age 15. The difference between hypocalcification frequencies found in individuals with deciduous dentition (67.6 percent, n = 23) and permanent dentition (18.5 percent, n = 12) should not be considered in the same manner in which this age-related pattern in hypoplasia has been considered. Deciduous dentition is more likely to become hypocalcified than to exhibit hypoplasia, and deciduous dentition typically displays

<p>| Table 37. NYABG Comparison of Hypocalcification and Hypoplasia Frequencies by Age Group (n = 99) |</p>
<table>
<thead>
<tr>
<th>Age Group (in years)</th>
<th>Percentages within Age Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypocalcification</td>
</tr>
<tr>
<td>1–14</td>
<td>62.2 (n = 23)</td>
</tr>
<tr>
<td>15–24</td>
<td>10 (n = 2)</td>
</tr>
<tr>
<td>25–55+</td>
<td>28.6 (n = 10)</td>
</tr>
</tbody>
</table>

Note: Three subadults in the 1.0–14.9 age range had permanent teeth. These individuals are only represented once within the combined studies of permanent and deciduous dentition.
higher frequencies of hypocalcification in comparison to permanent dentition (Blakey et al. 1997). Thus, the observed low frequency of hypocalcification in permanent dentition follows the expected pattern caused by suspected intrinsic differences between deciduous and permanent dentition that may have nothing to do with stressor prevalence. Comparisons of hypocalcification across primary and secondary dentition are therefore inappropriate.

However, comparison of the two defect types within deciduous dentitions is of interest. Deciduous dentition forms in utero and continues into the first year of life and therefore represents early childhood development and a measure of prenatal health and the health status of the mother. Hypocalcification and hypoplasia frequencies were both highest in children dying prior to the age of 15 years, demonstrating high physiological stress and vulnerability during the prenatal and early childhood years. The higher levels of hypoplasia (86.5 percent) versus hypocalcification (65.7 percent) within deciduous dentition (n = 34) is unexpected, however, given the tendency of deciduous teeth to preferentially exhibit hypocalcification. Hypoplasia frequency in this case is extraordinarily high compared to other deciduous dental studies using similar methods (Blakey and Armelagos 1985; Blakey et al. 1994, 1997; Rankin-Hill 1997). Both defect frequencies indicate the extremely high levels of stress experienced in utero and during the first year of life among the New York African Burial Ground children who died before the age of 15.

Conclusions

Historical data on the ages of children who were in various stressful contexts have been applied to explain developmental defect frequencies that occurred at different ages in the childhood and adolescent periods of the life cycle. Children likely born in colonial New York within the condition of slavery were more vulnerable to health risks and early death due to nutritional deficiencies and illness than is evident for the childhoods of those who were likely to have been born in Africa. The findings of this study suggest disparity between early childhood health and nutrition for individuals more likely to have been born in colonial New York and individuals likely to have been born as free people in the agricultural villages of the war-torn states of central and West Africa (see Medford 2009). The fact that higher frequencies of enamel defects were found in children under the age of 15 and among individuals without dental modification, than among individuals who were most likely to have been born in Africa (older individuals and those with modified teeth), supports this hypothesis. The chronology of physiological insults resulting in hypoplasia further supports the vulnerability of childhood and adolescence for enslaved Africans in New York.

The third-molar data reflect the trajectory of life experience for individuals, most of whom were likely to have been born in Africa and enslaved in the Americas. Significantly higher hypoplasia frequencies found in the third molars representing the developmental period of 9–16 years correspond with historical data indicating high levels of importation of older children, adolescents, and young adults in the eighteenth century. These findings indicate that the quality of life for Africans was greatly compromised upon entry into the New York environment of enslavement through the processes of either birth or forced migration.
The dentition is usually the best-preserved element of the skeleton. Hydroxyapatite, an inorganic calcium matrix, comprises approximately 97 percent of the chemical composition of enamel (Carlson 1990). This crystalline structure makes dental enamel hard and dense and useful to resist the abrasive nature of mastication. Also, as a result of their hardness, teeth are often all that remains of a long-deceased individual. The abundance of dentition in archaeological contexts has led to the intensive exploitation of teeth for information about the past. Chapters 6 and 8 of this report address the systemic effects of nutrition in dental development and of ecosystem relationships that changed dental chemistry. In addition, the relative presence or absence of pathological conditions, such as tooth loss, caries (cavities from dental decay), and associated abscesses of the alveolar bone surrounding the dental root and cervix also provide evidence of the general level of biological well-being, accessibility of dental care, and the biological effects of foods commonly eaten.

In order to further understand the diets and living conditions of individuals from the New York African Burial Ground, in this chapter we summarize traditional odontological methods for assessing the local effects of different foods within the oral cavity itself. We specifically focus on dental caries, dental abscesses, and tooth loss. Subsections include discussion of the frequencies of subadult and adult dental diseases as well as the differences found in adult males and females. Finally, comparisons of infectious dental pathologies (caries, associated abscesses, and antemortem tooth loss) will be made between the New York African Burial Ground sample and other skeletal samples that may have experienced similar life conditions. We also briefly discuss a few cases of micro- and macrodontia.

For a variety of reasons, sample sizes for each pathological observation vary. Much of the variation centers on not only the relative state of preservation of the teeth but also the condition of the surrounding alveoli. In many cases, teeth were recovered, but the surrounding alveoli were too poorly preserved for observations of pathology. Likewise, many dentitions were part of, and encased in, cranial pedestals, often obscuring a complete side of the dental arcade in cases where teeth were too friable to remove in an observable state. Additionally, many teeth were covered with organic or diagenic staining due to the local soil conditions, water seepage and damage, and the time elapsed since interment (Figure 64). This discoloration is not to be confused with enamel hypocalcification; it often affected dental roots and the surrounding alveoli that were exposed as a result of postmortem deterioration, as well as dental enamel. Calculus deposits built up on tooth surfaces, and although these deposits were usually removed, calculus sometimes prevented pathological observations. Finally, antemortem tooth loss and traumatic fractures, especially of the molars, precluded some diagnoses, and in the cases of the 26 individuals with dental modification, along with enamel being lost due to filing/chipping, some pathology information was lost as well (see Table 1).

After the skeletal remains of each burial were cleaned and reconstructed, the dentition for each burial (permanent and/or deciduous) was cleaned, identified, assessed, and curated separately by the Laboratory Director and his assistants. Data collection was performed under the guidelines set forth in Standards for Data Collection for Human Remains (Buikstra and Ubelaker 1994). Pathological recordation for the
deciduous and/or permanent teeth included dental inventories and tooth loss with alveolar resorption, caries reported by surface and number of caries by tooth, abscess presence and location (buccal, lingual, or exudative), and other pathological observations (molar agenesis, dental crowding, etc.). Dental caries is defined as a progressive tooth demineralization resulting from localized fermentation of food sugars and carbohydrates by bacteria (Mandel 1979). Dental caries formation, periapical abscessing, and antemortem tooth loss are all evidence of a disease process (Larsen 1997). A complete photographic record was constructed for each tooth, the overall dentition, and the maxillary and mandibular alveoli (Figure 65).

For example, in Figure 65, the plate on the left displays the occlusal surface of the maxillary dentition and alveoli, and the plate on the right provides an occlusal view of the mandibular dentition of Burial 95. This provides photographic evidence of dental observations.

Only dentitions from individuals with known sex and age (both adult and subadult) are used for the following dental pathology analysis. For these purposes, adults were defined as 15–60+ years of age, and subadults were defined as younger than 15 years (14.99 and below). The rationale supporting these definitions and the use of only individuals with known sex and ages has been outlined above (see Chapter 7). It is a bit troublesome to have multiple definitions of “adulthood”—one for demographic purposes and another for other studies.

Infectious Pathology

Tables 38 and 39 contain, respectively for males and females, the frequencies of dental pathologies—caries and abscesses—identified in the New York African Burial Ground sample. Caries were present in all tooth types. However, as expected, the highest frequencies of caries were found in molars, followed by premolars and single-cusped incisors and canines. The highest frequencies found in males were in the lower left first molar (37.74 percent), the lower left second molar (31.03 percent), and the upper right third molar (30.43 percent). The least carious tooth was the right lower second incisor (2.67 percent). As noted, no tooth type was caries free. Whereas just 3 teeth reached caries prevalence of over 30 percent in males, 13 teeth reach a similar threshold in females, including 11 of 12 molars and 2 premolars. As it did in
Table 38. Dental Pathology Frequencies in NYABG Males, Permanent Dentition

<table>
<thead>
<tr>
<th>Tooth No.</th>
<th>Present</th>
<th>Absent</th>
<th>Total</th>
<th>Absent (%)</th>
<th>No. Caries</th>
<th>Caries (%)</th>
<th>No. Abscess</th>
<th>Abscess (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) RM³</td>
<td>69</td>
<td>8</td>
<td>77</td>
<td>10.39</td>
<td>21</td>
<td>30.43</td>
<td>7</td>
<td>10.14</td>
</tr>
<tr>
<td>2) RM²</td>
<td>68</td>
<td>9</td>
<td>77</td>
<td>11.69</td>
<td>17</td>
<td>25.00</td>
<td>7</td>
<td>10.29</td>
</tr>
<tr>
<td>3) RM¹</td>
<td>66</td>
<td>15</td>
<td>81</td>
<td>18.52</td>
<td>19</td>
<td>28.79</td>
<td>13</td>
<td>19.70</td>
</tr>
<tr>
<td>4) RP²</td>
<td>71</td>
<td>9</td>
<td>80</td>
<td>11.25</td>
<td>14</td>
<td>19.72</td>
<td>8</td>
<td>11.27</td>
</tr>
<tr>
<td>5) RP¹</td>
<td>73</td>
<td>10</td>
<td>83</td>
<td>12.05</td>
<td>17</td>
<td>23.29</td>
<td>8</td>
<td>10.96</td>
</tr>
<tr>
<td>6) RC⁰</td>
<td>77</td>
<td>5</td>
<td>82</td>
<td>6.10</td>
<td>11</td>
<td>14.29</td>
<td>1</td>
<td>1.30</td>
</tr>
<tr>
<td>7) RI¹</td>
<td>72</td>
<td>6</td>
<td>78</td>
<td>7.69</td>
<td>9</td>
<td>12.50</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>8) RI²</td>
<td>70</td>
<td>10</td>
<td>80</td>
<td>12.50</td>
<td>10</td>
<td>14.29</td>
<td>1</td>
<td>1.43</td>
</tr>
<tr>
<td>9) LI¹</td>
<td>71</td>
<td>8</td>
<td>79</td>
<td>10.13</td>
<td>10</td>
<td>14.08</td>
<td>3</td>
<td>4.23</td>
</tr>
<tr>
<td>10) LI²</td>
<td>75</td>
<td>8</td>
<td>83</td>
<td>9.64</td>
<td>7</td>
<td>9.33</td>
<td>2</td>
<td>2.67</td>
</tr>
<tr>
<td>11) LC⁰</td>
<td>72</td>
<td>8</td>
<td>80</td>
<td>10.00</td>
<td>12</td>
<td>16.67</td>
<td>5</td>
<td>6.94</td>
</tr>
<tr>
<td>12) LP¹</td>
<td>64</td>
<td>13</td>
<td>77</td>
<td>16.88</td>
<td>14</td>
<td>21.88</td>
<td>4</td>
<td>6.25</td>
</tr>
<tr>
<td>13) LP²</td>
<td>64</td>
<td>14</td>
<td>78</td>
<td>17.95</td>
<td>12</td>
<td>18.75</td>
<td>6</td>
<td>9.38</td>
</tr>
<tr>
<td>14) LM⁰</td>
<td>64</td>
<td>14</td>
<td>78</td>
<td>17.95</td>
<td>12</td>
<td>18.75</td>
<td>11</td>
<td>17.19</td>
</tr>
<tr>
<td>15) LM¹</td>
<td>64</td>
<td>14</td>
<td>78</td>
<td>17.95</td>
<td>13</td>
<td>20.31</td>
<td>10</td>
<td>15.63</td>
</tr>
<tr>
<td>16) LM²</td>
<td>66</td>
<td>9</td>
<td>75</td>
<td>12.00</td>
<td>15</td>
<td>22.73</td>
<td>10</td>
<td>15.15</td>
</tr>
<tr>
<td>17) LM₃</td>
<td>58</td>
<td>27</td>
<td>85</td>
<td>31.76</td>
<td>15</td>
<td>25.86</td>
<td>6</td>
<td>10.34</td>
</tr>
<tr>
<td>18) LM₄</td>
<td>58</td>
<td>25</td>
<td>83</td>
<td>30.12</td>
<td>18</td>
<td>31.03</td>
<td>7</td>
<td>12.07</td>
</tr>
<tr>
<td>19) LM₅</td>
<td>53</td>
<td>28</td>
<td>81</td>
<td>34.57</td>
<td>20</td>
<td>37.74</td>
<td>8</td>
<td>15.09</td>
</tr>
<tr>
<td>20) LP₃</td>
<td>72</td>
<td>9</td>
<td>81</td>
<td>11.11</td>
<td>12</td>
<td>16.67</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>21) LP₄</td>
<td>81</td>
<td>5</td>
<td>86</td>
<td>5.81</td>
<td>6</td>
<td>7.41</td>
<td>3</td>
<td>3.70</td>
</tr>
<tr>
<td>22) LC₅</td>
<td>80</td>
<td>5</td>
<td>85</td>
<td>5.88</td>
<td>8</td>
<td>10.00</td>
<td>2</td>
<td>2.50</td>
</tr>
<tr>
<td>23) LI₅</td>
<td>78</td>
<td>5</td>
<td>83</td>
<td>6.02</td>
<td>4</td>
<td>5.13</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>24) LI₆</td>
<td>70</td>
<td>10</td>
<td>80</td>
<td>12.50</td>
<td>2</td>
<td>2.86</td>
<td>1</td>
<td>1.43</td>
</tr>
<tr>
<td>25) RI₆</td>
<td>70</td>
<td>7</td>
<td>77</td>
<td>9.09</td>
<td>3</td>
<td>4.29</td>
<td>1</td>
<td>1.43</td>
</tr>
<tr>
<td>26) RI₇</td>
<td>75</td>
<td>7</td>
<td>82</td>
<td>8.54</td>
<td>2</td>
<td>2.67</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>27) RC₆</td>
<td>79</td>
<td>6</td>
<td>85</td>
<td>7.06</td>
<td>5</td>
<td>6.33</td>
<td>2</td>
<td>2.53</td>
</tr>
<tr>
<td>28) RP₇</td>
<td>79</td>
<td>7</td>
<td>86</td>
<td>8.14</td>
<td>15</td>
<td>18.99</td>
<td>2</td>
<td>2.53</td>
</tr>
<tr>
<td>29) RP₈</td>
<td>82</td>
<td>9</td>
<td>91</td>
<td>9.89</td>
<td>13</td>
<td>15.85</td>
<td>2</td>
<td>2.44</td>
</tr>
<tr>
<td>30) RM₆</td>
<td>56</td>
<td>31</td>
<td>87</td>
<td>35.63</td>
<td>11</td>
<td>19.64</td>
<td>2</td>
<td>3.57</td>
</tr>
<tr>
<td>31) RM₇</td>
<td>64</td>
<td>23</td>
<td>87</td>
<td>26.44</td>
<td>19</td>
<td>29.69</td>
<td>6</td>
<td>9.38</td>
</tr>
<tr>
<td>32) RM₈</td>
<td>63</td>
<td>23</td>
<td>86</td>
<td>26.74</td>
<td>14</td>
<td>22.22</td>
<td>3</td>
<td>4.76</td>
</tr>
</tbody>
</table>

Key: (1) RM³ = upper right third molar; (2) RM² = upper right second molar; (3) RM¹ = upper right first molar; (4) RP² = upper right second premolar; (5) RP¹ = upper right first premolar; (6) RC¹ = upper right first canine; (7) RI² = upper right second incisor; (8) RI¹ = upper right first incisor; (9) LI¹ = upper left first incisor; (10) LI² = upper left second incisor; (11) LC¹ = upper left first canine; (12) LP¹ = upper left first premolar; (13) LP² = upper left second premolar; (14) LM¹ = upper left first molar; (15) LM² = upper left second molar; (16) LM₃ = upper left third molar; (17) LM₄ = lower left first molar; (18) LM₅ = lower left second molar; (19) LM₆ = lower left first molar; (20) LP₂ = lower left second premolar; (21) LP¹ = lower left first premolar; (22) LC¹ = lower left first canine; (23) LI² = lower left second incisor; (24) LI¹ = lower left first incisor; (25) RH¹ = lower right first incisor; (26) RI² = lower right second incisor; (27) RC¹ = lower right first canine; (28) RP¹ = lower right first premolar; (29) RP² = lower right second premolar; (30) RM¹ = lower right first molar; (31) RM² = lower right second molar; (32) RM₃ = lower right third molar.
Table 39. Dental Pathology Frequencies in NYABG Females, Permanent Dentition

<table>
<thead>
<tr>
<th>Tooth No.</th>
<th>Present</th>
<th>Absent</th>
<th>Total</th>
<th>Absent (%)</th>
<th>No. Caries</th>
<th>Caries (%)</th>
<th>No. Abscess</th>
<th>Abscess (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) RM¹</td>
<td>40</td>
<td>12</td>
<td>52</td>
<td>23.08</td>
<td>12</td>
<td>30.00</td>
<td>3</td>
<td>7.50</td>
</tr>
<tr>
<td>2) RM²</td>
<td>48</td>
<td>6</td>
<td>54</td>
<td>11.11</td>
<td>16</td>
<td>33.33</td>
<td>3</td>
<td>6.25</td>
</tr>
<tr>
<td>3) RM³</td>
<td>40</td>
<td>13</td>
<td>53</td>
<td>24.53</td>
<td>14</td>
<td>35.00</td>
<td>5</td>
<td>12.50</td>
</tr>
<tr>
<td>4) RP¹</td>
<td>47</td>
<td>9</td>
<td>56</td>
<td>16.07</td>
<td>13</td>
<td>27.66</td>
<td>2</td>
<td>4.26</td>
</tr>
<tr>
<td>5) RP²</td>
<td>43</td>
<td>16</td>
<td>59</td>
<td>27.12</td>
<td>14</td>
<td>32.56</td>
<td>3</td>
<td>6.98</td>
</tr>
<tr>
<td>6) RC¹</td>
<td>55</td>
<td>4</td>
<td>59</td>
<td>6.78</td>
<td>11</td>
<td>20.00</td>
<td>2</td>
<td>3.64</td>
</tr>
<tr>
<td>7) RI²</td>
<td>47</td>
<td>7</td>
<td>54</td>
<td>12.96</td>
<td>14</td>
<td>29.79</td>
<td>2</td>
<td>4.26</td>
</tr>
<tr>
<td>8) RI¹</td>
<td>46</td>
<td>4</td>
<td>50</td>
<td>8.00</td>
<td>11</td>
<td>23.91</td>
<td>3</td>
<td>6.38</td>
</tr>
<tr>
<td>9) LI¹</td>
<td>47</td>
<td>6</td>
<td>53</td>
<td>11.32</td>
<td>10</td>
<td>21.28</td>
<td>3</td>
<td>6.38</td>
</tr>
<tr>
<td>10) LI²</td>
<td>49</td>
<td>6</td>
<td>55</td>
<td>10.91</td>
<td>13</td>
<td>26.53</td>
<td>2</td>
<td>4.08</td>
</tr>
<tr>
<td>11) LC¹</td>
<td>53</td>
<td>3</td>
<td>56</td>
<td>5.36</td>
<td>6</td>
<td>11.32</td>
<td>4</td>
<td>7.55</td>
</tr>
<tr>
<td>12) LP¹</td>
<td>45</td>
<td>11</td>
<td>56</td>
<td>19.64</td>
<td>11</td>
<td>24.44</td>
<td>3</td>
<td>6.67</td>
</tr>
<tr>
<td>13) LP²</td>
<td>46</td>
<td>7</td>
<td>53</td>
<td>13.21</td>
<td>12</td>
<td>26.09</td>
<td>2</td>
<td>4.35</td>
</tr>
<tr>
<td>14) LM¹</td>
<td>41</td>
<td>11</td>
<td>52</td>
<td>21.15</td>
<td>15</td>
<td>36.59</td>
<td>7</td>
<td>17.07</td>
</tr>
<tr>
<td>15) LM²</td>
<td>51</td>
<td>5</td>
<td>56</td>
<td>8.93</td>
<td>19</td>
<td>37.25</td>
<td>6</td>
<td>11.76</td>
</tr>
<tr>
<td>16) LM³</td>
<td>44</td>
<td>11</td>
<td>55</td>
<td>20.00</td>
<td>15</td>
<td>34.09</td>
<td>2</td>
<td>4.55</td>
</tr>
<tr>
<td>17) LM₁</td>
<td>38</td>
<td>19</td>
<td>57</td>
<td>33.33</td>
<td>12</td>
<td>31.58</td>
<td>3</td>
<td>7.89</td>
</tr>
<tr>
<td>18) LM₂</td>
<td>41</td>
<td>19</td>
<td>60</td>
<td>31.67</td>
<td>12</td>
<td>29.27</td>
<td>7</td>
<td>17.07</td>
</tr>
<tr>
<td>19) LM₃</td>
<td>29</td>
<td>25</td>
<td>54</td>
<td>46.30</td>
<td>16</td>
<td>55.17</td>
<td>7</td>
<td>24.14</td>
</tr>
<tr>
<td>20) LP₁</td>
<td>51</td>
<td>7</td>
<td>58</td>
<td>12.07</td>
<td>8</td>
<td>15.69</td>
<td>3</td>
<td>5.88</td>
</tr>
<tr>
<td>21) LP₂</td>
<td>57</td>
<td>4</td>
<td>61</td>
<td>6.56</td>
<td>7</td>
<td>12.28</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>22) LC₁</td>
<td>59</td>
<td>4</td>
<td>63</td>
<td>6.35</td>
<td>9</td>
<td>15.25</td>
<td>2</td>
<td>3.39</td>
</tr>
<tr>
<td>23) LI₁</td>
<td>54</td>
<td>5</td>
<td>59</td>
<td>8.47</td>
<td>8</td>
<td>14.81</td>
<td>1</td>
<td>1.85</td>
</tr>
<tr>
<td>24) LI₂</td>
<td>57</td>
<td>4</td>
<td>61</td>
<td>6.56</td>
<td>1</td>
<td>1.75</td>
<td>1</td>
<td>1.75</td>
</tr>
<tr>
<td>25) RI₁</td>
<td>52</td>
<td>5</td>
<td>57</td>
<td>8.77</td>
<td>2</td>
<td>3.85</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>26) RI₂</td>
<td>56</td>
<td>5</td>
<td>61</td>
<td>8.20</td>
<td>9</td>
<td>16.07</td>
<td>1</td>
<td>1.79</td>
</tr>
<tr>
<td>27) RC₁</td>
<td>56</td>
<td>7</td>
<td>63</td>
<td>11.11</td>
<td>9</td>
<td>16.07</td>
<td>2</td>
<td>3.57</td>
</tr>
<tr>
<td>28) RP₁</td>
<td>52</td>
<td>5</td>
<td>57</td>
<td>8.77</td>
<td>20</td>
<td>38.46</td>
<td>5</td>
<td>9.62</td>
</tr>
<tr>
<td>29) RP₂</td>
<td>49</td>
<td>9</td>
<td>58</td>
<td>15.52</td>
<td>8</td>
<td>16.33</td>
<td>1</td>
<td>2.04</td>
</tr>
<tr>
<td>30) RM₁</td>
<td>32</td>
<td>27</td>
<td>59</td>
<td>45.76</td>
<td>12</td>
<td>37.50</td>
<td>6</td>
<td>18.75</td>
</tr>
<tr>
<td>31) RM₂</td>
<td>40</td>
<td>20</td>
<td>60</td>
<td>33.33</td>
<td>12</td>
<td>30.00</td>
<td>2</td>
<td>5.00</td>
</tr>
<tr>
<td>32) RM₃</td>
<td>39</td>
<td>17</td>
<td>56</td>
<td>30.36</td>
<td>15</td>
<td>38.46</td>
<td>3</td>
<td>7.69</td>
</tr>
</tbody>
</table>

Key: (1) RM³ = upper right third molar; (2) RM² = upper right second molar; (3) RM¹ = upper right first molar; (4) RP² = upper right second premolar; (5) RP¹ = upper right first premolar; (6) RC¹ = upper right first canine; (7) RI² = upper right second incisor; (8) RI¹ = upper right first incisor; (9) LI² = upper left second incisor; (10) LI¹ = upper left first incisor; (11) LC¹ = upper left first canine; (12) LP¹ = upper left first premolar; (13) LP² = upper left second premolar; (14) LM¹ = upper left first molar; (15) LM² = upper left second molar; (16) LM³ = upper left third molar; (17) LM₁ = lower left first molar; (18) LM₂ = lower left second molar; (19) LM₃ = lower left third molar; (20) LP₁ = lower left first premolar; (21) LP₂ = lower left second premolar; (22) RC₁ = lower left first canine; (23) LI₂ = lower left second incisor; (24) LI¹ = lower left first incisor; (25) RI¹ = lower right first incisor; (26) RI₂ = lower right second incisor; (27) RC₁ = lower right first canine; (28) RP¹ = lower right first premolar; (29) RP₂ = lower right second premolar; (30) RM¹ = lower right first molar; (31) RM₂ = lower right second molar; (32) RM₃ = lower right third molar.
males, the lower left first molar displayed the highest frequency of caries in females (55.17 percent).

The prevalence of dental abscesses was also greatest in molars. In males, the highest prevalence of abscessing was found on the upper right first molar (19.70 percent) followed by the contralateral upper left first molar (17.19 percent). Interestingly, in females, the highest frequency of abscessing was found in the lower left first molars (24.14 percent) and right first molars (18.75 percent).

Most adults (72.9 percent of males and 84.3 percent of females) had at least one carious tooth (Table 40).

Table 40. New York African Burial Ground Total Number of Carious Teeth, by Sex

<table>
<thead>
<tr>
<th>No. of Carious Teeth</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27.1 (n = 26)</td>
<td>15.7 (n = 11)</td>
<td>22.3 (n = 37)</td>
</tr>
<tr>
<td>1</td>
<td>11.5 (n = 11)</td>
<td>10.0 (n = 7)</td>
<td>10.8 (n = 18)</td>
</tr>
<tr>
<td>2</td>
<td>6.3 (n = 6)</td>
<td>10.0 (n = 7)</td>
<td>7.8 (n = 13)</td>
</tr>
<tr>
<td>3</td>
<td>5.2 (n = 5)</td>
<td>5.7 (n = 4)</td>
<td>5.4 (n = 9)</td>
</tr>
<tr>
<td>4</td>
<td>6.3 (n = 6)</td>
<td>12.9 (n = 9)</td>
<td>9.0 (n = 15)</td>
</tr>
<tr>
<td>5</td>
<td>10.4 (n = 10)</td>
<td>10.0 (n = 7)</td>
<td>10.2 (n = 17)</td>
</tr>
<tr>
<td>6</td>
<td>12.5 (n = 12)</td>
<td>7.1 (n = 5)</td>
<td>10.2 (n = 17)</td>
</tr>
<tr>
<td>7</td>
<td>7.3 (n = 7)</td>
<td>2.9 (n = 2)</td>
<td>5.4 (n = 9)</td>
</tr>
<tr>
<td>8</td>
<td>2.1 (n = 2)</td>
<td>7.1 (n = 5)</td>
<td>4.2 (n = 7)</td>
</tr>
<tr>
<td>9</td>
<td>2.1 (n = 2)</td>
<td>1.4 (n = 1)</td>
<td>1.8 (n = 3)</td>
</tr>
<tr>
<td>10</td>
<td>1.0 (n = 1)</td>
<td>4.3 (n = 3)</td>
<td>2.4 (n = 4)</td>
</tr>
<tr>
<td>11</td>
<td>3.1 (n = 3)</td>
<td>1.4 (n = 1)</td>
<td>2.4 (n = 4)</td>
</tr>
<tr>
<td>12</td>
<td>1.0 (n = 1)</td>
<td>4.3 (n = 3)</td>
<td>2.4 (n = 4)</td>
</tr>
<tr>
<td>13</td>
<td>2.1 (n = 2)</td>
<td>0.0 (n = 0)</td>
<td>1.2 (n = 2)</td>
</tr>
<tr>
<td>14</td>
<td>0.0 (n = 0)</td>
<td>0.0 (n = 0)</td>
<td>0.0 (n = 0)</td>
</tr>
<tr>
<td>15</td>
<td>1.0 (n = 1)</td>
<td>1.4 (n = 1)</td>
<td>1.2 (n = 2)</td>
</tr>
<tr>
<td>16</td>
<td>0.0 (n = 0)</td>
<td>2.9 (n = 2)</td>
<td>1.2 (n = 2)</td>
</tr>
<tr>
<td>17</td>
<td>1.0 (n = 1)</td>
<td>0.0 (n = 0)</td>
<td>0.6 (n = 1)</td>
</tr>
<tr>
<td>18</td>
<td>0.0 (n = 0)</td>
<td>1.4 (n = 1)</td>
<td>0.6 (n = 1)</td>
</tr>
<tr>
<td>18+</td>
<td>0.0 (n = 0)</td>
<td>1.4 (n = 1)</td>
<td>0.6 (n = 1)</td>
</tr>
<tr>
<td>Total</td>
<td>100 (n = 96)</td>
<td>100 (n = 70)</td>
<td>100 (n = 166)</td>
</tr>
</tbody>
</table>

Some caries were so severe that the entire tooth was affected with inflammation and infection of the surrounding alveolar bone. The fact that many of the abscesses were untreated reflects the paucity of dental and overall medical care available to the individuals comprising the New York African Burial Ground sample (Figure 66). Table 41 summarizes the mean and standard deviations for the number of carious, abscessed, and lost teeth and total pathologies—that is, the total chance of having at least one of these three conditions. As was suggested by individual tooth percents in Tables 38 and 39, females had a higher average rate of carious teeth (5.2) compared to males (4.0) (see Table 41). Females also had lost more teeth than males (4.3 vs. 3.7, respectively), and thus females had higher rates of total pathology (10.9 vs.
9.1 teeth). On average, nearly 10 teeth (9.9, s.d. = 9.1) per permanent dentition were either lost, carious, or abscessed (Figures 67–69).

As young children are weaned onto solid foods, they lose the immunological and nutritional advantages of mother’s milk. This can be significant for marginally nourished populations for which the solid food diet is composed mainly of carbohydrates in the form of breads and cereal grains and either raw or processed sugars. Weaning and poor nutrition, coupled with little access or knowledge of dental care, initiates the disease process of caries and abscess formation, along with tooth loss (Figures 70 and 71). The frequency of dental caries and abscesses in the deciduous dentition is illustrated in Table 41.

Table 41. Dental Pathology Frequency by Sex for the Permanent Dentition of Individuals from the New York African Burial Ground

<table>
<thead>
<tr>
<th>Sex</th>
<th>No. Teeth Lost</th>
<th>No. Caries</th>
<th>No. Abscesses</th>
<th>Total Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (n = 96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>3.7</td>
<td>4.0</td>
<td>1.5</td>
<td>9.1</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>(5.4)</td>
<td>3.9</td>
<td>2.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Females (n = 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>4.3</td>
<td>5.2</td>
<td>1.4</td>
<td>10.9</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td>6.2</td>
<td>5.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Total (n = 166)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>4.0</td>
<td>4.5</td>
<td>1.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td>5.7</td>
<td>4.5</td>
<td>2.7</td>
</tr>
</tbody>
</table>
ous dentition is presented in Table 42. Because these teeth are in the mouth for a shorter length of time, the rates of dental pathology are much lower compared to the permanent teeth. For example, only two cases of dental abscessing were found. However, many teeth displayed dental cavities, including 18 percent of the upper left first deciduous molars. As with the permanent teeth, deciduous molars were more carious than single-cusped deciduous teeth.

The following section will compare dental pathologies in the New York African Burial Ground sample with other contemporary and modern samples. Tables 43 and 44 provide a comparison of the rates of dental pathologies found in the present study compared to previously published results. Statistical comparisons are not made because of variation in methods and low sample sizes. As is true for the New York African Burial Ground, the general trend appears to be greater dental pathology in females than males. Caries rates were highest in the FABC sample from Philadelphia but also high in many of these samples (see Table 43). The New York African Burial Ground results fall toward the high end of the middle of the range. Tooth loss was also highest in the FABC and free blacks from Arkansas, with the New York African Burial Ground results falling toward the middle of the range. Finally, the abscess rate was greatest in the New York African Burial Ground (see Table 43), which may be a reflection of poor dental care when compared to later populations, as well as a lack of access to any dental care due to the social inequalities.

The mean number of pathological teeth per mouth in the New York African Burial Ground versus select other samples is presented in Table 44. These data also suggest that the prevalence of dental pathologies in the New York African Burial Ground is near the average of frequencies found at other archaeological sites. New York frequencies are high compared to other eighteenth-century samples, however.

Genetic Dental Pathology

Genetic dental pathologies are inherited in the form of one or more alleles, although environmental stressors play a supporting role in their expression (Scott and Turner 1997). These include hypodontia (tooth agenesis), hyperdontia (supernumerary teeth), dental crowding, cleft palate, and abnormal tooth retention or exfoliation. Amelogenesis imperfecta, which produces distinctively severe enamel developmental defects, is
a form of hypoplasia and hypocalcification (see Chapter 8). The following section contains examples of dental genetic anomalies from the New York African Burial Ground, including dental hypodontia, dental crowding, and hyperdontia.

Subadult Dentition

One subadult, Burial 17, exhibited hypodontia of the deciduous left maxillary central incisor (Figure 72). Although this may be interpreted as exfoliation, there is no corroborating evidence that the tooth was ever present. This child was also afflicted with craniosynostosis, rickets, enamel hypoplasia and hypocalcification, and a cleft palate. Radiographic analysis of the maxilla and mandible also indicated substantial dental crowding of the permanent dentition.

Dental crowding is the only genetic pathology that affects subadults with any appreciable frequency (Figure 73). Among subadults with intact dental arcades, eight (9.9 percent) exhibited crowding of the deciduous teeth, especially the mandibular incisors. Additionally, radiographic observations indicated that all but one of the eight subadults affected also exhibited dental crowding of the permanent maxillary and mandibular incisors.
Chapter 9. Odontological Indicators of Disease, Diet, and Nutrition Inadequacy • 165

Table 42. Dental Pathology Frequency, Deciduous Dentition

<table>
<thead>
<tr>
<th>Tooth No.</th>
<th>Present</th>
<th>Absent</th>
<th>Total</th>
<th>Absent (%)</th>
<th>No. Caries</th>
<th>Caries (%)</th>
<th>No. Abscess</th>
<th>Abscess (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) rm²</td>
<td>67</td>
<td>1</td>
<td>68</td>
<td>1.47</td>
<td>7</td>
<td>10.45</td>
<td>1</td>
<td>1.49</td>
</tr>
<tr>
<td>2) rm¹</td>
<td>71</td>
<td>2</td>
<td>73</td>
<td>2.74</td>
<td>9</td>
<td>12.68</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3) rc¹</td>
<td>64</td>
<td>1</td>
<td>65</td>
<td>1.54</td>
<td>7</td>
<td>10.94</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4) ri²</td>
<td>62</td>
<td>3</td>
<td>65</td>
<td>4.62</td>
<td>5</td>
<td>8.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5) ri¹</td>
<td>59</td>
<td>5</td>
<td>64</td>
<td>7.81</td>
<td>7</td>
<td>11.86</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6) li¹</td>
<td>56</td>
<td>5</td>
<td>61</td>
<td>8.20</td>
<td>6</td>
<td>10.71</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7) li²</td>
<td>60</td>
<td>2</td>
<td>62</td>
<td>3.23</td>
<td>1</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8) lc¹</td>
<td>64</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>3</td>
<td>4.69</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9) lm¹</td>
<td>72</td>
<td>1</td>
<td>73</td>
<td>1.37</td>
<td>13</td>
<td>18.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10) lm²</td>
<td>71</td>
<td>—</td>
<td>71</td>
<td>—</td>
<td>11</td>
<td>15.49</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11) lm₁</td>
<td>75</td>
<td>—</td>
<td>75</td>
<td>—</td>
<td>10</td>
<td>13.33</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12) lm₁</td>
<td>83</td>
<td>1</td>
<td>84</td>
<td>1.19</td>
<td>10</td>
<td>12.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13) lc₁</td>
<td>68</td>
<td>1</td>
<td>69</td>
<td>1.45</td>
<td>3</td>
<td>4.41</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14) li₁</td>
<td>60</td>
<td>5</td>
<td>65</td>
<td>7.69</td>
<td>1</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15) li₁</td>
<td>56</td>
<td>6</td>
<td>62</td>
<td>9.68</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16) ri₁</td>
<td>52</td>
<td>6</td>
<td>58</td>
<td>10.34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17) ri₁</td>
<td>57</td>
<td>5</td>
<td>62</td>
<td>8.06</td>
<td>2</td>
<td>3.51</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18) rc₁</td>
<td>63</td>
<td>2</td>
<td>65</td>
<td>3.08</td>
<td>4</td>
<td>6.35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19) rm₁</td>
<td>78</td>
<td>1</td>
<td>79</td>
<td>1.27</td>
<td>11</td>
<td>14.10</td>
<td>1</td>
<td>1.28</td>
</tr>
<tr>
<td>20) rm₁</td>
<td>80</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>12</td>
<td>15.00</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Key: (1) RM² = upper right second molar; (2) RM¹ = upper right first molar; (3) RC¹ = upper right first canine; (4) RI¹ = upper right second incisor; (5) RI² = upper right first incisor; (6) LI¹ = upper left first incisor; (7) LI² = upper left second incisor; (8) LC² = upper left first canine; (9) LM² = upper left second molar; (10) LM¹ = upper left first molar; (11) LM₁ = lower left second molar; (12) LM₁ = lower left first molar; (13) LC₁ = lower left first canine; (14) LI₁ = lower left second incisor; (15) LI₁ = lower left first incisor; (16) RI₁ = lower right first incisor; (17) RI₂ = lower right second incisor; (18) RC₁ = lower right first canine; (19) RM₁ = lower right first molar; (20) RM₂ = lower right second molar.

Adult Dentition

Observable genetic dental pathologies were extremely rare in adults. Only one adult exhibited hypodontia; Burial 176, a 20–24-year-old male, exhibited alveolar resorption, and his relatively young age, with no tooth loss or caries formation, confirms the assessment of tooth agenesis (Figure 74).

Only two individuals exhibited hyperdontia. Burial 12, a 35–45-year-old female, had a supernumerary tooth adjacent to lingual side of the maxillary left second premolar. The only other genetically caused dental pathology present in adults was dental crowding. Dental crowding was exhibited in five (0.5 percent) of the adults, specifically in the mandibular incisors.

Conclusions

Overall, we found a high rate of tooth loss, caries, and abscessed teeth. The rates of pathology, especially of dental abscesses, were high in comparison to other
groups of the same period. Females generally had a higher rate of dental pathologies than males.

In addition to other hardships, it appears that individuals from the New York African Burial Ground had to endure the pain of dental pathologies and possibly changes in diet because of their decreased ability to masticate. The overall high rate of dental pathology may reflect deficiencies in diet and dental hygiene. These results provide additional evidence of poor dietary regimens, unhealthy living conditions, and lack of dental care that characterized the quality of life for the majority of those who lived in bondage.

Table 43. New York African Burial Ground Dental Pathology Mean Comparison with other Eighteenth- and Nineteenth-Century Samples (Rathbun and Steckel 2002)

<table>
<thead>
<tr>
<th>Site/Sex</th>
<th>No. Teeth Lost</th>
<th>No. Carious Teeth</th>
<th>No. Abscesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Burial Ground, New York</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>Remley Plantation, South Carolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Bellevue Plantation, South Carolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>Charleston elites, Charleston, South Carolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>FABC, Philadelphia, Pennsylvania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>9</td>
<td>1.0</td>
</tr>
<tr>
<td>Black soldiers, South Carolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Blacks, Arkansas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>Female</td>
<td>8</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>Blacks, Texas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Rochester Poorhouse, New York</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>6</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 44. New York African Burial Ground Dental Pathology Mean Comparison with Other Eighteenth- and Nineteenth-Century Samples (modified from Kelley and Angel 1987:204)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dental Pathologies per Mouth per Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eighteenth Century</td>
</tr>
<tr>
<td>Female</td>
<td>11.8 (9.8) (n = 12)</td>
</tr>
<tr>
<td>Male</td>
<td>8.0 (7.7) (n = 16)</td>
</tr>
<tr>
<td>Male and female</td>
<td>9.6 (n = 28)</td>
</tr>
</tbody>
</table>

Note: Standard deviations are in parentheses.

Figure 72. Radiograph of incisor hypodontia in a subadult aged 4–6 years (Burial 17).

Figure 73. Dental crowding in a subadult aged 5–7 years (Burial 39).

Figure 74. Maxillary molar agenesis in a male aged 20–24 years (Burial 176).
Figure 75. An example of a supernumerary tooth in a female aged 35–45 years (Burial 12).
CHAPTER 10

Osteological Indicators of Infectious Disease and Nutritional Inadequacy

Introduction

The present chapter investigates the prevalence of infectious diseases and nutritional inadequacies in the New York African Burial Ground sample, as represented in bone. A broad range of skeletal indicators of pathology was assessed in the Cobb Laboratory. Diagnoses of specific diseases represented by skeletal indicators were usually attempted, as per the long-standing standards of paleopathologists. Data were also gathered in accord with the more strictly descriptive criteria of the new Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker 1994). Indeed, the pathology coding section of Standards is clearly the most novel and complex feature of the guide, and we think it constitutes a significant forward step in paleopathologic methodology. Yet, as one of the first projects to use and test the Standards in their entirety, we found the strict pathology coding approach to be somewhat cumbersome and time-consuming. To mitigate this problem, we developed pathology codes for computerization that saved time and effort without the loss of useful information. Therefore, the skeletal-pathology and nonmetric-trait computer database developed at the New York African Burial Ground Project is a simplified version of the pathology portion of the Standards (Buikstra and Ubelaker 1994:107–158).

The modifications of the New York African Burial Ground pathology database simply improved efficiency for coding complex descriptions of the type, appearance, severity, and location of pathologies and interesting anatomical features for computerization and statistical manipulation. The information captured by these codes was consistent with the Standards, as well as with the previous protocol of the Paleopathology Association and our own and other researchers’ earlier approaches to data collection. For example, we established that severity descriptors such as “trace” (Kelley and Angel 1987) or “slight” (Blakey et al. 1994) are close to the Standard’s use of “barely discernable,” whereas observations of greater magnitude such as “moderate, severe, or extreme” easily fall within the “clearly present” category of the Standards. Indeed, this simple two-tier severity (or clarity) rating of the Standards, barely discernable compared to clearly present, accomplishes its goal of classification that many specialists can agree on and that can be compared across many studies, including those conducted before the creation of the new standards. Because our project developed during this methodological transition, data were gathered deliberately to bridge the old and new methodologies. Pathology assessments were rendered as text that includes many diagnoses as well as descriptors that were converted into four-letter codes. In the future, these bench-top diagnoses should be of interest, and the descriptive coding will provide the nearly raw data from which alternative diagnoses may be made. In this chapter, we have relied principally on the use of our coded data.

This adapted coding system facilitated direct synthesis of pathology assessments, especially the ability to combine nominal, observed characteristics of an individual or group and combine these to create more complex diagnoses. This allowed us to produce clinically meaningful categories of pathology from the wealth of descriptors in our database (16,635
observations of pathology). Care was taken to retain the level of specificity, clear terminology, and emphasis on description (rather than specific pathological diagnoses) that was emphasized in the Standards (Buikstra and Ubelaker 1994:107–108).

It should be noted that some distinctions such as those made between active and healed, and “reactive woven bone” and “sclerotic” lesions, required considerable subjective evaluation (Figures 76–79). As with other qualitative descriptions, we feel that the large number of observations made in this study substantially reduces the effects of errors due to possible misidentification or miscoding of marginal cases. The statistical associations found between plausibly associated variables support a swamping effect on any marginal errors.

Three hundred six of a total of 419 individuals in the New York African Burial Ground exhibited at least one identifiable pathology or nonmetric skeletal trait. An additional 52 individuals were assessed although no abnormalities were observed. It must be noted, however, that this number includes individuals who were very poorly preserved but whose “observable” skeletal elements or fragments did not present evidence of abnormalities. Sixty-one of 419 individuals were not assessed for pathologies or nonmetric skeletal traits; the majority of these (n = 55) were too poorly preserved to be evaluated. Of these 61, 5 individuals were quarantined because of potentially harmful fungi found in pedestal soil and therefore could not be assessed. We also did not assess Burial No. 100, a young subadult in poor condition, who remained in an earthen pedestal intermingled with its badly decayed coffin. Therefore, for purposes of this study, we used and analyzed a total sample size of 358 individuals (Table 45). This sample included 105 subadults younger than 15 years old, 237 adults 15 years old or older (115 males, 85 females, 37 adults of indeterminable sex, and 16 individuals for whom age and sex were undeterminable). Although these sample sizes will be used in general statements regarding disease prevalence, in cases where a more restricted sample size was warranted (e.g., numbers of investigated crania for porotic hyperostosis), sample sizes were generated with the aid of the skeletal inventory database.

The central focus of this chapter is the prevalence of general and specific indicators of infectious disease and nutritional inadequacy observed in the New York African Burial Ground skeletal sample. General infectious periostitis is considered first. We report prevalence of cases, healed versus active lesions, and the age and sex distributions of those affected. These data are followed by comparative analysis with data from the FABC, a nineteenth-century free urban sample (Rankin-Hill 1997); 38CH778, a southern plantation population, 1840–1870 (Rathbun 1987); and Cedar Grove, a post-Reconstruction rural population (Rose and Santeford 1985) (Table 46). Following discussion of general infectious disease, the occurrence of specific disease indicators will be considered, with specific emphasis on treponemal disease. We then combine the New York African Burial Ground skeletal data with historical information and discuss the potential type, and/or types, of treponemal infection present in this sample. These findings are compared to the high rates of syphilis found at the Waterloo Plantation population from Suriname (Khudabux 1991).

The potential for metabolic disruption resulting from nutritional inadequacy, as exhibited by the presence of porotic hyperostosis, will be addressed in the second section. The rates of porotic hyperostosis exhibited in the individuals of the New York African Burial Ground will once again be compared primarily to those

1 We refer to observable remains as the precise technical category of bones well-enough preserved to give clear evidence of the presence or absence of pathology. Observable bones in the 52 individuals showed no pathology. Yet, these were skeletons with few observable bones, and many bones were in such poor condition as to provide no information, possibly hiding additional pathologies. We treat them nonetheless as the sample of nonpathological or reasonably healthy persons.

2 As entirely unobservable these individuals cannot be shown to be healthy or pathological and are removed from our statistical treatment altogether.

1 For purposes of this study, individuals whose sex determination was uncertain, i.e., identified as “possible male” or “possible female,” were included in the “male” and “female” categories. One individual, Burial 358, was identified as a female; however, an age was undetermined. This individual was included as an adult female for purposes of generating a population size, but was not included in any assessments of pathologies discussed in this chapter.

With respect to age, 5-year demographic age groups (see Table 45) were used when discussing population prevalence of a particular anomaly. However, when sample sizes warranted, e.g., subadults, larger groupings were used. Different groupings were also used in interpopulation comparisons because of inconsistent age grouping strategies. The only difficulty encountered was individuals with a composite age of 15. In this chapter, individuals with a composite age of 15 are included as adults, and as such are not included in the subadult comparisons. It was found that although this exclusion had an effect on the frequencies generated, it did not change overall conclusions made in this chapter.
encountered within the Cedar Grove, 38CH778, and FABC samples. The possible presence of rickets or vitamin-D deficiency will be considered based on the presence of bilateral medial-lateral bowing of long bones of the lower limbs. The third and final section will assess the interaction of infection and nutritional inadequacy by investigating the co-occurrence of porotic hyperostosis and periostitis. Information from the New York African Burial Ground is then compared with available data from Cedar Grove and FABC.
Overall, this chapter relates the New York African Burial Ground paleopathology to the New York historical documentation. Therefore, the chapter tests the historical conclusions (see Medford, Brown, Carrington, et al. 2009b) concerning the exposure of enslaved Africans to infectious pathogens in New York and prior to their involuntary transport to the New World.
Table 45. Age and Sex of Assessed Sample from NYABG

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>Sex</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Unknown</td>
</tr>
<tr>
<td>0.00–.49</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>0.50–.99</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1.0–1.9</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2.0–2.9</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.0–3.9</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4.0–4.9</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5.0–5.9</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.0–6.9</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7.0–7.9</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8.0–8.9</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9.0–9.9</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10.0–10.9</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11.0–11.9</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12.0–12.9</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13.0–13.9</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14.0–14.9</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Subadult (no specific age assigned)</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>15.0–19.9</td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20.0–24.9</td>
<td></td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>25.0–29.9</td>
<td></td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>30.0–34.9</td>
<td></td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>35.0–39.9</td>
<td></td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>40.0–44.9</td>
<td></td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>45.0–49.9</td>
<td></td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>50.0–54.9</td>
<td></td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>55+</td>
<td></td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Adult (no specific age assigned)</td>
<td></td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Undetermined</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>115</td>
<td>85</td>
</tr>
</tbody>
</table>
Infectious Disease

Assessment of skeletal pathology observed in the individuals from the New York African Burial Ground yielded numerous cases of bony response to infectious agents. The most common of these lesions was abnormal bone found on the outer, or periosteal, surface of skeletal elements. This abnormality, commonly termed periostitis or periostosis, can be the result of specific disease (e.g., direct bone infection or trauma) or as part of a broader expression of infectious disease (e.g., treponemal infection) (Ortner 2003:207–208). With the possible exception of traumatic periostitis, the case can be made that most periostitis is associated with an infectious agent. For the purposes of this chapter, the presence of periostitis is initially discussed as a general indicator of infectious disease. In the subsequent discussion of treponemal disease, periostitis is considered a specific expression of this disease.

Over half, 200 (55.9 percent) of the individuals in the New York African Burial Ground sample were affected by generalized infectious disease or periostitis (Tables 47 and 48). All but 15 of these individuals, 92.5 percent, exhibited more than one infectious locus, including 44 subadults and 153 adults, or 41.9 percent and 64.6 percent, respectively, of these age groups. Among subadults, femora were the most common element affected, followed by the humeri and tibiae. In contrast, among adults, the tibiae were the most commonly impacted, followed by the femora and fibulae.

Regarding severity, among those 200 that exhibited periostitis, 74 (37.0 percent) individuals had at least one lesion that was assessed as “clearly present” (as opposed to “barely discernable” or no severity determined). Among subadults, 3 of the 44 (6.8 percent) exhibited at least one periostitic lesion that was assessed as clearly present. Adults displayed a significantly higher proportion of individuals with clearly present lesions; this included 68, or 44.4 percent, of those with periostitis. Periostitis prevalence varied little between males and females—81 (70.4 percent) in males and 60 (70.6 percent) in females. However,

Table 46. African Diaspora Skeletal Series Discussed in this Chapter

<table>
<thead>
<tr>
<th>Site/Location</th>
<th>Time Periods</th>
<th>Total Number of Skeletons</th>
<th>Life Style</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton, Barbados</td>
<td>1660–1820</td>
<td>104</td>
<td>plantation enslaved</td>
<td>Jacobi et al. 1992</td>
</tr>
<tr>
<td>New York African Burial Ground</td>
<td>1694–1794</td>
<td>419</td>
<td>urban enslaved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(358 assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for pathology)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Peter Street Cemetery, New</td>
<td>1720–1810</td>
<td>29</td>
<td>urban enslaved</td>
<td>Owsley et al. 1987</td>
</tr>
<tr>
<td>Orleans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catoctin Furnace, Maryland</td>
<td>1790–1820</td>
<td>31</td>
<td>industrial enslaved</td>
<td>Kelley and Angel 1987</td>
</tr>
<tr>
<td>Waterloo Plantation, Suriname</td>
<td>1793/1796–1861</td>
<td>25</td>
<td>plantation enslaved</td>
<td>Khudabux 1991</td>
</tr>
<tr>
<td>FABC—8th and Vine, Philadelphia</td>
<td>1821–1843</td>
<td>144</td>
<td>ex-slaves/freeborn</td>
<td>Rankin-Hill 1997</td>
</tr>
<tr>
<td>38CH778, South Carolina</td>
<td>1840–1870</td>
<td>36</td>
<td>plantation enslaved</td>
<td>Rathbun 1987</td>
</tr>
<tr>
<td>Cedar Grove Cemetery, Arkansas</td>
<td>1890–1927</td>
<td>79</td>
<td>rural farmers</td>
<td>Rose and Santeford 1985</td>
</tr>
</tbody>
</table>

Note: Adapted from Rankin-Hill 1997:47.

a n = 29; 13 African Americans.

4 Ortner (2003:51–52) noted that periostosis, rather than periostitis, is the “more appropriate term” for such conditions; however, he continues to use the more common periostitis in his most recent volume because there is less common usage of periostosis in the medical literature.

5 However, it could be argued that many cases of trauma-related periostitis may be the result of secondary infection.

6 A p value of .05 was used in all statistical tests to determine significance.
males did have a statistically significant higher incidence of individuals with lesions classified as clearly present. Forty-four, or 54.3 percent, of the males with periostitis, showed clearly present lesions, compared to 21, or 35.0 percent, of the females.

Of the 200 individuals with periostitis in the New York African Burial Ground, 126 (63.0 percent) exhibited only healed lesions, 18 (9.0 percent) displayed only active lesions, and 34 (17.0 percent) had a combination of both active and healed lesions. Among adults with periostitis, 113 (73.9 percent) displayed healed periostitis; 2 (1.3 percent) displayed active lesions, and 30 (19.6 percent) had both active and healed lesions. Differentiated by sex, adult males and females displayed only slight differences (not statistically significant) in the status of periosteal lesions: healed—62 (76.5 percent) for males and 42 (70.0 percent) for females; active—1 (1.2 percent) in males and 0 in females; and both active and healed—16 (19.8 percent) for males and 13 (21.7 percent) for females. In subadults, of those who had periostitis, 10 (22.7 percent) exhibited healed lesions, 16 (36.4 percent) displayed active lesions, and 4 (9.1 percent) had a combination of both healed and active lesions. Not surprisingly, those under 1 year of age expressed only active periostitis, having died before observable healing could have occurred. Compared to adults (p < .001), those who died as children were prone to dying during their first active infection that was sufficiently severe to leave bony evidence. The dental developmental defects discussed in Chapters 8 and 12 suggest that the majority of older children had experienced bouts of disease and nutritional stress earlier in their lives that left evidence in the disrupted development of teeth, if not in the bone. As subsequent discussion explores, these pathology indicators in bone represent the “tip of an iceberg” of disease and ill health that for various reasons will often leave the skeleton unaffected.

When compared with periostitis rates for the FABC (Rankin-Hill 1997), 38CH778 (Rathbun 1987), and Cedar Grove (Rose and Santeford 1985), the New York African Burial Ground sample exhibited similar, slightly lower infection frequencies than found in the populations at 38CH778 and Cedar Grove, though

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>n</th>
<th>Total (%)</th>
<th>Clearly Present (%)</th>
<th>Active (%)</th>
<th>Healed (%)</th>
<th>Both (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadult</td>
<td>105</td>
<td>41.9</td>
<td>6.8</td>
<td>36.4</td>
<td>22.7</td>
<td>9.1</td>
</tr>
<tr>
<td>Adult</td>
<td>237</td>
<td>64.6</td>
<td>44.4</td>
<td>1.3</td>
<td>73.9</td>
<td>19.6</td>
</tr>
<tr>
<td>Female</td>
<td>85</td>
<td>70.6</td>
<td>35.0</td>
<td>—</td>
<td>70.0</td>
<td>21.7</td>
</tr>
<tr>
<td>Male</td>
<td>115</td>
<td>70.4</td>
<td>54.3</td>
<td>1.2</td>
<td>76.5</td>
<td>19.8</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>55.9</td>
<td>37.0</td>
<td>9.0</td>
<td>63.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Note: “n” equals the number of individuals assessed for pathology. Status values represent the percentage in each group of those with evidence of generalized infectious disease; “missing” percentages represent those whose lesions were unassessed/assessable for status.

*Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

<table>
<thead>
<tr>
<th>Table 47. Occurrence and Status of Generalized Infectious Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/Sex Category</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Subadult</td>
</tr>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 48. Generalized Infectious Disease Statistical Testing, Intra-Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Infectious Disease Presence/Absence</td>
</tr>
<tr>
<td>Subadult/Adult</td>
</tr>
<tr>
<td>Male/Female</td>
</tr>
</tbody>
</table>

Note: Conditions for 2 by 3 contingency table were not met, χ² reflects the collapsing of “Active” and “Both” categories.
periostitis rates were higher than in the FABC population (Figure 80, Table 49). However, differences in rates found between 38CH778 and the New York African Burial Ground were not found to be statistically significant. When differentiated by age category, it was found that the New York African Burial Ground subadult infection frequency was intermediate between the high rates reported in Cedar Grove and 38CH778—although not statistically significant in the case of 38CH778—and the lower rate observed in FABC. Among adults, rates of infection at the New York African Burial Ground were similar to the high prevalence found at Cedar Grove and in 38CH778. Females in the Cedar Grove and the New York African Burial Ground samples had nearly identical periostitis prevalence figures (approximately 71 percent).

Although not statistically significant, incidence figures for males from Cedar Grove (93 percent) exhibited a 22 percent higher incidence of periostitis than males from the New York African Burial Ground (70.4 percent). The periostitis rate among males from the New York African Burial Ground was most comparable to the rates observed in the 38CH778 South Carolina plantation population (69 percent).

Table 49. Generalized Infectious Disease Statistical Testing, Inter-Population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>(\chi^2)</td>
<td>(p)</td>
<td>(\chi^2)</td>
<td>(p)</td>
</tr>
<tr>
<td>Subadult</td>
<td>43.722</td>
<td><.001</td>
<td>12.676</td>
<td><.001</td>
</tr>
<tr>
<td>Adult</td>
<td>48.116</td>
<td><.001</td>
<td>35.443</td>
<td><.001</td>
</tr>
<tr>
<td>Female</td>
<td>38.788</td>
<td><.001</td>
<td>32.724</td>
<td><.001</td>
</tr>
<tr>
<td>Male</td>
<td>22.856</td>
<td><.001</td>
<td>13.746</td>
<td><.001</td>
</tr>
<tr>
<td>Total</td>
<td>>50.000</td>
<td><.001</td>
<td>48.654</td>
<td><.001</td>
</tr>
</tbody>
</table>

a Yeats Correction for Continuity used because of small “expected” cell values.
The distribution of subadults from the New York African Burial Ground sample that displayed generalized infection closely mirrors the overall age structure for this subgroup (Figure 81). The disparity observed in the two age distributions may reflect older individuals that survived previous episodes with infectious disease versus younger individuals who may have perished before skeletal involvement occurred. Interestingly, all individuals (n = 9) younger than 1 year exhibited only active lesions. It is in the older 1.0–4.9 age group in which the first cases of healed lesions were encountered—two with only active lesions, five with only healed lesions, and two with a combination of healed and active lesions. Comparing individuals with periostitis in different age groups, an increase in prevalence encountered after the first year (Figure 82) may reflect individuals who survived earlier insults. The rate of infection appears to decrease once again in subadults after 5 years of age. Indeed, our mortality data show a decline and stab-
lization in age-specific deaths among older children. Having weathered the vulnerable circumstances of infancy and weaning, older children usually did not see a major wave of new stresses until adolescence and young adulthood.

Subadult periostitis rates for the New York African Burial Ground sample fall between those from Cedar Grove and FABC in most age categories (Figure 83). The proportions of periostitis in the New York African Burial Ground are consistently higher than those found in FABC and considerably lower than Cedar Grove. However, in the oldest age group the trend changes slightly, with the New York African Burial Ground 6–15-year-olds having a 4 percent higher rate (44.4 percent) of periostitis than individuals in the same age group from Cedar Grove (40 percent).

Males and females in the New York African Burial Ground sample presented generalized infection patterning (Figure 84) that mirrors their sex-specific mortality profiles. The frequency of periostitis is greater...
than 50 percent in most male and female age groups throughout the adult segment of the population (Figure 85). Figure 85 shows the greatest peaks in females at ages 35–39.9 and 55+, followed by lesser peaks in age groups 20.0–24.9 and 50.0–54.9. Both males and females display another peak at 55+, although this would not be unexpected given that this age group represents the potential accumulation of a lifetime of skeletal indicators of generalized infection.

When comparing these adult proportions to those of FABC and Cedar Grove, it is observed that, like the subadult pattern, the New York adults exhibited frequencies of infectious disease indicators that fell between these two examples (Figures 86 and 87). Once again the rates of periostitis among the adults at the New York African Burial Ground were higher than FABC, however, not as extreme as the rates found in the Cedar Grove population for most age groups. Only in the female 30.0–39.9 age range did the rate of periostitis in the New York African Burial Ground (76.0 percent) exceed the extraordinary rates reported for Cedar Grove (55 percent).

Other infectious processes observed in the New York African Burial Ground series include meningeal reactions. Meningeal reactions, as used in this study, refer to both hemorrhagic and inflammatory meningeal reactions (Schultz 2003:93–94). We would like to underscore at this time no diagnoses of specific meningeal diseases have been made. The generalized diagnosis of meningeal reaction was made in seven individuals: six were subadults younger than 6 years old and one was a 25–35-year-old female. The occipital bone was most commonly affected, although lesions were also found on the parietals and the frontal.

Osteomyelitis, abnormal bone formation possibly associated with bacterial infection, (Ortner 2003:181) was also observed within the New York African Burial Ground series. This infectious process was identified in five adults: two females (17–21 and 50–70 years old), two males (40–50 and 50–60 years old), and one individual of indeterminate sex and age. At least two elements were affected in all five individuals; however, there was no clear patterning of lesion locations suggestive of a specific pathogen in these individuals. The most severe case was found in Burial 32, a male 50–60 years old, who displayed systemic osteomyelitis (Figures 88 and 89).

A third example of specific infection is a constellation of pathologies that may reflect treponemal infection (Figure 90), including “saber shin,” a feature associated with congenital syphilis and bejel (Ortner and Putschar 1981:210; Ortner 2003:278, 294; Steinbock 1976:102) or “boomerang leg” yaws reactions.
We observed no obvious evidence of “stellate scars” (“caries sicca”), frequently associated with the gummatous cranial lesions of venereal syphilis (Steinbock 1976:129) or yaws (Ortner 2003:276) in the New York African Burial Ground sample. In total, 11 individuals (4 percent of those with observable tibiae) presented evidence of saber shin (Table 50). All but 1 of these were adult males; 8 were between the ages of 30.0 and 54.9 and 2 were of unknown adult age. The remaining individual was a skeleton of unknown sex and undeterminable age.

* These two similar conditions, saber shin and boomerang leg, will be referred to singularly as saber shin for the remainder of the chapter.
Figure 88. Osteomyelitis in the right anterior distal femur (Burial 32, 50–60-year-old male).

Figure 89. Osteomyelitis in the right anterior distal femur, magnified (Burial 32, 50–60-year-old male).
From this baseline information, a database script was created to search for additional individuals that were not initially diagnosed with “saber shin” explicitly but whose skeletal changes were consistent with this diagnosis. The suite of descriptors we sought included periostitis, anterior bowing, medial-lateral flattening (platycnemia), and/or fusiform expansion of the diaphysis/anterior crest. This combination of indicators (with the possible exception of the fusiform diaphysis) is definitive of “saber shin” and may be taken as an exhaustive sample of possible cases. This search yielded an additional 29 individuals that could...
possibly have had treponemal infection, increasing the total to 40, or 16.1 percent, of individuals with assessable tibiae. None of these individuals appears to have been under the age of 15; however, two were of unknown sex and undeterminable age. This would correspond to 21.0 percent of those being affected. This number includes 7 females (10.1 percent of the observable females) and 28 males (31.5 percent of the observable males). Statistical testing found this difference to be significant ($\chi^2 = 10.241, p = .001$). The age profile for these individuals exhibits the highest frequencies of those affected between 30.0 and 54.9 years (males) and 30.0–34.9 years (females) (Table 51). These frequencies mirror the mortality curve of the population and may reflect age-specific risk.

These 40 individuals were then assessed for the presence of lytic and blastic lesions to evaluate lesion patterning and to assist in differential diagnosis between various treponemal infections. The tibia was by far the most commonly affected element, followed by the femur and fibula, sequentially. Overall, in most individuals ($n = 30$, or 75.0 percent) the lesions appeared healed, 1 person (2.5 percent) exhibited only active infection, and 9 individuals (22.5 percent) had a combination of active and healed lesions. Possible evidence of involvement in the facial area, which may be expressed in yaws, venereal syphilis, or congenital syphilis (Ortner 2003:277, 283, 293), was detected in 7 individuals (17.5 percent). However, as noted previously, no stellate scars were detected on their cranial vaults.

Although the identification of specific treponemal diseases cannot be made with any certainty, some inferences can be made based on (1) the region where these individuals were living both prior to and during their enslavement in New York, (2) lesion patterning, and (3) historical documents. The location of New York, as well as the African locations from which these people originated, seems to effectively rule out the presence of endemic syphilis (bejel) and pinta. Endemic syphilis, although found in Africa, is typically located in arid climates in the Old World (Ortner and Putschar 1981:180; Steinbock 1976:138).

Pinta, which only impacts the skin of the affected individual, is found in tropical areas of the New World (Ortner and Putschar 1981:180; Steinbock 1976:91). This would limit possible sources of treponemal infection to yaws, venereal syphilis, and congenital syphilis.10

Table 51. Demographic Profile of Occurrence of Treponemal Infection Indicators in the NYABG Population

<table>
<thead>
<tr>
<th>Age Category, in Years</th>
<th>Male</th>
<th>Female</th>
<th>Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0–19.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>20.0–24.9</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>25.0–29.9</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>30.0–34.9</td>
<td>4</td>
<td>4</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>35.0–39.9</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>40.0–44.9</td>
<td>3</td>
<td>1</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>44.0–49.9</td>
<td>5</td>
<td>—</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>50.0–54.9</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>55 +</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>“Adult”</td>
<td>5</td>
<td>—</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Total series</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>38</td>
</tr>
</tbody>
</table>

Although the potential for congenital transmission of yaws has recently been discussed (Ortner 2003:277), it is unclear at this time how this form of congenital treponemal infection can be differentiated from noncongenital yaws or other treponemal infections.

The apparent absence of stellate scars, often associated with venereal syphilis, would seem to argue

10 Although the potential for congenital transmission of yaws has recently been discussed (Ortner 2003:277), it is unclear at this time how this form of congenital treponemal infection can be differentiated from noncongenital yaws or other treponemal infections.
against the presence of this form of treponemal infection (Ortner and Putschar 1981:188–190; Steinbock 1976:129). This paucity of classic evidence of venereal syphilis is especially telling given the large size of the observable sample. Only one individual, Burial 230 (55–65-year-old female), exhibited a cranial lesion even slightly similar to a stellate scar; however, the lesion lacked some of the diagnostic characteristics of such lesions (Figure 91). Another individual, Burial 418 (30–55-year-old male), exhibited lytic lesions that could be interpreted as cloacae associated with venereal syphilis (Figure 92). Furthermore, although most, if not all, individuals discussed here were of sexually mature age, the presence of the saber shin anomaly would seem to suggest involvement during their earlier growth and development.

Thus, the presence of the saber shin anomaly would suggest either congenital syphilis or yaws (Ortner and Putschar 1981:180, 210; Ortner 2003:275, 294; Steinbock 1976:102, 145). Furthermore, if congenital syphilis and yaws are considered the primary possibilities, it can be argued that onset occurred prior to arrival in New York. The historical documentation for this period suggests that venereal syphilis was rare in the regions of Africa where persons were being enslaved for transportation to the Americas (see Medford, Brown, Carrington, et al. 2009b). This reality, in conjunction with the fact that most women were
brought directly from Africa to New York, may reduce the frequency of venereal syphilis in this segment of the population. The high proportion of females to males in New York, a marked contrast to the Caribbean, would also reduce the accelerated contagion found in the Caribbean where a small proportion of females, often sexually exploited by slaveholders while sexually active with African men, could rapidly spread venereal disease to African compatriots (see Chapter 7 for discussion of sex ratios). However, New York males were often being brought from the Caribbean where venereal syphilis was known to have spread to substantial numbers of enslaved Africans.

These two trends together may help explain the disparity of treponemal infection that is seen in the sex distribution in the population of the New York African Burial Ground. If the dearth of lesions indicative of sexually acquired syphilis suggests a limited number of individuals in the population with this disease, then infection by congenital syphilis (from mothers at or before birth) may be coming from an affected external population. Fundamentally, congenital syphilis in a community requires venereal transmission of the disease in the community where its members were born in order for it to persist. This possibility would point mainly toward adults who were born in the Caribbean. Furthermore, if there was substantial venereal syphilis in colonial New York, the rates of the congenital disease among African adults would have been much attenuated by the very high mortality of infants that constituted a barrier to the proliferation of congenital disease.

On the other hand, this pattern of treponemal indicators may also point directly to yaws among African-born individuals. Yet, the temperate climatic zone of New York would not have been conducive to the transmission of this tropical disease. The fact that captives were being imported continuously, coupled with mortality and low fertility (see Chapter 13), supports the inference that high levels of yaws could have been sustained in New York.

Most of these infections may well have been yaws. The presence of yaws in North America is noted in historical documents (see Medford, Brown, Carrington, et al. 2009b). Yaws was also the focus of a court case in New York in which an enslaved African was found to have the disease after her purchase (see Medford, Brown, Carrington, et al. 2009b). Still, if the presence of yaws was used as a reason against purchase, then it is conceivable that this undesirable condition could lead to a slaveholder avoiding afflicted individuals, thus possibly creating a reduction in the rates of disease in the population.

Whatever the nature of treponemal disease in the New York African Burial Ground, it is clear that the associated infection rates were neither as severe nor pervasive as those found in the Waterloo Plantation sample from Suriname (Khudabux 1991), where 56 percent were diagnosed as having treponemal infection, specifically venereal and congenital syphilis. This rate is much higher than the possible 16.1 percent found overall in the New York African Burial Ground sample, or the 21.0 percent observed in the adults. The vastly different sample sizes, 25 individuals at Waterloo Plantation versus the 249 individuals with observable tibiae discussed here, may influence the overall prevalence of infected persons. However, it must be noted that three individuals in the smaller Waterloo Plantation exhibited diagnostic stellate scars on the crania, whereas the New York African Burial Ground, a much larger series, had no definitive evidence of these lesions.11

Nutritional Inadequacy

The presence of porotic hyperostosis and diploic thickening were commonly found in the individuals of the New York African Burial Ground. The *Standards* operationally defines porotic hyperostosis as cranial pitting; however, evidence of thickened diploe was also included in this study as an important characteristic of porotic hyperostosis. Although often associated with anemia, particularly with iron deficiency anemia, current practice cautions against a direct correlation between anemia and porotic hyperostosis (Ortner 2003:55). Other disease processes that are implicated as possible causes of porotic hyperostosis include the nutritional disorders of scurvy and rickets, and infection (Ortner 2003:56, 383–418). At this time, radiographic data have not been investigated for the purpose of differential diagnosis. Furthermore, cranial cross-sectional data, although potentially informative in this regard, were not collected at the New York African Burial Ground.

11 Jacobi et al. (1992) reported three cases of possible congenital syphilis (based on dental criteria) in the Newton Plantation sample. These three cases equated to 3.8 percent of the sample, from which the authors estimated an actual congenital syphilis rate of approximately 10 percent for the population (Jacobi et al. 1992:153–154). See the dental pathology chapter (see Chapter 11) for a thorough discussion of possible dental indicators of treponemal infection.
An association of porotic hyperostosis observed in the New York African Burial Ground sample with metabolic dysfunction due to inadequate nutrition (e.g., iron deficiency anemia, rickets, and scurvy) is not unexpected, given the stresses associated with enslavement. Genetic anemia, although potentially present, should be limited in expression. The high rate of mortality associated with sickle cell anemia, particularly prior to modern medical intervention, would preclude an individual’s representation in this population past adolescence. Also, the low prevalence, 2–3 percent, of sickle cell anemia in Afro-Caribbean and West African populations (Serjeant 1981) would suggest a similar low incidence in the New York African Burial Ground. Infection as a possible source of porotic hyperostosis serves as the most likely confounding factor. Future studies that incorporate radiographic data will aid in the differential diagnosis of cases of porotic hyperostosis. For the purposes of this study, porotic hyperostosis is used as a general indicator of nutritional inadequacy.

The presence of nutritional inadequacy, as represented by porotic hyperostosis observed in crania, is presented in Figures 93–95 and Tables 52 and 53. Almost half—130, or 47.3 percent—of the 275 observable crania exhibited at least one occurrence of porotic hyperostosis. Male and female adults (93, or 50.5 percent) had a higher, although not statistically significant, incidence of this pathology than the subadults (35, or 39.8 percent). Two individuals were adults of indeterminate sex. Among the adults able to be sexed, adult males displayed a higher proportional rate of porotic hyperostosis (55, or 57.9 percent) than females (32, or 43.8 percent), although this was also not statistically significant.

Healed lesions were observed in 74 (88.1 percent) of individuals with porotic hyperostosis. Adults (59, or 89.4 percent) were marginally more likely than subadults (15, or 83.3 percent) to have only healed lesions, whereas subadults had a higher number of individuals with only active lesions (3, or 16.7 percent) than adults (1, or 1.5 percent). (Note: Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases of thickened diploe have been removed.) However, the difference in the status of the lesions between subadults and adults was not statistically significant. Although also not statistically significant, adult males exhibited a higher proportion of individuals with both active and healed lesions (5, or 11.4 percent), and included the only adult instance of solely active porotic hyperostosis. Females, correspondingly, had a higher incidence of individuals with only healed porotic hyperostosis (18, or 94.7 percent). (Note: Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases of thickened diploe have been removed.)

As illustrated in Figures 96 and 97 and Table 54, rates were generally lower for the presence of porotic hyperostosis in the orbits (cribra orbitalia) than for the rest of the cranium. Overall, 23.7 percent (54 individuals) of those with assessed orbits exhibited porotic hyperostosis. Subadults (18, or 28.6 percent) had a higher rate of involvement in the orbits than the adults (36, 22.0 percent), contrary to what was observed for grouped cranial locations. However, it was found that this difference was not statistically significant (Table 55). The pattern encountered with status of lesions of cribra orbitalia was similar to that found with porotic hyperostosis. Interestingly, all individuals that exhibited solely active porotic hyperostosis were found to have the location of the lesion in the orbits (one adult male, three subadults).

When compared with FABC (Rankin-Hill 1997), Cedar Grove (Rose and Santeford 1985), and 38CH778 (Rathbun 1987), the New York African Burial Ground sample (47.3 percent) had a higher overall rate of porotic hyperostosis (Figure 98, Table 56). Interestingly, the New York African Burial Ground rates of porotic hyperostosis were very similar to Cedar Grove between the subadults, however more similar to FABC in the adults. Focusing solely on pathology encountered in the orbits (Figure 99, Table 57), the New York African Burial Ground showed a similar population incidence as that found at Cedar Grove although less than that observed at 38CH778. The 38CH778 population displayed higher cribra orbitalia rates in all categories, however, only the total sample comparison was statistically significant. The similarity between the New York African Burial Ground and Cedar Grove diminished when the samples were partitioned by age; there were higher comparative rates found among subadults at Cedar Grove, conversely higher rates in adults at the New York African Burial Ground. The latter was statistically significant.12

12 Two cases of cribra orbitalia, both adult females, were present in the St. Peter Street Cemetery sample equating to a population rate of 12.5 percent, or a sex-specific 33.3 percent rate among females (Owsley et al. 1987:190). Once again, however, these conclusions are limited by small sample size and mixed ethnic composition in the population.
Porotic hyperostosis (all locations) in subadults was found most frequently in the 1.0–4.9 and 5.0–9.9 age groups (Figure 100). This pattern was also apparent when considering the prevalence of the disorder within age grades (Figure 101). The disproportionately lower rates in the first year seem to suggest, similar to the periostitis rates, that the individuals in the older age grades may have survived earlier insults and that the younger individuals died prior to skeletal involvement of the pathology. Interestingly, all subadult cases of
Figure 95. Thickened diploe of occipital adjacent to lambda, compared with a normal specimen at the same location (Burial 151, 35–45-year-old male).

Table 52. Porotic Hyperostosis, All Cranial Locations

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>n(^a)</th>
<th>Total (%)</th>
<th>Active (%)(^b)</th>
<th>Healed (%)(^b)</th>
<th>Both (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadult</td>
<td>88</td>
<td>39.8</td>
<td>16.7</td>
<td>83.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Adult(^c)</td>
<td>184</td>
<td>50.5</td>
<td>1.5</td>
<td>89.4</td>
<td>9.1</td>
</tr>
<tr>
<td>Female</td>
<td>73</td>
<td>43.8</td>
<td>0.0</td>
<td>94.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Male</td>
<td>95</td>
<td>57.9</td>
<td>2.3</td>
<td>86.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Total(^c)</td>
<td>275</td>
<td>47.3</td>
<td>4.8</td>
<td>88.1</td>
<td>7.1</td>
</tr>
</tbody>
</table>

\(^a\) Equals number of individuals with observable cranial elements.
\(^b\) Status values represent the percentage of those in each group with evidence of porotic hyperostosis; cases of thickened diploe have been removed.
\(^c\) Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

Table 53. Porotic Hyperostosis Statistical Testing, Intra-Population

<table>
<thead>
<tr>
<th></th>
<th>Porotic Hyperostosis, Presence/Absence</th>
<th>Status of Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>(p)</td>
</tr>
<tr>
<td>Subadult/adult</td>
<td>2.772</td>
<td>.096</td>
</tr>
<tr>
<td>Male/female</td>
<td>3.268</td>
<td>.071</td>
</tr>
</tbody>
</table>

Note: Conditions for 2 x 3 contingency table were not met. \(\chi^2\) reflects the collapsing of “Active” and “Both” categories. Yeats Correction for Continuity used because of small “expected” cell values.
Figure 96. Cribra orbitalia of the left eye orbit (Burial 6, 25–30-year-old male).

Figure 97. Cribra orbitalia of the right orbit (Burial 39, 5–7 years old).
Table 54. Frequencies of Cribra Orbitalia in the NYABG Population

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>n^a</th>
<th>Total (%)</th>
<th>Active (%)^b</th>
<th>Healed (%)^b</th>
<th>Both (%)^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadult</td>
<td>63</td>
<td>28.6</td>
<td>21.4</td>
<td>78.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Adult</td>
<td>164</td>
<td>22.0</td>
<td>2.9</td>
<td>91.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Female</td>
<td>66</td>
<td>18.2</td>
<td>0.0</td>
<td>91.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Male</td>
<td>86</td>
<td>26.7</td>
<td>4.5</td>
<td>90.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Total^c</td>
<td>228</td>
<td>23.7</td>
<td>8.2</td>
<td>87.8</td>
<td>4.1</td>
</tr>
</tbody>
</table>

^a Equals the number of individuals with observable eye orbits.
^b Status values represent the percentage of those in each group with evidence of cribra orbitalia; cases of thickened diploe have been removed.
^c Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

Table 55. Cribra Orbitalia Statistical Testing, Intra-Population

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>Porotic Hyperostosis Presence/Absence</th>
<th>Status of Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>(p)</td>
</tr>
<tr>
<td>Subadult/adult</td>
<td>1.100</td>
<td>.294</td>
</tr>
<tr>
<td>Male/female</td>
<td>1.545</td>
<td>.214</td>
</tr>
</tbody>
</table>

^a Conditions for 2 × 3 contingency table not met, \(\chi^2\) reflects the collapsing of “Active” and “Both” categories.
^b Yeats Correction for Continuity used because of small “expected” cell values.
^c Fishers Exact Test.

Figure 98. Population comparison of porotic hyperostosis presence.
Table 56. Porotic Hyperostosis Statistical Testing, Inter-Population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>(p)</td>
<td>(\chi^2)</td>
</tr>
<tr>
<td>Subadult</td>
<td>24.689</td>
<td><.001</td>
<td>22.605</td>
</tr>
<tr>
<td>Adult</td>
<td>8.957</td>
<td>.011</td>
<td>.166</td>
</tr>
<tr>
<td>Female</td>
<td>4.270</td>
<td>.118</td>
<td>.567</td>
</tr>
<tr>
<td>Male</td>
<td>5.128</td>
<td>.077</td>
<td>.058</td>
</tr>
<tr>
<td>Total</td>
<td>10.890</td>
<td>.004</td>
<td>8.828</td>
</tr>
</tbody>
</table>

\(^a\) Yeats Correction for Continuity used because of small “expected” cell values.

Population Comparison of Cribra Orbitalia Presence

![Figure 99. Population comparison of cribra orbitalia presence.](image)

Table 57. Cribra Orbitalia Statistical Testing, Inter-Population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>(p)</td>
<td>(\chi^2)</td>
</tr>
<tr>
<td>Subadult</td>
<td>1.766</td>
<td>.184</td>
<td>3.495</td>
</tr>
<tr>
<td>Adult</td>
<td>8.688</td>
<td>.013</td>
<td>1.649</td>
</tr>
<tr>
<td>Female</td>
<td>7.902</td>
<td>.019</td>
<td>1.203</td>
</tr>
<tr>
<td>Male</td>
<td>1.894</td>
<td>.388</td>
<td>.098</td>
</tr>
<tr>
<td>Total</td>
<td>5.385</td>
<td>.068</td>
<td>.056</td>
</tr>
</tbody>
</table>

Note: For subadult, all populations comparison, conditions were not met for 2 by 3 contingency table.

\(^a\) Yeats Correction for Continuity used because of small “expected” cell values.
active porotic hyperostosis (cribra orbitalia) occurred in the first year. Older subadult age groups displayed only healed lesions.

When the subadult distribution of porotic hyperostosis was compared with other populations, rates observed in the New York African Burial Ground samples were consistently higher than those from FABC (Figure 102). Rates of porotic hyperostosis were lower in the first 2 years at the New York African Burial Ground than those found at Cedar Grove. However, the New York African Burial Ground subadults displayed a higher rate than Cedar Grove subadults in the 6–15-year range. The apparent disparity seen in the 25-month–5-year age range may be attribut-
able to the sample size in the FABC and Cedar Grove populations.

Among the New York African Burial Ground adults, porotic hyperostosis was more frequent in males overall, except in the 20.0–24.9 and 50.0–54.9 year age groups (Figure 103). Disparities between males and females were not as great in the younger adult age groups, from 15.0 to 29.9 years. Both male and females experienced peaks in porotic hyperostosis frequencies in the 25.0–29.9 and 35.0–39.9 year age groups. In comparisons with other populations, no clear pattern emerged (Figures 104 and 105). Female rates for porotic hyperostosis in the New York African Burial Ground were higher in all adult age categories except in the 40–49.9-year age range, in which both FABC and Cedar Grove had higher rates. Male rates
of porotic hyperostosis at the New York African Burial Ground were more consistent throughout the adult age ranges than those found in the Cedar Grove and FABC samples, although this difference is possibly a factor of sample sizes within these age groups in the latter two populations.

Another possible example of metabolic disruption due to nutritional inadequacy is long-bone bowing. Medial-lateral bowing of the lower limb was observed in a number of individuals, possibly indicative of metabolic disruption due to vitamin-D deficiency (rickets) (Tables 58 and 59). Only individuals who expressed...
bowing bilaterally were included in this analysis thus limiting the confounding effect of postmortem distortion. Approximately 11.9 percent of individuals with observable lower limb bones exhibited medial-lateral bowing. Adults (14.4 percent) had a higher rate than subadults (6.5 percent), although this difference was not statistically significant.

Among adults, females (16.9 percent) displayed a slightly higher frequency, though not statistically significant, of medial-lateral bowing than males (14.7 percent). When cases of medial-lateral bowing that were determined “clearly present” (as opposed to “barely discernable” or no severity determined) were considered, fairly consistent rates were observed throughout the sample. Although not statistically significant, males (3.9 percent) did exhibit a higher rate than females (1.3 percent). In comparison with FABC, which contained only one diagnosed case of rickets, the data may suggest a higher potential rate of this disorder at the New York African Burial Ground. The rate of rickets in the New York African Burial Ground sample, on the other hand, was not as great as that found among the Catoctin Furnace sample of enslaved industry workers from Maryland, where 50 percent of females and 75 percent of males exhibited tibial bowing (Kelly and Angel 1987:206). Although this disparity in rates may be in part because of differential scoring of tibial bowing, the greater prevalence at Catoctin Furnace seems to indicate that vitamin-D deficiency was more common in that sample than at the New York African Burial Ground.

The presence of scurvy (vitamin-C deficiency), another nutritional disorder that could potentially be present among the individuals of the New York African Burial Ground, was not investigated at this time. Research related to the skeletal expression of scurvy by Ortner et al. (1999) and others will provide a useful framework for future investigation of this nutritional disorder in the New York African Burial Ground.

Table 58. Medial-Lateral Bowing of the Lower Long Bones

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>n<sup>a</sup></th>
<th>n<sup>b</sup></th>
<th>Total Percent</th>
<th>Clearly Present n<sup>c</sup></th>
<th>Clearly Present Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadult</td>
<td>77</td>
<td>5</td>
<td>6.5</td>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td>Adult <sup>d</sup></td>
<td>202</td>
<td>29</td>
<td>14.4</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Female</td>
<td>77</td>
<td>13</td>
<td>16.9</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Male</td>
<td>102</td>
<td>15</td>
<td>14.7</td>
<td>4</td>
<td>3.9</td>
</tr>
<tr>
<td>Total <sup>d</sup></td>
<td>285</td>
<td>34</td>
<td>11.9</td>
<td>7</td>
<td>2.5</td>
</tr>
</tbody>
</table>

^a Equals the number of individuals with observable long bones of the lower extremities

^b Equals the number of individuals with bilateral medial/lateral bowing of the elements.

^c Equals the number of individuals with “clearly present” bilateral medial/lateral bowing of the elements.

^d Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

Table 59. Medial/Lateral Bowing Statistical Testing, Intra-Population

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>Medial/Lateral Bowing Presence/Absence</th>
<th>Clearly Present</th>
<th>χ²<sup>a</sup></th>
<th>p</th>
<th>χ²<sup>a</sup></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadult/adult</td>
<td>.112</td>
<td>.137<sup>a</sup></td>
<td>.711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male/female</td>
<td>.691</td>
<td>.356<sup>a</sup></td>
<td>.551</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Yeats Correction for Continuity used because of small “expected” cell values.

Interaction of Infectious Disease and Nutritional Inadequacy

The interaction of infectious disease and nutrition is of particular concern, especially in enslaved people such
Interestingly, historical research has found that the synergistic relationship between these two issues was also a concern in the past (Medford 2009). To investigate this synergism, frequencies of porotic hyperostosis and periostitis were considered together (Tables 60 and 61). As can be seen in Table 60, over one-third (34.2 percent) of the individuals from the New York African Burial Ground exhibited skeletal indicators of both porotic hyperostosis and periostitis. Adults (40.8 percent) were almost twice as likely as subadults (20.5 percent) to have both pathologies. Of the adults, males (48.4 percent) had an 11 percent higher, though not statistically significant, proportion of individuals with periostitis and porotic hyperostosis than the females (37.0 percent). Upon examining the co-occurrence of individuals with porotic hyperostosis who also had periostitis, we found that almost three-quarters (72.3 percent) of those in the population with porotic hyperostosis also had infectious disease. Once again subadults (51.4 percent) exhibited lower rates than adults (80.6 percent); however, males and females had very similar incidences of periostitis among those with porotic hyperostosis (see Table 61).

Upon comparing rates of individuals that had both porotic hyperostosis and periostitis, we found that the New York African Burial Ground sample exhibited higher overall percentages than the values for Cedar Grove (Rose and Santeford 1985) and FABC (Rankin-Hill 1997), although this difference was not statistically significant for several demographic categories (Figure 106 and Table 62). Subadults at the New York African Burial Ground present intermediate rates, lower than Cedar Grove, yet higher than FABC. Among adults, the New York African Burial Ground sample exceeds the co-occurrence incidence of porotic hyperostosis and periostitis in both the Cedar Grove and FABC samples. This pattern continues when sex-specific rates are considered, though the only statistical difference that exists in this case is between females in the New York African Burial Ground and FABC populations.

Table 60. Co-occurrence of Porotic Hyperostosis with Periostitis

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>Porotic Hyperostosis</th>
<th>Porotic Hyperostosis with Periostitis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^a</td>
<td>Percent</td>
</tr>
<tr>
<td>Subadult</td>
<td>88</td>
<td>35</td>
</tr>
<tr>
<td>Adult</td>
<td>184</td>
<td>93</td>
</tr>
<tr>
<td>Female</td>
<td>73</td>
<td>32</td>
</tr>
<tr>
<td>Male</td>
<td>95</td>
<td>55</td>
</tr>
<tr>
<td>Total population</td>
<td>275</td>
<td>130</td>
</tr>
</tbody>
</table>

a The number of individuals with a pathologically assessed cranium, removing the potential of including individuals in the sample that could not be investigated for porotic hyperostosis.
b Equals the number of individuals with observable porotic hyperostosis.
c Equals the number of individuals with observable porotic hyperostosis who also had observable periostitis.
d Discrepancies in sample numbers are the result of individuals that could not be aged and/or sexed.

Table 61. Co-occurrence of Porotic Hyperostosis with Periostitis Statistical Testing, Intra-Population

<table>
<thead>
<tr>
<th>Age/Sex Category</th>
<th>Within Population Presence/Absence</th>
<th>Within Porotic Hyperostosis Presence/Absence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2</td>
<td>p</td>
</tr>
<tr>
<td>Subadult/adult</td>
<td>10.909</td>
<td>.001</td>
</tr>
<tr>
<td>Male/female</td>
<td>2.197</td>
<td>.138</td>
</tr>
</tbody>
</table>

^b^ Yeats Correction for Continuity used because of small “expected” cell values.

as those interred at the African Burial Ground.
These results suggest that although Cedar Grove may indeed have experienced higher overall frequencies of periostitis than that found at the New York African Burial Ground, the interactive patterning for porotic hyperostosis and periostitis was similar at population level. However, this interaction appears to have affected age groups differently, greater among adults in the New York African Burial Ground and greater in subadults at Cedar Grove. The similarity in adult rates for porotic hyperostosis in the New York African Burial Ground and FABC populations is not replicated in the co-occurrence rates of porotic hyperostosis and infectious disease. This would suggest a greater interaction of the two disorders in the New York African Burial Ground sample. Further investigation of co-occurrence rates of porotic hyperostosis and periostitis among these populations should be a productive venue for future research.

Conclusion

This chapter has focused on the indicators of infectious disease and nutritional inadequacy in the enslaved African population of colonial New York City as represented in the New York African Burial Ground.
The rates of generalized infectious processes observed in this investigation were high regardless of age or sex. Adult infectious disease was found to be more comparable to Southern plantation (Rathbun 1987) and post-Reconstruction rates (Rose and Santeford 1985), when compared to the similar urban environment of free “people of colour” in early-nineteenth-century Philadelphia (Rankin-Hill 1997). Rates of porotic hyperostosis were less consistent: New York African Burial Ground subadults were found to be closer to the post-Reconstruction Cedar Grove subadults, but the adults were more similar to adults in Philadelphia’s First African Baptist Church. However, the rate of cribra orbitalia was not as extreme as that found in the nineteenth-century 38CH778 Southern plantation population. The interplay of infection and porotic hyperostosis was evident in the high numbers of persons with indicators of both pathologies.

The presence of treponemal infection is well documented in this study. Although diagnosis of a specific treponemal form was not possible, the data suggest that at least some individuals were apparently infected prior to their arrival and that venereal syphilis was not a common treponemal infection in the particular case of colonial New York. This is significant because of the high prevalence of venereal syphilis associated with European colonialism throughout the Americas. Thus the plausibility of higher rates of the tropical disease, yaws, and lower rates of venereal syphilis, may substantiate other evidence of the continuous importation and high mortality of African captives in eighteenth-century New York. The duration of exposure to venereal syphilis among these individuals may not have been adequate for the manifestation and expression of severe symptoms. Groups coming here from a region of endemic yaws may have been provided vaccinelike immunity to other treponemal strains. Furthermore, the rates of infection were not nearly so high nor as severe as those of widespread infection of venereal syphilis found in Suriname (Khudabux 1991).

As discussed in Chapter 13, the only infectious disease whose rates were documented for New York Africans is smallpox, in connection with one of the several epidemics that ravaged New York, Boston, and Philadelphia in the eighteenth century. The “vindicationist” work of Cobb (1981) has called attention to the Akan, West African use of smallpox inoculation and their introduction of this medical practice to the English colonies, including nearby Boston. Smallpox infection may have contributed to the periostitis observed in skeletal remains, but specific skeletal indicators of this disease were not studied here. A slightly lower mortality for Africans than for Europeans was recorded for the epidemic. That result would seem counterintuitive, assuming that the enslaved population had lived under worse conditions for the spread of epidemic diseases than did free persons. Inoculation should be considered as a factor in the relationship between disease prevalence and death rates (see Chapter 13).

The information presented here suggests that infectious disease, in conjunction with inadequate nutrition, was another source of chronic stress for the enslaved population of the New York African Burial Ground. New York African Burial Ground studies of disrupted growth and development and of early mortality are consistent with these findings.
The types of bony changes studied in association with mechanical stress include osteoarthritis, pressure facets, cortical thickness, fracture, and hypertrophy of tendinous and ligamentous attachment sites. Although age is one component in the development of many of these markers, we believe that they mainly reflect the cumulative effects of mechanical stress rather than senile degeneration alone. This influence is supported by extensive experimental evidence of bone remodeling with increased osteogenesis and decreased bone resorption in response to mechanical loading (see reviews in Boyde 2003; Knüsel 2000; Wilczak and Kennedy 1998). The empirical evidence of Wolff’s 1892 theory of bone transformation provides the research rationale for studies of activity-induced bone hypertrophy (Derevenski 2000; Hawkey and Merbs 1995; Weiss 2003; Wilczak 1998). In the case of osteoarthritis, which involves both cartilage and bone, current studies of repetitive loading on isolated cartilage tissue and individual chondrocytes indicate that biomechanical factors do contribute to the onset of degenerate joint disease, although the precise nature of the relationship has yet to be defined (Shieh and Athanasiou 2002).

It is also important to note that some researchers have argued against normal levels of habitual activity as a factor in the distribution of these markers, particularly in the case of osteoarthritis, but do consider traumatic injury or extreme forms of labor plausible candidates for early and severe forms of development (Jurmain 1999; Knüsel 2000). Trauma or acute stress is a generally accepted causative factor in the development of osteoarthritis, and clinical studies in sports medicine show that enthesial disorders can also be initiated by injury (Benjamin et al. 2002; Ortner 2003). There are two significant etiological possibilities in terms of assessing the labor intensity of a population: direct responses to loading that was experienced during normal levels of activity or initiation due to traumatic injury.

Skeletal indicators of work stress are of particular interest for the New York African Burial Ground Project because physical labor was the principal purpose for which Africans were enslaved. We expect a diverse expression of markers among individuals from this sample owing to anticipated differences in cultural practices and genetic susceptibility, as well as variability in labor patterns. Slave labor in the city would have included work in fisheries, industry, transportation, shipping, small shops, construction, and domestic work. A study of an urban enslaved population from New Orleans (1720–1810) found that skeletal indicators of labor stress were more variable than in rural enslaved groups, reflecting this wide range of activities (Owsley et al. 1987). Although many of the urban enslaved had pronounced skeletal changes associated with manual labor, others, possibly free blacks or domestic enslaved, exhibited very few signs of physical stress. Similar patterns should be observed in the New York African Burial Ground population.

Sample Analyzed

Incidence rates for mechanical stress markers were calculated using only individuals of 15 years of age or greater. Enslaved children were often put to work at an early age, but there are several reasons to limit the analyses of markers of biomechanical stress to late adolescents and adults: (1) continuous bone remodeling associated with growth may confound the analysis; (2) stress markers can require repeated
stress over a period of time to develop; and (3) most studies of occupational markers have been limited to adults and little is known about their development in subadults.

The excavated New York African Burial Ground remains included 419 burials; 187 individuals were suitable for this analysis. Two hundred and twenty-nine individuals were excluded because they were either less than 15 years of age, too incomplete for analysis, or fungal contamination prevented analysis. Three males with bilateral sacroiliac fusion were also excluded based on a possible differential diagnosis of a spondyloarthropathoy or DISH, which can confound stress marker analyses (Arriaza 1993; Ortner 2003). Two of the excluded males were in the age range of 35–49 years and the third was a male in the 50+ age category. The demographic distributions of the individuals used in this portion of the study are presented in Table 63. Sample size for analysis of specific markers varies from these maximum numbers because of differential preservation of various skeletal elements.

Degenerative Changes of the Joints

Scoring

Osteoarthritis of the synovial joints was scored as changes including porosity of the articular surface, lipping at the joint margins, and eburnation or grooving of opposing surfaces. Spinal osteoarthropathy (spondyloysis deformans) of vertebral body synchondral joints was scored based on marginal spicule (osteoophyte) development. Initial analysis included a determination of severity for each type of degenerative change scored on a scale as either absent = 0, mild = 1, or moderate to severe = 2.

For osteoarthritis, a composite score for each joint or joint complex was created, which included both the individual severity scores and the type of degenerative changes. Porosity and osteophyte scores were classified as mild when one or both scores equaled 1, moderate when one score equaled a 2, or severe if both scores equaled 2. Eburnation is usually considered an end stage of cartilage breakdown and joint destruction, so its presence was always scored as severe. If more than one articular surface was present for a joint, the higher composite score was used. In some cases, such as the hands and feet, functional areas included multiple synovial joints that made up a joint complex. Osteoarthritis was assessed as present for such a region when any one of the joints showed degenerative changes. Because more than 90 percent of the sample showed identical composite osteoarthritis scores on the right and left side, no analysis of asymmetry is presented.

Results of the Vertebral Analysis

Figures 107 and 108 illustrate severe vertebral osteoarthritis and osteophytosis development. Sample sizes and the frequency of these degenerative changes from osteoarthritis by sex of the vertebral synovial joints and osteophytosis of the vertebral bodies are listed in Tables 64 and 65. Because there is a known age component in the development of osteoarthritis and osteophytosis, frequencies are given with the total sample age range from 15 to 50+ and excluding the oldest and youngest for a sample age range of 25–49 years. Thirty-four males and 29 females had evidence of osteoarthritis in at least one vertebral

<table>
<thead>
<tr>
<th>Age in Years Categories</th>
<th>Males</th>
<th>Females</th>
<th>Unknown Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–24</td>
<td>15</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>25–34</td>
<td>17</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>35–49</td>
<td>40</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>50+</td>
<td>16</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Adult</td>
<td>10</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Totals</td>
<td>98</td>
<td>78</td>
<td>11</td>
</tr>
</tbody>
</table>
There was little evidence for sex differences in the distribution of vertebral osteoarthritis. Lumbar vertebrae showed the greatest difference, with 58.3 percent of females and 42.5 percent of males affected for the age range of 25–49 years, but this difference was not statistically significant (chi-square test, $p = .22$). Vertebral osteophytosis was present in 23 males and 21 females in at least one vertebral region. Cervical osteophytosis rates were similar to osteoarthritis rates in individuals 25–49, but thoracic and lumbar osteophytosis occurred about half as frequently as osteoarthritis. There is no evidence for significant differences between the sexes in the rates of osteophytosis for individuals aged 25–49.

Comparisons among age categories and regions are most clearly seen in Figures 109 and 110. Males, females, and individuals of unknown sex are combined into one sample for this analysis because neither osteophytosis nor osteoarthritis rates show significant sex differences, and sample sizes were as low as eight individuals when the sexes were considered separately by age. Total sample sizes for the indi-
individual vertebral regions by age categories ranged from 18 to 44 individuals. The general trend for both osteophytosis and osteoarthritis is toward increased frequencies of affected individuals with age. Nonetheless, a fairly large proportion of the youngest age group had moderate to severe degenerative changes. The most striking example is seen in osteoarthritis of the lumbar vertebrae—45.0 percent of individuals aged 15–24 were affected. Also in this age category, the frequency of moderate to severe cervical osteoarthritis was 11.0 percent and cervical osteophytosis was 10.5 percent.

In this sample, cervical osteophytosis was more frequent than in the thoracic and lumbar regions in all age categories (Figure 111). When the 32 cervical osteophytosis cases with preserved thoracic or

<table>
<thead>
<tr>
<th>Age In Years</th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Affected</td>
<td>%</td>
<td>No. Affected</td>
<td>%</td>
</tr>
<tr>
<td>Cervical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>12 (39)</td>
<td>30.8</td>
<td>6 (24)</td>
<td>25.0</td>
</tr>
<tr>
<td>15–50+</td>
<td>20 (60)</td>
<td>33.3</td>
<td>15 (47)</td>
<td>31.9</td>
</tr>
<tr>
<td>Thoracic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>6 (32)</td>
<td>18.8</td>
<td>3 (22)</td>
<td>13.6</td>
</tr>
<tr>
<td>15–50+</td>
<td>13 (52)</td>
<td>25.0</td>
<td>8 (40)</td>
<td>20.0</td>
</tr>
<tr>
<td>Lumbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>7 (43)</td>
<td>16.3</td>
<td>3 (23)</td>
<td>13.0</td>
</tr>
<tr>
<td>15–50+</td>
<td>12 (68)</td>
<td>17.6</td>
<td>11 (43)</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Table 65. Distribution of Moderate to Severe Vertebral Osteophytosis by Sex

Note: Numbers in parentheses are sample sizes (n).

Figure 109. Age and incidence moderate to severe vertebral osteoarthritis.
lumbar vertebrae were examined individually, 20 (9 females and 11 males), or 62.5 percent, did not have these severe changes in one or both of the other two vertebral regions. For these 20 cases, cervical osteoarthritis was absent in 4 (20 percent), mild in 4 (20 percent), and moderate to severe in 12 (60 percent). The corresponding ages of these 20 individuals with cervical osteophytosis were: 2 aged 15–24, 4 aged 25–34, 8 aged, 35–50, and 6 aged 50+. By the sixth decade, 58.4 percent of the individuals (14 of 24) showed clear evidence of cervical osteophytosis. Osteoarthritis showed the reverse regional distribution with the lumbar vertebrae most affected and the cervical vertebrae least affected.

The general correlation of osteophytosis and osteoarthritis with age is expected because both develop as part of the natural aging process. However, they are multifactorial conditions that can be affected by genetics, metabolism, and nutrition (Wilczak and Kennedy 1998). Mechanical stress can also accelerate the age at onset as well as the severity of degenerative changes. The presence of moderate to severe osteophytosis and osteoarthritis in the youngest age group suggests causative factors in addition to normal age-degenerative changes. The high frequency of cervical osteophytosis, compared to that in the lower back, is also compelling evidence for the impact of strenuous labor on the vertebral column. Environmental factors such as nutrition are systemic, and although they may increase susceptibility to cartilage and joint

Figure 110. Age and incidence of moderate to severe osteophytosis.

Figure 111. Severe osteophytosis of the cervical vertebrae in a male aged 35–45 years (Burial 63).
breakdown, they would not be expected to affect the pattern of degeneration within the vertebral column. In relation to both age and mechanical effects, osteoarthritis generally affects the lumbar region first with the cervical about half as affected and the thoracic least (Bridges 1992; Jurmain 1999). The reversal of the normal pattern provides evidence for labor that resulted in mechanical strain to the neck. Further evidence is present in seven individuals with unambiguous pre- or perimortem fractures to the cervical vertebrae (Table 66). All but one also had modifications consistent with osteophytosis, osteoarthritis, or both in the cervical region.

The similar rates of cervical osteophytosis do not necessarily mean that men and women were performing the same types of labor but only that both were subjected to repeated and severe stress of the neck. Diverse activities have been suggested as contributing factors to the development of cervical osteophytosis, including compression of the neck during milking, extension of the neck during fruit picking, and use of a tumpline for carrying loads on the back (Bridges 1994; Olin 1982; Wienkler and Wood 1988). Correlations between carrying loads on the head and cervical osteophytosis have also been suggested for Bronze Age Harappans (India) and prehistoric Native Americans from Alabama, as well as for contemporary grain porters from Zambia and South Africa (Bridges 1994; Levy 1968; Lovell 1994; Scher 1978). Loading of the shoulders as well as the head can place stress on the neck, particularly when the lower cervical and thoracic vertebrae are involved. In the New York African Burial Ground sample, four individuals have moderate to severe cervical and thoracic osteophytosis without involvement of the lumbar vertebrae: one female 25–34 years, one male 15–24 years, and two males of 50+ years old.

Sixty percent of individuals with cervical osteophytosis also had at least moderate cervical osteoarthritis. Theoretically, stress on the disks and vertebral bodies is primarily caused by compression, whereas the apophyseal joints are stressed with rotation and bending. Many activities will result in both compression and bending stresses; for example, when carrying objects on the head the weight of the load may shift during walking causing lateral stresses in the head and neck. However, a substantial portion of individuals had osteophytosis without osteoarthritis, reflecting perhaps the diversity of the individual activities within the population, differences in anatomy, genetic predispositions, nutritional stresses, or disease. Certainly, the distribution of stress across the vertebral segments will vary among individuals and may influence the onset and progression of degenerative joint disease.

Unlike osteophytosis, the distribution of osteoarthritis in previous studies does not present as clear a pattern of regional distribution among the three vertebral segments. There is some bias toward lumbar involvement, but it is not uncommon for peak values to appear in either the thoracic or lumbar segments (Bridges 1994; Derevenski 2000). Biomechanically, this is not surprising because the apophyseal facets have less of a weight-bearing role than the vertebral bodies and disks. High levels of osteoarthritis in this sample suggest participation in labor involving bending and rotation of the spine or indirect stress to the back through limb muscles that directly attach to vertebrae. This is particularly true for the lumbar region where the early age for onset of severe osteoarthritis is striking. Stress in the lower back occurs during many general types of arduous physical labor including carrying, bending and lifting, as well as dragging heavy objects.

Schmorl’s Nodes

Schmorl’s nodes are shallow, depressed pits occurring on the superior and/or inferior end plates of the vertebral bodies; these pits result from the pressure of cartilaginous protrusions of damaged intervertebral discs (Figure 112).

The general pattern of spinal distribution for 22 affected males and 11 affected females (Table 67) was similar with the greatest frequency in the lumbar region and the lowest in the cervical region for both sexes. Lumbar frequencies were equal, but male frequencies were more than double those of females in the thoracic vertebrae and triple those of females in the cervical vertebrae. Two females and six males had Schmorl’s nodes in multiple vertebral regions.

Age-related degenerative change is often considered the primary reason for Schmorl’s node development (Auferheide and Rodriguez-Martin 1998), but mechanical stress may be a contributing factor as appears to be the case in this population. The relative rarity of this condition in younger persons suggests that it only occurs earlier in life under conditions of extreme physical stress (Capasso et al. 1999). In the combined male and female sample, Schmorl’s nodes were most frequent in the age range of 25–34 for all
Table 66. Number of Fractures by Skeletal Element in Adults by Sex

<table>
<thead>
<tr>
<th>Skeletal Element</th>
<th>Males</th>
<th>Femaales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Premortem</td>
<td>Perimortem</td>
</tr>
<tr>
<td>Cranium</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Mandible</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cervical vertebrae</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Thoracic vertebrae</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lumbar vertebrae</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Rib</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Clavicle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Scapula</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Humerus</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Radius</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ulna</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Pelvis</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Femur</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Tibia</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fibula</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hand phalanx</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Foot phalanx</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>41</td>
</tr>
</tbody>
</table>

a Vertebral fractures do not include spondylolysis (see Table 11.6).
b Percentage of the 117 fractures recorded for males.
c Percentage of the 81 fractures recorded for females.
three vertebral regions (Table 68). The frequencies are over two times those found in the oldest sample of 50 years or greater. As with vertebral osteoarthritis and osteophytopsis, the presence of Schmorl’s nodes in younger individuals suggests factors other than age-related disc degeneration. Although one might expect to see an increase in the incidence with age when mechanical stresses are a factor, the higher frequency in younger individuals may simply reflect sampling bias in the labor history or genetic susceptibility (in conjunction with stress) of the individuals within each age group. Percentages of individuals with Schmorl’s nodes in the cervical, thoracic, and lumbar regions, who were also affected with osteophytes in the same vertebral region, were 28.6 percent, 42.9 percent, and 21.7 percent, respectively.

Table 67. Regional Distribution of Schmorl’s Nodes

<table>
<thead>
<tr>
<th>Region</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Cervical</td>
<td>6 (60)</td>
<td>10.0</td>
</tr>
<tr>
<td>Thoracic</td>
<td>10 (51)</td>
<td>19.6</td>
</tr>
<tr>
<td>Lumbar</td>
<td>14 (67)</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are sample sizes (n).

Spondylolysis

Unilateral or bilateral fracture of a vertebral neural arch and subsequent separation from the vertebral body constitute the defect of spondylolysis (Figure 113). Although technically considered a type of fracture, it is discussed here because it can be caused by fatigue fracturing when presenting as typical spondylolysis. Typical spondylolysis is a fracture in the lumbosacral region through pars interarticularis with the fourth and fifth lumbar vertebrae most frequently affected (Merbs 1996). The etiology of typical spondylolysis suggests both genetic factors, likely related to differences in vertebral morphology, and mechanical stresses affecting the lower back, such as general heavy labor, and
Complete, bilateral spondylolysis of the fourth or fifth lumbar vertebrae was present in four adults from the New York African Burial Ground (Table 69). All of the individuals with spondylolysis also had at least one other pathological change of the vertebrae, both within and outside of the lumbar region, including Schmorl’s nodes and osteophytosis in three of the four burials. All four individuals showed evidence of osteoarthritis of the lumbar apophyseal joints. Moderate osteoarthritis of the hip and elbow were also present in the form of peripheral lipping of all articular surfaces. In the elbow, lipping was particularly prominent on the ulna, suggesting bending stress as a greater factor than rotational stress.

Burial 11 is a male aged 30–40 who showed hypertrophy or stress lesions at 37 percent of 33 muscle or ligament attachments. These attachments included several associated with carrying or heavy lifting, such as the triceps, biceps, deltoid, quadriceps, linea aspera, obturator externus/Internus, and gluteus minimus/medius muscle attachments. Moderate osteoarthritis of the hip and elbow were also present in the form of peripheral lipping of all articular surfaces. In the elbow, lipping was particularly prominent on the ulna, suggesting bending stress as a greater factor than rotational stress.

Burial 97 is a male aged 40–50 years with extensive MSMs that were scored as moderate to severe for 17 of 30 (56 percent), of the attachments examined, which is over twice the average percentage (25.2 percent) of MSMs for all adult males. Moderate to severe osteoarthritic lipping was also present at the hip, elbow, wrist, and hand. The knee, ankle, and foot were not sufficiently preserved for scoring. The only female (Burial 107) with typical spondylolysis was aged 35–40 years. Thirty-nine percent of the attachments examined were scored as MSMs as compared to the average of 17.6 percent for all females. Some of the same patterns as seen in Burial 11 emerged, with stress lesions at the brachialis, deltoid, linea aspera, quadriceps, and obturator internus/externus muscle attachments. Although mild lipping was present at most joints or joint complexes, only the knee was scored with moderate to severe lipping.

Burial 37 is a male aged 50+ years. In addition to the extensive changes in the vertebral column as detailed in Table 69, 21 percent of the attachments showed significant hypertrophy or stress lesions, including those of the brachialis, supinator, quadriceps, and linea aspera. All of the joints examined in

Table 68. Percentage of Individuals with Schmorl’s Nodes by Age

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>Cervical</th>
<th>Thoracic</th>
<th>Lumbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–24</td>
<td>0.0 (0)</td>
<td>16.7 (2)</td>
<td>15.0 (3)</td>
</tr>
<tr>
<td>25–34</td>
<td>12.5 (3)</td>
<td>31.6 (6)</td>
<td>36.4 (8)</td>
</tr>
<tr>
<td>35–49</td>
<td>7.5 (3)</td>
<td>8.6 (3)</td>
<td>22.7 (10)</td>
</tr>
<tr>
<td>50+</td>
<td>4.2 (1)</td>
<td>14.3 (3)</td>
<td>13.0 (3)</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are number of individuals with Schmorl’s nodes (n).

in athletics that stress the lower back such as football, gymnastics, and rowing (Merbs 1989a, 1996).

Complete, bilateral spondylolysis of the fourth or fifth lumbar vertebrae was present in four adults from the New York African Burial Ground (Table 69). All of the individuals with spondylolysis also had at least one other pathological change of the vertebrae, both within and outside of the lumbar region, including Schmorl’s nodes and osteophytosis in three of the four burials. All four individuals showed evidence of osteoarthritis of the lumbar apophyseal joints. Osteoarthritis was also present in the cervical vertebrae of Burial 11, in the thoracic vertebrae of Burial 37, and in both the cervical and the thoracic vertebrae of Burials 97 and 107.

Examination of musculoskeletal stress markers (MSMs) and axial osteoarthritis revealed further evidence that the individuals affected by spondylolysis experienced heavy stress. Details of osteoarthritis and MSM scoring procedures are given in the respective sections of this chapter. Burial 11 is a male aged 30–40 who showed hypertrophy or stress lesions at 37 percent of 33 muscle or ligament attachments. These attachments included several associated with carrying or heavy lifting, such as the triceps, biceps, deltoid, quadriceps, linea aspera, obturator externus/Internus, and gluteus minimus/medius muscle attachments. Moderate osteoarthritis of the hip and elbow were also present in the form of peripheral lipping of all articular surfaces. In the elbow, lipping was particularly prominent on the ulna, suggesting bending stress as a greater factor than rotational stress.

Burial 97 is a male aged 40–50 years with extensive MSMs that were scored as moderate to severe for 17 of 30 (56 percent), of the attachments examined, which is over twice the average percentage (25.2 percent) of MSMs for all adult males. Moderate to severe osteoarthritic lipping was also present at the hip, elbow, wrist, and hand. The knee, ankle, and foot were not sufficiently preserved for scoring. The only female (Burial 107) with typical spondylolysis was aged 35–40 years. Thirty-nine percent of the attachments examined were scored as MSMs as compared to the average of 17.6 percent for all females. Some of the same patterns as seen in Burial 11 emerged, with stress lesions at the brachialis, deltoid, linea aspera, quadriceps, and obturator internus/externus muscle attachments. Although mild lipping was present at most joints or joint complexes, only the knee was scored with moderate to severe lipping.

Burial 37 is a male aged 50+ years. In addition to the extensive changes in the vertebral column as detailed in Table 69, 21 percent of the attachments showed significant hypertrophy or stress lesions, including those of the brachialis, supinator, quadriceps, and linea aspera. All of the joints examined in
this older individual showed at least mild osteophytic lipping, but more pronounced lipping was present in the hip, ankle, knee, and foot. Although all four burials showed some correspondence between spondylolysis and other stress markers, there were also differences among the individuals. High levels of mechanical stress were indicated by MSMs for Burial 11, by osteoarthritis in Burial 37, and by both MSMs and osteoarthritis in Burials 11 and 97.

Variability in the types of vertebral changes, as well as in the degree and patterning of the associated MSMs and axial osteoarthritis, suggests a corresponding variability in the types of labor performed by this urban population. However, individual differences in genetics, nutritional levels, bone density, anatomy, and posture in the performance of similar tasks are also contributing factors to diverse manifestations of stress in the spine. Susceptibility to spondylolysis in particular has been correlated with anatomical variation in the lower back and preferred posture during the performance of strenuous tasks (Capasso et al. 1999). Merbs (1983) and Stewart (1953) both suggested holding the legs extended when sitting (as in a kayak), or when standing and working with materials on the ground, contributed to the high incidence of spondylolysis among Alaskan natives. Even what appear to be very similar sorts of activities may show different skeletal manifestations upon closer examination. Grain porters in Zambia had fractures, herniations, and other injuries most commonly in the first through fourth cervical vertebrae, but grain porters in Cape Province, South Africa, only showed injuries below the fourth cervical vertebra (Capasso et al. 1999). So although there is evidence of general levels of high mechanical stress for the four burials examined here, one must be careful not to overinterpret the specific manifestations for any one individual.

Table 69. Spondylolysis and Associated Vertebral Degenerative Changes

<table>
<thead>
<tr>
<th>Burial</th>
<th>Sex</th>
<th>Age Range (yrs)</th>
<th>Typical Spondylolysis</th>
<th>Other Degenerative Changesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>M</td>
<td>40–50</td>
<td>C,T,L</td>
<td>C,T</td>
</tr>
<tr>
<td>107</td>
<td>F</td>
<td>35–40</td>
<td>C,T,L</td>
<td>T,L</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>45–55</td>
<td>C,T,L</td>
<td>T,L</td>
</tr>
</tbody>
</table>

a C = cervical, T = thoracic, L = lumbar

Results of Appendicular Joint Analysis

In the upper limbs, 22 females and 43 males had osteoarthritis in at least one of the joints or joint complexes, which included the shoulder, wrist, elbow, and hand. For individuals with osteoarthritis and all four joint regions scorable, the average number of joints affected was 2.26 for females and 2.09 for males. If the joint and joint complexes are ranked by relative frequency of osteoarthritis, there are differences between the sexes (Table 70). For the 25–49-year age range, females had the highest incidences in the wrist, and males were highest in the elbow (Figures 114 and 115). The shoulder was least affected in both sexes. The greatest frequency difference between males (32.6 percent) and females (19.4 percent) was in the elbow.

In the lower limbs, 40 females and 58 males had osteoarthritis in at least one joint or joint complex, which included the hip, knee, ankle, and foot. For individuals with osteoarthritis and all four regions scorable, the average number of joints affected was 2.39 per individual for females and 2.17 per individual for males. When the eight joint or joint complexes of the upper and lower limb are considered together, the average number affected in those with osteoarthritis was 4.11 for females (n = 26) and 3.59 for males (n = 44). There were six individuals with all eight regions affected. Four of these were males of 50+, and two were females aged 25–34 years.

There was a higher frequency of osteoarthritis in the lower limbs than in the upper limbs for both sexes (Table 71). Only the male elbow, and perhaps wrist, had comparable incidence levels. Both males and females had the highest lower-limb incidence of osteoarthritis in the ankle (Figures 116 and 117).
females and males, this was followed by the hip and the knee. The ankle joint showed the greatest sex difference with 51.7 percent of females and 42.2 percent of males affected for the age range of 25–49 years, but this difference was not statistically significant.

It was difficult to examine age effects independently for males and females because sample sizes were as low as 10 individuals when the sexes were considered separately by age. Because the joints or joint complexes did not show statistically significant sex differences, all were plotted as combined samples of males, females, and unknown sex initially (Figures 118 and 119). The elbow was also plotted separately for males and females because the greatest sex differences were found at this joint (Figure 120). Total sample sizes for the combined appendicular joints by age categories ranged from 17 to 54 individuals. The general trend for both upper limb and

<table>
<thead>
<tr>
<th>Age In Years</th>
<th>Males</th>
<th></th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Affected</td>
<td>%</td>
<td>No. Affected</td>
</tr>
<tr>
<td>Shoulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>6 (46)</td>
<td>13.0</td>
<td>4 (31)</td>
</tr>
<tr>
<td>15–50+</td>
<td>15 (76)</td>
<td>19.7</td>
<td>12 (55)</td>
</tr>
<tr>
<td>Elbow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>16 (49)</td>
<td>32.7</td>
<td>6 (31)</td>
</tr>
<tr>
<td>25–50+</td>
<td>29 (82)</td>
<td>35.4</td>
<td>14 (58)</td>
</tr>
<tr>
<td>Wrist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>10 (38)</td>
<td>26.3</td>
<td>5 (21)</td>
</tr>
<tr>
<td>15–50+</td>
<td>18 (66)</td>
<td>27.3</td>
<td>10 (40)</td>
</tr>
<tr>
<td>Hand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>8 (48)</td>
<td>16.7</td>
<td>5 (29)</td>
</tr>
<tr>
<td>50+</td>
<td>19 (80)</td>
<td>23.8</td>
<td>12 (55)</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are sample sizes (n).

![Figure 114. Osteoarthritis with marginal lipping in the wrist of a female aged 50–60 years (Burial 40).](image)
lower limb joints was toward increased frequencies of affected individuals with age. Nonetheless, a fairly large proportion of the youngest age group had moderate to severe degenerative changes. This was most apparent in the lower limbs where incidences ranged from 15 percent in the foot to 25 percent in the ankle for 15–24-year-olds. In the upper limbs, the elbow of the youngest age group had the highest incidence of 21.7 percent. The lower limbs were clearly more affected than the upper limbs, and it is unlikely that incidences in the lower limb are simply a phenomenon of normal weight-bearing and age because moderate to severe osteoarthritis reached quite high levels in the young adults and was pronounced in those aged

Table 71. Distribution of Moderate to Severe Osteoarthritis in the Lower Limb

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>Males</th>
<th></th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Affected</td>
<td>%</td>
<td>No. Affected</td>
</tr>
<tr>
<td>Hip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>19 (51)</td>
<td>37.3</td>
<td>13 (31)</td>
</tr>
<tr>
<td>15–50+</td>
<td>33 (82)</td>
<td>40.2</td>
<td>22 (57)</td>
</tr>
<tr>
<td>Knee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>14 (49)</td>
<td>28.6</td>
<td>13 (33)</td>
</tr>
<tr>
<td>25–50+</td>
<td>27 (82)</td>
<td>32.9</td>
<td>24 (62)</td>
</tr>
<tr>
<td>Ankle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>19 (45)</td>
<td>42.2</td>
<td>15 (29)</td>
</tr>
<tr>
<td>15–50+</td>
<td>39 (75)</td>
<td>52.0</td>
<td>27 (56)</td>
</tr>
<tr>
<td>Foot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–49</td>
<td>15 (45)</td>
<td>33.3</td>
<td>11 (31)</td>
</tr>
<tr>
<td>50+</td>
<td>28 (76)</td>
<td>36.8</td>
<td>20 (56)</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are sample sizes (n).
25–49 years as well. Figure 119 also shows the trend for higher incidences in the ankle, with the greatest differences when compared to the hip, knee, and foot in the 25–34-year age group. In the oldest individuals (50+), the incidence for all lower limb joints and joint complexes increase to rates greater than 58 percent.

Sample sizes for osteoarthritis of the elbow ranged from 9 individuals for females aged 15–24 and 50+ to 36 individuals for males aged 35–49 years. The trend for males to exceed females was interrupted in the age range of 25–34. In this group of 13 males, none showed significant osteoarthritis. The largest difference was in the 35–49-year-age range where the male incidence was 44.4 percent (n = 36) and the female was 18.8 percent (n = 16).

The incidence of osteoarthritis was higher in the lower limbs, suggesting greater stress than in the upper limbs. Activities that might be applicable in this population include walking over uneven surfaces, performing activities while squatting, and climbing stairs and ladders. It is not possible to say for certain which of these activities would have been most important for this population, and it is likely that different stresses were factors for different individuals. An alternative

Figure 116. Osteoarthritis of the ankle in a female aged 50–60 years (Burial 40): (a) superior aspect of the distal ankle articulations; (b) the proximal ankle articulation on the fibula.

Figure 117. Osteoarthritis in the ankle and foot of a male aged 40–50 years (Burial 238).
explanation is that high general stress experienced in
this population contributed to osteoarthritis development in all limbs, but rates in the lower limbs were
highest because of the additional weight-bearing bur-
den. Perhaps this is true, but the pattern in the vertebral column suggestive of the higher burden in the pelvic girdle. The higher incidence of osteoarthritis in the lower limbs is compatible with the high levels of osteoarthritis of the lumbar vertebrae, supporting a
difference in the activity loads of the upper and lower limbs. It is of interest that the highest incidence of osteoarthritis was found in the ankle because it is rare in the archaeological record as well as today (Rogers 2000). When it does occur, it is normally caused by traumatic injury or other pathology. Certainly, abrupt trauma cannot be ruled out here.

For the elbow, there is no way to know if males aged 35–49 years with high osteoarthritis rates or

Figure 118. Age and incidence of moderate to severe osteoarthritis in the upper limb.

Figure 119. Age and incidence of moderate to severe osteoarthritis in the lower limb.
males aged 25–34 with lower rates are more representative of the population. Therefore, it would be an overinterpretation to conclude that all males experienced more stress than females at the elbow. This example clearly illustrates the difficulties in making specific statements rather than discussing broad trends in this population where individuals performed a wide variety of tasks. All that can be concluded is that at least some individual males were likely to have experienced high stress levels at the elbow. This stress level could have been caused by habitual labor in this age group or traumatic injury, leading to the degenerative changes.

Musculoskeletal Stress Markers

Musculoskeletal stress markers (MSM) are distinct marks at the site of ligament and tendon attachments to the periosteum and bone. The types of bony changes include hypertrophic bone development that causes the formation and enlargement of distinct ridges and crests at the attachment, resulting in a rugose appearance. With extreme stress at the attachment, nonlytic furrows or pits may develop, resulting in a stress lesion called an enthesopathy at a tendinous attachment or a syndesmoses at a ligament attachment. Both of these terms have been used to describe either hypertrophy and stress lesions, or stress lesions exclusively. To avoid confusion, we will follow the terminology of Hawkey and Merbs (1995), referring to the more extreme furrow or pit development as stress lesions for both enthesial and syndesmial sites.

Scoring of MSMs

Three attachments were scored in the head and neck, 19 in the upper limb, and 11 in the lower limb. If hypertrophy or stress lesions were manifest at both the origin and insertion of a specific muscle or ligament the highest score was used. For most of the attachments, the greatest percentage of MSM expression was at the insertion where tensile stresses are most intense. For example, there were 7 MSMs scored for the humeral origin of the brachialis muscle and 81 at its insertion on the ulna. Multiple muscles were scored together when they shared a common attachment or when the attachments were located too closely for clear discrimination. Therefore, when referring to an attachment site in the singular, it may include several sites, such as origin and attachment and/or multiple muscles. MSMs were scored as mild hypertrophy = 1, moderate/severe hypertrophy = 2, mild stress lesion = 3, or moderate/severe stress lesion = 4 (Figures 121 and 122). In analyses of MSM frequency, only scores of 2 or greater were considered. Exclusion of mild hypertrophy ensured that only clear cases of MSMs were scored.
Results of MSM Analysis

Percentages of moderate to severe MSMs scored per individual were calculated based on the available number of attachment sites present. For these calculations, only individuals with at least 9 scorable sites for the 33 attachments (greater than 25 percent) were included. The average percentage of MSMs per individual was 25.1 for males and 19.6 for females (Table 72). This difference was statistically significant (t-test, $p = .03$).

Average percent MSM scores increased with age for both males and females. Although lower than other age groups, at least some attachments showed significant hypertrophy and/or stress lesions even for individuals aged 15–24 years. The difference of 4.8 percent in average MSM scores in females between the two middle-age groups was the lowest and corresponded to an average of 1.6 insertions per individual (out of the 33 total attachments). The youngest females showed a difference of 6.5 percent when compared to females aged 25–34, corresponding to 2.1 fewer insertions per individual. For males, the difference between the two middle-age ranges (7.6 percent, or 2.5 insertions) was greater than the difference between 15–24 years and 25–34-year-olds (4.1 percent, or 1.4 insertions). These results are consistent with a previous study showing smaller average insertion areas for younger males in a sample of twentieth-century African Americans and European Americans (Wilczak 1998).

These data suggest that accumulated stresses over time are usually necessary for MSM development, but those attachments under the greatest strain may develop quite rapidly. Alternatively, or in conjunction with high stress and rapid development, it may indicate full integration at a very young age for males into
the “adult” enslaved labor force, giving ample time for hypertrophy and stress lesion formation. Burial 323 is a male aged 19–30 who has moderate to severe MSM development at 39.4 percent (13 of 33) of his scoreable attachments. Ten of these were stress lesions that included the linea aspera, quadriceps, biceps, deltoids and pectoralis/latissimus dorsi attachments. The large percentage of stress lesions suggests hard labor began at an early age for this individual.

Moderate to severe forms of MSMs were present in substantial frequencies. On a per case basis, females had an average of 6.5 occurrences, and males had 8.3 occurrences for the 33 attachments in the analysis. Because males had higher frequencies of MSMs and the age composition of the two samples varies, comparisons of specific attachments are presented by relative rank (Table 73). Of the 10 most frequent MSMs, only 2 are not common to both males and females. The coracoclavicular ligament ranked eighth in females (32.7 percent) and eleventh in males (28.2 percent). A much greater difference was seen for the biceps brachii muscle, which ranked tenth for males (33.8 percent), but twenty-third (8.2 percent) for females (Figure 123). In the lower limbs, the highest ranked attachments were the linea aspera and the gluteus maximus (1, 4 males and 2, 6 females; Figures 124 and 125). In the upper limbs, the deltoid, pectoralis major/latissimus dorsi, supinator, finger flexors, lateral scapula, and costoclavicular ligament were among the 10 most common MSMs for both males and females. Hypertrophy of the lateral border of the scapula may be another manifestation of teres major activity. It is also the origin of teres minor and the long head of the triceps, but MSMs of the insertions for these muscles were much less frequent in this population. Within the top ten, the rankings for the brachialis (Figure 126) was somewhat higher in females (1 vs. 5), whereas the pectoralis major/latissimus dorsi/teres minor was somewhat higher in males (3 vs. 7) (see Table 73).

The cutoff point for further discussion of the 10 most frequently affected attachments is arbitrary because there was no clear breakpoint between common and uncommon MSMs in this population. There was, however, some pattern in the data, with several MSMs related to movement around the shoulder joint found in high frequencies in both males and females. Pectoralis major, latissimus dorsi, and teres major insert into the intertubercular groove of the humerus. All three muscles act to adduct, extend, and rotate the humerus, the first two medially and the teres major laterally. They are sometimes called “climbing muscles” because they pull the torso up when the arms are fixed. In addition, the pectoralis can assist in flexing the

<table>
<thead>
<tr>
<th>Table 72. Average Moderate to Severe Musculoskeletal Stress Marker Scores by Age and Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in Years</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>15–24</td>
</tr>
<tr>
<td>25–34</td>
</tr>
<tr>
<td>35–49</td>
</tr>
<tr>
<td>50+</td>
</tr>
<tr>
<td>All ages<sup>b</sup></td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>15–24</td>
</tr>
<tr>
<td>25–34</td>
</tr>
<tr>
<td>35–49</td>
</tr>
<tr>
<td>50+</td>
</tr>
<tr>
<td>All ages<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Includes individuals with nine or more insertions present.

^b All ages category includes adults of indeterminate age.
Table 73. Frequencies of Musculoskeletal Stress Markers in Males and Females

<table>
<thead>
<tr>
<th>Rank</th>
<th>Male Attachment</th>
<th>No.</th>
<th>Percent</th>
<th>Female Attachment</th>
<th>No.</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>linea aspera</td>
<td>58</td>
<td>66.7</td>
<td>brachialis</td>
<td>32</td>
<td>55.2</td>
</tr>
<tr>
<td>2</td>
<td>deltoid</td>
<td>51</td>
<td>62.2</td>
<td>linea aspera</td>
<td>34</td>
<td>51.5</td>
</tr>
<tr>
<td>3</td>
<td>pectoralis major, latissimus dorsi, teres major</td>
<td>48</td>
<td>59.3</td>
<td>supinator</td>
<td>29</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>gluteus maximus</td>
<td>49</td>
<td>58.1</td>
<td>deltoid</td>
<td>30</td>
<td>48.4</td>
</tr>
<tr>
<td>5</td>
<td>brachialis</td>
<td>45</td>
<td>54.9</td>
<td>finger flexors</td>
<td>27</td>
<td>44.3</td>
</tr>
<tr>
<td>6</td>
<td>supinator</td>
<td>45</td>
<td>54.2</td>
<td>gluteus maximus</td>
<td>29</td>
<td>43.9</td>
</tr>
<tr>
<td>7</td>
<td>finger flexors</td>
<td>32</td>
<td>41.0</td>
<td>pectoralis major, latissimus dorsi, teres major</td>
<td>25</td>
<td>42.4</td>
</tr>
<tr>
<td>8</td>
<td>lateral scapula</td>
<td>28</td>
<td>35.4</td>
<td>coracoclavicular ligament</td>
<td>18</td>
<td>32.7</td>
</tr>
<tr>
<td>9</td>
<td>costoclavicular ligament</td>
<td>25</td>
<td>35.2</td>
<td>costoclavicular ligament</td>
<td>15</td>
<td>27.3</td>
</tr>
<tr>
<td>10</td>
<td>biceps brachii</td>
<td>26</td>
<td>33.8</td>
<td>lateral scapula</td>
<td>16</td>
<td>26.7</td>
</tr>
<tr>
<td>11</td>
<td>coracoclavicular ligament</td>
<td>20</td>
<td>28.2</td>
<td>cranial base-occiput</td>
<td>13</td>
<td>25.5</td>
</tr>
<tr>
<td>12</td>
<td>hamstrings</td>
<td>24</td>
<td>28.2</td>
<td>quadriceps</td>
<td>13</td>
<td>18.3</td>
</tr>
<tr>
<td>13</td>
<td>medial epicondyle-humerus</td>
<td>22</td>
<td>26.5</td>
<td>obturator internus/externus</td>
<td>11</td>
<td>16.7</td>
</tr>
<tr>
<td>14</td>
<td>cranial base-occiput</td>
<td>15</td>
<td>25.4</td>
<td>finger extensors</td>
<td>10</td>
<td>16.4</td>
</tr>
<tr>
<td>15</td>
<td>quadriceps</td>
<td>22</td>
<td>25.0</td>
<td>hamstrings</td>
<td>10</td>
<td>15.8</td>
</tr>
<tr>
<td>16</td>
<td>mastoid process</td>
<td>17</td>
<td>23.0</td>
<td>rotator cuff</td>
<td>9</td>
<td>15.8</td>
</tr>
<tr>
<td>17</td>
<td>lateral epicondyle-humerus</td>
<td>19</td>
<td>22.4</td>
<td>triceps brachii</td>
<td>9</td>
<td>14.8</td>
</tr>
<tr>
<td>18</td>
<td>rotator cuff</td>
<td>17</td>
<td>20.7</td>
<td>pronator teres/quadratus</td>
<td>8</td>
<td>14.3</td>
</tr>
<tr>
<td>19</td>
<td>trapezius/nuchal</td>
<td>15</td>
<td>18.1</td>
<td>medial epicondyle-humerus</td>
<td>9</td>
<td>13.8</td>
</tr>
<tr>
<td>20</td>
<td>iliopsoas</td>
<td>15</td>
<td>17.2</td>
<td>lateral epicondyle-humerus</td>
<td>7</td>
<td>10.8</td>
</tr>
<tr>
<td>21</td>
<td>subclavius</td>
<td>12</td>
<td>16.9</td>
<td>Achilles tendon</td>
<td>7</td>
<td>10.4</td>
</tr>
<tr>
<td>22</td>
<td>finger extensors</td>
<td>13</td>
<td>16.7</td>
<td>gluteus medius/minimus</td>
<td>5</td>
<td>9.3</td>
</tr>
<tr>
<td>23</td>
<td>triceps brachii</td>
<td>14</td>
<td>15.7</td>
<td>biceps brachii</td>
<td>4</td>
<td>8.2</td>
</tr>
<tr>
<td>24</td>
<td>obturator internus/externus</td>
<td>13</td>
<td>15.1</td>
<td>subclavius</td>
<td>4</td>
<td>7.3</td>
</tr>
<tr>
<td>25</td>
<td>Achilles tendon</td>
<td>12</td>
<td>13.6</td>
<td>teres minor</td>
<td>4</td>
<td>7.0</td>
</tr>
<tr>
<td>26</td>
<td>pronator teres/quadratus</td>
<td>7</td>
<td>8.6</td>
<td>plantarflexors</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>27</td>
<td>gluteus medius/minimus</td>
<td>6</td>
<td>8.0</td>
<td>iliopsoas</td>
<td>4</td>
<td>6.1</td>
</tr>
<tr>
<td>28</td>
<td>dorsiflexors</td>
<td>3</td>
<td>4.2</td>
<td>trapezius/nuchal</td>
<td>3</td>
<td>4.9</td>
</tr>
<tr>
<td>29</td>
<td>plantarflexors</td>
<td>3</td>
<td>4.1</td>
<td>dorsiflexors</td>
<td>2</td>
<td>4.5</td>
</tr>
<tr>
<td>30</td>
<td>teres minor</td>
<td>3</td>
<td>3.7</td>
<td>brachioradialis</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>31</td>
<td>anconeus</td>
<td>2</td>
<td>2.4</td>
<td>mastoid process</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>32</td>
<td>brachioradialis</td>
<td>1</td>
<td>1.3</td>
<td>intercondylar eminence</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>intercondylar eminence</td>
<td>1</td>
<td>1.4</td>
<td>anconeus</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
humerus to the horizontal position, at which point the deltoid is necessary through full elevation. Latissimus dorsi is a powerful retractor of the pectoral girdle during activities such as rowing and the downstroke in swimming. The MSMs in the deltoid, which can abduct, flex, extend, and laterally and medially rotate the humerus, depending upon which fibers are active and the position of the arm, also suggest circumductionary motions or loading of the shoulders and pushing loads up above shoulder height. Stress in the shoulder was also apparent for the costoclavicular ligament, which attaches the medial clavicle to the first rib and limits the clavicle’s anterior and posterior movement. The coracoclavicular ligament attaches the clavicle to the coracoid process and limits forward and backward movement of the scapula. This pattern of stress suggests activities that include alternating flexion and extension of the arm toward the chest, with the elbow bent, as has been described in skin scraping among Inuits (Hawkey 1988; Hawkey and Merbs 1995); lifting heavy objects up from the ground; stacking and unstacking materials; and placing burdens upon the shoulders or head. Overall, the pattern observed in the shoulder is compatible with many types of general...
labor involving heavy lifting and carrying as might be expected for this population.

Hypertrophy of the brachialis, which flexes the elbow, supports the presence of repetitive types of back-and-forth motion of the arm and forearm. Although higher in women, both sexes showed evidence of stress at this attachment. An additional flexor of the elbow and shoulder, the biceps brachii, showed hypertrophy in men. This could relate to general carrying functions because the biceps brachii opposes extension of the forearm against a load when carried with the elbows flexed and the forearms extended in front of the body, or when carrying heavy buckets or baskets in the hands, with the arms down at the sides of the body (Galera and Garralda 1993). High frequencies of this MSM have been reported in masons, bakers, and agricultural populations. The biceps brachii also supinates the forearm, and both males and females have stress lesions and hypertrophy of the supinator muscle attachments. Supination occurs during twisting of the forearm, the type of motion used when opening a jar. The biceps is only important in supinating the forearm when the elbow is bent; the supinator muscle acts alone when the elbow is straightened (Kelley and

Figure 125. Hypertrophy of the gluteus maximus insertions of the femora in a male aged 17–18 years (Burial 174).

Figure 126. Hypertrophy of the brachialis insertions of the ulnae in a female aged 25–35 years (Burial 223).
habits and the regular use of heavy loads is a contributing factor to the changes seen in the skeletons. However, it is not possible to ascribe these changes to one specific cause, as the types of stresses experienced vary across different studies. Kelley and Angel (1987) gave no precise descriptions relating to the types of stresses experienced. Kelley and Angel's (1987) plantation sample did not comprise a single cemetery sample but instead consisted of scattered burials from across Maryland and Virginia. Although general load carrying would be expected as part of the labor for many enslaved, it is at least possible to compare general patterns of stress but that there were some differences in anatomy and biomechanics. It is interesting that males and females showed the same general pattern of stress but that there were some differences in the types of work performed. Alternatively, they may reflect sex differences in anatomy and biomechanics.

Comparisons with other Enslaved Populations

There are few studies of enslaved skeletal populations in the Americas, and the type of information and number of individuals available vary considerably (Table 74). Poor preservation can also limit collectable data. This is the case for Barbados, West Indies, enslaved plantation series, where analysis was largely confined to dental characteristics (Corruccini et al. 1982). Thus the number of enslaved populations where MSMs have been studied is extremely limited with just four burial sites documented. In addition, the Kelley and Angel's (1987) plantation sample did not comprise a single cemetery sample but instead consisted of scattered burials from across Maryland and Virginia.

Direct comparisons of the incidence of specific markers are problematic because of differences in data collection methodologies across studies. However, it is at least possible to compare general patterns of the types of stresses experienced. Kelley and Angel (1987) gave no precise descriptions relating to the occupational markers in the plantation/farm slave sample. They did find that overall nutrition and lon-
gevity for Catoctin males were greater than for rural enslaved and attributed this to the value placed on skilled workers by the slaveholders, perhaps resulting in better nutrition and living conditions.

Markers of work stress in the Catoctin industrial enslaved sample are interesting, given the association of these enslaved workers with the ironworks and the relatively well-defined labor pattern. This sample showed some broad similarities to the New York African Burial Ground, particularly in the early age of onset for MSMs: (1) an 18–20-year-old female had well-developed attachments, particularly for the deltid tuberosities and the clavicular attachments; (2) the youngest adult male, around 20 years old, had marked supinator crest and gluteal development; (3) a male in his late twenties also showed marked arthritis of the knee and right elbow; and (4) a female of approximately 18 years had a Schmorl’s node. In general, Kelley and Angel (1987) painted a picture of fairly heavy stress with evidence of heavy lifting inferred from the frequency of deltid, pectoral, and teres major MSMs, as well as shoulder and vertebral breakdown. These general patterns are shared with the New York African Burial Ground sample. There were several cases of cervical “arthritis” (osteoarthritis?) that they associated with skilled craftpersons rather than carrying loads because of its co-occurrence with MSMs in the finger phalanges.

In their earlier work, Kelley and Angel (1983:17) also suggested a specific link between hypertrophy of the supinator crests in Catoctin males with “manipulating an iron with long reach.” A later paper (Kelley and Angel 1987:207–208), however, acknowledged a considerably broader explanation of precision crafts work and use of an axe.

Rathbun (1987) also documented physical stress within a rural enslaved population from South Carolina. Unfortunately, he provided no information on the age of the formation of stress markers, but the presence of hip osteoarthritis in 100 percent of the male sample implies at least some individuals in their 20s were afflicted. As measured by rates of osteoarthritis, stress was most apparent in the shoulder, hip, and lower vertebrae. This varies from the results of the New York African Burial Ground sample, in which appendicular osteoarthritis was lowest in the shoulder and moderate in the hip, in comparison to the knee, ankle, and foot. Of interest is the similarity when one examines incidence by sex. At both South Carolina and in our New York City sample, males were more frequently affected by osteoarthritis of the elbow and females at the knee (see Tables 70 and 71). Although the exact physical stresses and labor varied between these two populations, these similarities may be a signature of broad occupational differences, with males lifting and carrying more and female stress at the knee associated with bending and kneeling in household labor tasks. Incidence of cervical osteophytosis was similar to lumbar rates in males at South Carolina, but female cervical rates were nearly twice that of the lumbar rates. This suggests greater sex differences in the regional stresses of the neck and back than was found in the New York African Burial Ground sample. Perhaps this signals greater differences in the types of carrying done by males and females in this rural population versus our urban sample or, as suggested at Catoctin, females were bending the neck while performing some types of craft work and/or household work. The only MSM mentioned by Rathbun (1987) was the supinator crest insertion, which was more frequently affected in males than in females. Once again, no significant sex difference in this attachment was found in the New York African Burial Ground sample.

Owsley et al.’s (1987) sample from New Orleans should be most similar to the one from the New York

Table 74. Skeletal Studies of Musculoskeletal Stress Markers in Enslaved African Americans

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>n<sup>a</sup></th>
<th>Population</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charleston, South Carolina</td>
<td>1840–1870</td>
<td>28</td>
<td>plantation slaves</td>
<td>Rathbun (1987)</td>
</tr>
<tr>
<td>New Orleans, Louisiana</td>
<td>1721–1810</td>
<td>13</td>
<td>urban slaves</td>
<td>Owsley et al. (1987)</td>
</tr>
<tr>
<td>Catoctin, Maryland</td>
<td>1790–1820</td>
<td>16</td>
<td>industrial slaves (ironworkers)</td>
<td>Kelley and Angel (1983, 1987)</td>
</tr>
<tr>
<td>Maryland and Virginia</td>
<td>1690–1860</td>
<td>76</td>
<td>plantation/farm slaves</td>
<td>Kelley and Angel (1987)</td>
</tr>
</tbody>
</table>

^a Includes adult remains only.
African Burial Ground because it also consisted of an urban rather than rural enslaved population, albeit with a very small sample size of 13 individuals. It is unclear at what age degenerative joint changes were first observable in this sample, but only 1 female showed moderate to severe lipping of the glenoid fossae, whereas 8 males showed pronounced osteoarthritic changes of various joints. In this study, joint surfaces were scored separately, so it is somewhat difficult to compare with our results. However, the upper limbs in general were more often affected than the lower limbs, a reversal of the pattern seen at the New York African Burial Ground. Greater similarities were found in MSMs for males with hypertrophy of the deltoid, supinator, and biceps brachii insertions. Muscle attachment sites changes in the lower limbs were “equally profound” for most males (Owsley et al. 1987:191). Although females had lower overall MSM scores in the New York African Burial Ground sample, the sex differences in New Orleans seem much greater, with only relatively minor hypertrophies in females, suggesting to the authors that they were performing less heavy physical labor than males, perhaps as enslaved domestic laborers. At least 2 of the older African American males at New Orleans did not show MSM development, again suggesting variability in the severity of labor within urban enslaved populations and a social hierarchy. Consistent with this finding, the New York African Burial Ground population had incidences of osteoarthritis and MSMs that varied greatly among individuals independent of age. Both urban sites contrast with the more consistently high levels of stress documented in the rural enslaved of South Carolina, who presumably would have engaged in plantation work and farmwork with less variability in the types of tasks performed.

Conclusions

There are no historical documents indicating the occupation or types of forced labor experienced by specific individuals from the New York African Burial Ground. Nor is it a site such as Catoctin Furnace or a hunting and gathering society where a limited number of activities might be inferred from contexts. In a series such as that from the New York African Burial Ground, linking individuals with specific occupations would be imprudent when one considers the wide range of possible activities that might affect a single marker, differences in individual anatomy, and idiosyncrasies in the way a single task may be performed (Capasso et al. 1999; Jurmain 1999; Knüsel 2000; Stirland 1991). The inability to confidently assign specific occupations to individuals does not imply that all analyses of habitual activity markers are meaningless. Information about the general labor conditions and levels of mechanical stress can be assessed. The most consistent results of this study are those that suggest strenuous labor began at an early age for at least some individuals, based on the presence of osteophytosis, osteoarthritis, enthesopathies, and Schmorl’s nodes in the youngest age category of 15–24 years. Osteoarthritis in the lower limbs and especially the ankles of individuals 15–35 years old suggests high general stress, perhaps walking on rough terrain, inclines, or stairs with loads. Osteophytosis and osteoarthritis of the cervical vertebrae, together with hypertrophy of the linea aspera, gluteus maximus, and deltoids, provide evidence of lifting and carrying loads on the back, shoulders, or head.

Few sex differences were present, so there is little evidence that males and females were specifically involved in activities that would result in large differences in overall mechanical stress levels. This does not mean that certain labors were not specifically designated to one sex, just that each sex could have performed separate but equally arduous tasks on a regular basis. Although sex differences were not common, they were present. The elbow joint showed somewhat higher frequencies of osteoarthritis among males, along with relatively higher hypertrophy for the biceps brachii and pectoralis major/lattissimus dorsi/teres minor attachments, all of which are associated with carrying and lifting loads. In females, there was a relatively higher ranking of hypertrophy of the coracoclavicular, supinator crest, and brachialis, which are associated with repetitive back-and-forth motions and forearm supination (The pectoralis major/lattissimus dorsi/teres minor are also included). Variability among individuals in the number and severity of stress markers has been emphasized throughout this chapter. This result is consistent with arduous labor in an eighteenth-century urban environment.

Trauma

Dislocation

We found only one clear case of a dislocation is apparent in the New York African Burial Ground population. It was in the left temporomandibular joint of a male aged 35–45 years (Burial 151). Dislocations do not
often leave a skeletal signature and when they do, they are usually subtle (Jurmain 2001). It is likely that dislocations are underdiagnosed in all skeletal populations.

Fracture Scoring

Premortem fractures were diagnosed when there was any remodeling of the bone (usually extensive healing), indicating survival after the trauma occurred. Perimortem fractures (unhealed fractures in living bone that occurred around the time of death) are those that are clearly not caused by recent burial or geologic processes, excavation, or curation (Merbs 1989b). Because it is often difficult to distinguish perimortem and postmortem fracture, a third category of ambiguous perimortem is included in the analysis.

Evidence of trauma in the skeleton is an indicator of both accidents associated with labor and violence against the individual. One would expect to observe fractures associated with both sources in an enslaved population. Perimortem fractures can be especially informative in the case of violence. Although it is not usually possible to associate fractures with cause of death (Burial 25, below, representing such a case), perimortem fractures are almost certainly indicative of the manner of death.

Results of Fracture Analysis

A total of 117 fractures in 23 males and 81 fractures in 18 females were present in adults (see Table 66). The cranium was the most common site for the fractures in males (23.5 percent; Figure 127), followed by the ribs (9.4 percent). Cranial fracture (11.1 percent) was common relative to fracture rates in other elements in females and was similar to the percentage of fractures in the femur (12.4 percent). The vast majority of these fractures were either perimortem or ambiguous perimortem for both males (79.5 percent) and females.
Table 75. Number of Fractures by Skeletal Region in Adults by Sex

<table>
<thead>
<tr>
<th>Skeletal Region</th>
<th>Males</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Females</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Premortem</td>
<td>Perimortem</td>
<td>Ambiguous Perimortem</td>
<td>%</td>
<td></td>
<td>Premortem</td>
<td>Perimortem</td>
<td>Ambiguous Perimortem</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Skull</td>
<td>—</td>
<td>9</td>
<td>20</td>
<td>24.8</td>
<td></td>
<td>—</td>
<td>6</td>
<td>5</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>17.1</td>
<td></td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>Upper limb</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>23.1</td>
<td></td>
<td>—</td>
<td>22</td>
<td>3</td>
<td>30.9</td>
<td></td>
</tr>
<tr>
<td>Lower limb</td>
<td>5</td>
<td>14</td>
<td>13</td>
<td>27.4</td>
<td></td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Hands and feet</td>
<td>6</td>
<td>—</td>
<td>3</td>
<td>7.7</td>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>6.2</td>
<td></td>
</tr>
</tbody>
</table>

*Percentage of the 117 fractures recorded for males.

Subadult Fractures

Fractures were present in three subadults, of unknown sex, aged 10–14. Burial 253 had a premortem fracture of the occipital and left temporal (Figure 131). Burial 180 had 2 premortem fractures of the left clavicle. There were also 2 ambiguous perimortem fractures to both the radii and ulnae. The remaining 18 fractures in the child of Burial 180 were perimortem. They were distributed throughout the skeleton including the long bones of all four limbs, the pelvis, and the cranium.

Numerous individuals in this population had fractures, and it is especially telling that many of them were perimortem. It is certainly possible that at least some of these fractures are related to the cause of
death, particularly in cases of perimortem cranial fractures. For individuals with extraordinarily large numbers of perimortem fractures, it is unlikely that they were the result of accidental injury. Captives were subject to being beaten and murdered. It is also possible that the fractures were inflicted shortly after death for unknown reasons.

Burial 25 is the most dramatic case of interpersonal violence in the New York African Burial Ground sample. A 20–24-year-old, 5-foot 1-inch tall woman, Burial 25 was found with a lead musket ball lodged in her rib cage (Figure 132). In her pathology assessment in the file of Burial 25, osteologist M. C. Hill wrote “smooth, gracile cranium and mandible; maxilla and mandible exhibit old,darkly stained fractures with beveled edges. The patterning of these fractures (restricted to the face) is consistent with a possible La Fort injury.” With regard to the lower arms, the left radius was shown to have been shattered, with some of its fractures showing darkly stained and beveled
edges. The right radius “has a spiral green bone fracture of the distal metaphysis. There is a large flake of cortical bone missing from the anterior surface in the area of the fracture. Examination of the margins of the flake shows what appears to be a ridge of new bone along the margin and a ‘web’ of new bone inside the flaked area. This area corresponds anatomically to the area of inflammatory periosteal activity on the right ulna.” What is described here was a young woman who had been shot and who had also received blunt force trauma to the face (a rifle butt would customarily have been used to finish a shooting victim); she also suffered a “spiral,” or oblique, fracture of the lower right arm just above the wrist (Figure 133) caused by simultaneous twisting and pulling. These fractures, by virtue of their beveled form and dark color, were consistent with the fracture of living bone and were definitely not caused by the excavation. The small trace of new bone and the adjacent inflammatory response suggest that this woman lived for some short period, no more than a few days, after she was beaten. Her left arm also showed evidence of perimortem trauma but with less certainty than her other fractures exhibited.

The musket ball was located in the left chest. There was a large hole at the center of the shattered left

Figure 132. Burial 25 is shown in situ with musket ball.

Figure 133. Spiral fracture in lower arm of Burial 25.
scapula, suggesting that the projectile had entered through the upper left back. Old fracture surfaces of the ribs were also suggestive of the extent of damage that was caused by the musket ball within the thorax of this young woman. The thinness of the scapula, however, made it difficult to observe beveling (expected when living or green bone breaks) so that assessment of the point of entry remains plausible although inconclusive. Burial 25, according to Holl’s archaeological report (Holl 2001:116), was part of a “tight group of three burials that seems to constitute a well-delineated unit” that also included Burial 32 (a superannuated, 55+-year-old man) and Burial 44 (a 3–9-year-old child). This young woman appears to have died while resisting a person or persons with access to firearms.

Trauma at the New York African Burial Ground shows a unique pattern relative to other sites in the number of perimortem fractures. At Catoctin, there were a few minor antemortem fractures in a wrist (distal radius), ulna, clavicle, metatarsal, and metacarpal, plus a dislocation of a hip and perhaps one shoulder, which could have easily been related to accidental injury, although interpersonal violence was not ruled out. Incidence of fracture is not available from South Carolina. At New Orleans, no perimortem fractures were reported, but three males did have antemortem fractures that are more indicative of violence than accidental injury. One male had three cranial fractures and the degree of remodeling suggested that these fractures were inflicted in at least two different episodes. A second male had healed cranial fractures as well as a healed parry fracture of the ulna, and a third male also had a single parry fracture. The New York African Burial Ground does show cranial fractures in both males and females as well, suggesting interpersonal violence. The lack of such fractures at Catoctin may indeed reflect better treatment of skilled enslaved laborers in that location than in eighteenth-century New York.
Growth and developmental status is often used as an indicator of general health status at the population level. A brief review of literature regarding human skeletal growth and development indicates there are several methodologies for assessing these processes in human skeletal remains (Albert and Greene 1999; Flecker 1942; Goode et al. 1993; Gruelich and Pyle 1950; Hoppa 1992; Hoppa and Fitzgerald 1999; Hoppa and Gruspier 1996; Johnston and Zimmer 1989; Livshits et al. 1998; Miles and Bulman 1994; Saunders 1992; Saunders et al. 1993; Sciulli 1994; Todd 1937). Particularly, adult height may be used as a proxy for an individual’s general state of childhood and adolescent nutritional status (Goode et al. 1993; Hoppa 1992; Miles and Bulman 1994). However, Hoppa (1992) and Miles and Bulman (1994) have recently proposed the use of cross-sectional long-bone growth profiles in archaeological populations as a means to assess a population’s health status, using long-bone lengths as a proxy for stature estimates for immature remains. On the other hand, Goode et al. (1993:323) proposed standardizing (see below) all long-bone measurements as a method of representing any or all long bones measured in a single graphic plot. This method was promoted as a means of: (1) circumventing situations wherein infant and child skeletons are either fragmentary or skeletal elements are not equally represented, (2) promoting intra- and interpopulation growth comparisons, and (3) as a means of diagnosing individuals with grossly deviant standardized values for closer analysis of the abnormality.1

A more thorough discussion of literature that pertains to studies relating long-bone lengths to health status can be found in Goode-Null (2002), Hoppa and Fitzgerald (1999), and Miles and Bulman (1994). Previously, many such analyses of long-bone lengths were used to predict the age of unknown individuals (Jantz and Owsley 1984; Ubelaker 1989). However, the Hoppa and Fitzgerald study revealed that diaphyseal long-bone lengths were too variable when comparing four populations across temporal and geographic contexts. Their study also illustrated the complex relationship between environment and the biology of growth by comparing age estimates based on humeral and femoral lengths for seven geographically and temporally disparate populations. Their conclusion was that standards for diaphyseal length were capable of grossly under- or overestimating the age of immature individuals.

The overarching goal of this chapter is to produce an anthropologically grounded body of information that will broaden our knowledge about the life experiences of enslaved African children in New York City. Specific chapter objectives are to: (1) assess the growth status of individuals; and (2) compare growth status, between the sexes, where appropriate, and with other indicators of health and well-being, specifically those associated with physical activity and labor, to achieve a more holistic perspective of childhood under enslavement. These objectives lend themselves to addressing the following more general question about life in the African and African American community of eighteenth-century New York City: How did the institution of slavery affect the overall health and well-being of the children in the New York African Burial Ground population?

Because of the often fragmentary and variable representation of skeletal elements of these individuals, it

1 Goode-Null (2002) recommended using the broader definition of “disease” that incorporates trauma, rather than the more restrictive definition used by Goode et al. (1993) which focused on infectious events. Goode-Null also noted that this method provides an opportunity to verify age assessment in individuals with extreme d1 or d1 mean values.
has been necessary to focus predominantly on growth, osteometric data analysis, in relation to health status and biomechanical stressors. However, development is partially addressed in relation to biomechanical stressors and the high incidence of craniosynostosis (premature fusion of the sutures in the cranium) diagnosed in this population. Given the extensive nature of the New York African Burial Ground Project, skeletal development will be analyzed in future studies and publications related to skeletal developmental asymmetry.

Methodology

The overall condition of the skeletal remains from this site ranged from poor to excellent. The assessment presented in this chapter consisted of the analysis of metric and nonmetric data collected according to the Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker 1994). The data included but were not limited to: dental and skeletal age (e.g., epiphyseal closure), sex (for adult remains), pathology, trauma, and osteometrics. These data have been recorded and entered into an SPSS 10.0 Graduate Student Statistical Package database and were used in the analysis presented here.

The methodologies employed in the analysis of growth relied upon building a baseline population sample from which subsamples could be drawn for specific statistical tests. Therefore, the methodological section of the chapter first delineates how the baseline sample was selected and is followed by more specific descriptions of how subsamples were drawn.

Criteria for Baseline Sample Size

Several criteria for determining which individuals could be included were employed in the construction of a baseline sample for this study. First and foremost, only those individuals for whom age assessments could be made were included. Secondly, age assignment had to have been based on either dental ages (for individuals less than 15–20 years) or pelvic ages (for individuals 17 years and older), or more than one aging method if the individual was an adult without a pelvic age assessment. Age assessments for infant and juvenile remains were restricted to dental sequences as they exhibit the highest correlation with chronological ages (Demirjian 1986; Lewis and Garn 1960; Smith 1991). Additionally, dental ages are more highly correlated between sexes than either epiphyseal union or long-bone lengths. Specifically, skeletal development remains relatively androgynous until the onset of testosterone production in the 6–8-week-old male embryo (Pryor 1923; Tanner 1990). At this point, the female embryo continues to develop skeletally at a fairly steady rate, whereas males begin to lag. This sexually differentiated pattern of development progresses from days to weeks during fetal life and then to months postnatally (Pryor 1923; Pyle and Hoerr 1955). Similar reasoning underlies the preference for using pelvic morphology as the primary indicator of age in older subadults and adults. However, it was deemed appropriate to use mean-age assessments for two or more aging techniques in the absence of pelvic age indicators. This is predicated upon the higher probability of being able to apply alternative aging methods in a sex-specific manner when assessing older subadults and adults. Due to the criteria used for constructing this baseline sample, there may be some inconsistencies in the ages reported for some individuals between this and other chapters when results of the analysis are presented and discussed.

Criteria used for baseline selection resulted in a maximum possible sample of 349 individuals from which subsamples for specific analyses could be drawn. A maximum cut-off age of 25 years (young adult) for inclusion in the subsamples was chosen to ensure a more complete/complex analysis of how the lifeways of enslavement impacted the growth, development, and health status of this population. Of these 349 individuals, 153 were adults, and 194 were less than 25 years of age (172 were 20 years of age or less, and 135 were less than 15 years of age), and thus available as a baseline subsample to specifically assess growth status within the skeletally immature segment of the population.

Growth

Considerable data relating to human growth and development were collected and entered into the project database. These data included dental development, epiphyseal union scores, and long-bone measurements, which have been used to calculate composite ages for all individuals. This study used the existing New York African Burial Ground database to meet the objective of assessing overall and differential childhood health and well-being of the New York African Burial Ground immature individuals vis à vis growth. To achieve this objective, data related to
demographic trends in growth status were analyzed separately and in conjunction with data related to pathologies, biomechanical stress indicators, and trauma (see below).

A critique of long-bone growth profiles recommends the following methods to assess growth in this population: (1) standardized long-bone measurements (Goode et al. 1993; Sciulli 1994), and (2) stature estimation. It is generally understood that for both males and females, skeletal maturity (cessation of growth and union of secondary growth centers), under optimal conditions, is usually attained at about 20 years of age (21 years for males, 18 years for females). Thus, to adequately assess growth status in this population, all individuals under the age of 25 years (n = 194) and represented by postcranial remains comprised the base sample for data collection. The number of individuals that had sufficient aging criteria and long bones (minimally) that could be included in this portion of the analysis was 130. Of these 130 individuals, 48 were younger than 25 years.

Long-Bone Length Standardization

Long-bone measurements have been standardized for growth assessment using a very simple ratio calculation. Once age (specifically dental) determination was completed, diaphyseal length of a long bone was divided by the appropriate-for-age diaphyseal length found in one of the available growth standards. For example: Burial 96 was designated as a male with composite pelvic age of 17 years. His femoral length was 43 cm, but the Maresh (1970) standard (see below) indicates an average femoral length of 50.89 cm for 17-year-old males. Thus, the resulting proportion, signified by δ_l was 43/50.89 or 0.845. Thus, if an individual was represented by a single long bone (δ_l), or by multiple long bones, they could be represented in the plot of δ_l for the population (for additional information on computing δ_l values, see Goode et al. [1993]). For those individuals represented by more than one long bone, a mean value of the δ_l for all separate long bones, designated δ_l^{mean}, can be calculated and plotted. As Goode et al. (1993) indicated, a δ_l greater than unity would represent a bone (or bones if δ_l^{mean} that was (were) longer than the standard value, whereas the opposite was true for δ_l and/or δ_l^{mean} values less than unity.

The standard used to test this method was derived from the long-bone data series collected by the Child Research Council of Denver, Colorado, on living children, as originally reported on by Maresh in 1955 (cf. Goode et al. 1993). However, the Denver research group continued to collect data until 1967, and Maresh provided an updated version of the data used by this method in 1970. The updated data reported on by Maresh has recently been republished (Scheuer and Black 2000) and is easily accessible, which promotes the use of this method for interpopulation comparisons, as well as further testing of the method itself to delimit its explanatory power in relation to skeletal growth across time and space.

One such test of the standardization of long-bone measurements is provided by Sciulli (1994). Sciulli also used the same standard for long-bone lengths (Maresh 1955) to calculate δ_l and subsequent δ_l^{mean} values. However, he substituted Fazekas and Koša’s (1978) long-bone data at 10 lunar months for Maresh’s data at 2 months in the birth cohorts of the populations being tested.

Perhaps the most significant contribution of Sciulli’s (1994:257) test of the standardized long-bone measure technique is his finding that not all δ_l were equivalent, “and therefore the magnitude of the overall measure δ_l^{mean} depends on which long bone(s) contribute to it.” This conclusion is based on two tests he performed. First, Sciulli plotted and compared Maresh’s long-bone lengths. This resulted in observing that the femur has the greatest growth velocity rate, followed by the tibia and fibula, which were similar. These were followed by the humerus, then the radius and ulna, which were also similar and showed the slowest growth rates. Secondly, Sciulli (1994:258) demonstrated that the five Native American samples in his test of the method “show a significant concordance in relative long bone length.” This concordance indicates that, for these samples, elements rank from smallest to largest in length, relative to the Maresh standards, in the following manner: femur, tibia, fibula, humerus, and radius and ulna (equally large). Sciulli (1994:258) concluded that the pattern found in relative long-bone lengths for the five Native American samples can be explained if one accepts the hypothesis that “the most rapidly growing long bones will be the most greatly affected by nutritional and disease stress.” Otherwise, he concluded that the patterns observed in his test of the method may be due to inherent differences in growth patterns of the long bones of Native Americans and those of the reference population.

Sciulli’s latter point will be addressed below. However, it is important to note that Maresh’s data on long-bone lengths are based on a sample composed...
of 123 males and 121 females who participated in this longitudinal (1930–1967) health study from birth until at least 18 years of age. These children were of white European descent (primarily Northern European), and were from families whose socioeconomic status can be characterized as middle- to upper-middle class. The logic behind recruiting children from such families was to insure that: (1) parents had a sufficient understanding of the project goals to maintain a long term commitment, (2) private medical care was available to the participants to reduce the influence of project staff over their health care, and (3) adequate food resources were not economically dependent (McCammon 1970:6).

The decision to use this reference population in standardizing long-bone measurements for the New York African Burial Ground population was predicated upon several factors. First, it will facilitate comparisons with previous studies. Second, the genetics of human growth and particularly development are the same for all populations. Specifically, a subset of developmental genes, known as homeobox genes, are essentially “phylogenetic” genes, and thus more highly canalized (under stricter biological control). These homeobox genes are responsible for controlling segmentation and sequencing of other genes during development (Mange and Mange 1988; Weiss 1993). On the other hand, genes controlling growth are much more plastic, or susceptible to environmental impacts (Center for Disease Control [CDC]/National Center for Health Statistics [NCHS] 2001: http://www.cdc.gov/nccdphp/dnpa/growthcharts/training/powerpoint/slides/011.htm). Here, it is necessary to be explicit regarding the meaning of the terms growth and development. Acheson (1966:465) noted that growth is “the creation of new cells and tissues,” whereas maturation and development “is the consolidation of tissues into permanent form.” These definitions were reiterated by Bogin (1999) when he noted that growth is a change in size, whereas development refers to a change in shape.

Consequently, secular trends in growth within and between populations, such as those reported by Sciulli (1994), have a stronger relationship to environmental factors such as political-economic conditions or hypoxic stress. Therefore, this reference population acts as a gold standard, providing an opportunity to assess the level of impact that the political economy of enslavement had on the growth of the New York African Burial Ground children. Lastly, this is one of the few longitudinal growth studies undertaken in an environment with a naturally occurring stressor—namely, high altitude. In addition to chronic exposure to hypoxic stress, McCammon’s (1970:23–38) description of the population included sufficient background information related to the incidences, types, and timing of illnesses experienced by these children to indicate that there was exposure to short- and long-term health stressors that could negatively impact the growth of at least some of the children in this study. This, finding then, offsets to some extent the critique that the applications of growth standards derived from homogeneous populations do not adequately reflect the variety of natural and social conditions experienced by populations that do not meet the same demographic and/or epidemiological composition. This point will be revisited in the following section. In this study, the method for calculating standardized long-bone measures (δl and δl_mean) as described by Goode et al. (1993) was followed. However, as outlined by Sciulli, long-bone measures provided by Fazekas and Koša (1978) were used to calculate the standardized long-bone measures in fetal and neonatal remains. Additionally, all individuals under the age of 25 years were included to verify the potential for diagnosing “catch-up” growth with this method when applied to cross-sectional data. Where possible, results from this analysis are compared to those of Goode et al. (1993) and Sciulli (1994).

Stature

Stature estimates for adults were calculated using regression formulas for African American males and females as developed by Trotter (1970; cf. Ubelaker 1989; Table 77). Fazekas and Koša’s (1978:264) non-sex-specific regression formulas, as seen in Table 78, for fetal and neonatal recumbent length were used to estimate the measurements for fetal remains. It should be noted that Table 77 indicates the standard error of the stature estimate per long bone, but Table 78 does not. The standard errors per long bone for fetal and neonatal recumbent length estimates were not provided by Fazekas and Koša.

Using formulas provided by Trotter and Fazekas and Koša provides opportunities for comparative analyses with previous studies of enslaved Africans and African Americans.

2 Based on an examination of the supporting data included in the original text, the lack of standard errors of the estimates is most likely a result of the extremely small values for this measure.
Only recently has a study been undertaken using regression formulas for estimating the stature at death for juvenile and subadult remains. In the present study, we use a sex-specific and composite-sex linear regression formulas for the calculation of estimated stature for immature remains (Tables 79–81). The regression formulas were constructed by using the National Center for Health Statistics (NCHS 2000) recumbent length (infant) and stature data (children 2–20 years of age) as the dependent variable and growth-series data for long bones (Maresh 1970) as the predictive or independent variable (Goode-Null 2002). Using these reference data sets to compute the regression formulas and applying them to the New York African Burial Ground remains is based upon the fact that secular trends in growth are highly correlated with environmental conditions, as mentioned previously. Specifically, the CDC/NCHS states they “promote one set of growth charts for all racial and ethnic groups. Racial- and ethnic-specific charts are not recommended because studies support the premise that differences in growth among various racial and ethnic groups are the result of environmental rather than genetic influences” (http://www.cdc.gov/nccdphp/dnpa/growthcharts/training/powerpoint/slides/011.htm).

All regression equations were applied in a sex-specific manner, if appropriate, to both mean long-bone lengths and individual long-bone lengths. For individuals of indeterminate sex, the composite regression formulas for birth to less than 12 months, and greater than or equal to 12 months to less than 12 years were applied. Individuals over the age of 12 years were assessed by calculating male and female stature estimates that were then averaged to achieve a mean height at death. Stature was computed for a total of

<table>
<thead>
<tr>
<th>Element</th>
<th>Male Formulas (in cm)</th>
<th>Female Formulas (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td>length × 3.26 + 62.10 ± 4.43</td>
<td>Humerus</td>
</tr>
<tr>
<td>Radius</td>
<td>length × 3.42 + 81.56 ± 4.30</td>
<td>Radius</td>
</tr>
<tr>
<td>Ulna</td>
<td>length × 3.26 + 79.29 ± 4.42</td>
<td>Ulna</td>
</tr>
<tr>
<td>Femur</td>
<td>length × 2.11 + 70.35 ± 3.94</td>
<td>Femur</td>
</tr>
<tr>
<td>Tibia</td>
<td>length × 2.19 + 86.02 ± 3.78</td>
<td>Tibia</td>
</tr>
<tr>
<td>Fibula</td>
<td>length × 2.19 + 85.65 ± 3.53</td>
<td>Fibula</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Fetal/Neonate Regression Formulas (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td>length × 7.52 + 2.47</td>
</tr>
<tr>
<td>Radius</td>
<td>length × 10.61 + 3.95</td>
</tr>
<tr>
<td>Ulna</td>
<td>length × 8.20 + 2.38</td>
</tr>
<tr>
<td>Femur</td>
<td>length × 6.44 + 4.51</td>
</tr>
<tr>
<td>Tibia</td>
<td>length × 7.24 + 4.90</td>
</tr>
<tr>
<td>Fibula</td>
<td>length × 7.59 + 4.68</td>
</tr>
</tbody>
</table>

Table 78. Fetal and Neonate Stature Regression Formulas as Developed by Fazekas and Kośa (1978)

3 Specifically, the data sets are the product of the U. S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Data Services.
Table 79. Regression Formulas for Calculating Stature of the Immature Remains of Male Children

<table>
<thead>
<tr>
<th>Age</th>
<th>Regression Formulas (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 7.50 + 1.72 \pm 2.34 \ (p < .05, r^2 = .995)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 4.66 + 26.71 \pm .53 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 4.54 + 29.66 \pm .80 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 150 months < 186 months</td>
<td>length $\times 4.42 + 25.41 \pm 3.93 \ (p < .001, r^2 = .996)$</td>
</tr>
<tr>
<td>\geq 186 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 9.25 + 1.7 \pm 3.29 \ (p < .05, r^2 = .990)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 6.43 + 23.42 \pm .49 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 6.07 + 29.41 \pm .85 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 150 months < 186 months</td>
<td>length $\times 5.72 + 28.40 \pm 3.52 \ (p < .001, r^2 = .997)$</td>
</tr>
<tr>
<td>\geq 180 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 8.88 - 2.87 \pm 2.64 \ (p < .05, r^2 = .995)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 6.07 + 20.23 \pm .54 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 5.68 + 27.41 \pm 1.04 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 150 months < 186 months</td>
<td>length $\times 5.23 + 32.23 \pm 2.87 \ (p < .001, r^2 = .998)$</td>
</tr>
<tr>
<td>\geq 186 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Femur</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 4.59 + 16.27 \pm 2.49 \ (p < .05, r^2 = .990)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 2.97 + 35.85 \pm .39 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 2.85 + 39.19 \pm .57 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 150 months < 216 months</td>
<td>length $\times 3.14 + 16.13 \pm 3.55 \ (p < .001, r^2 = .995)$</td>
</tr>
<tr>
<td>\geq 216 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 6.54 + 8.62 \pm 5.93 \ (p < .05, r^2 = .960)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 3.64 + 36.03 \pm .37 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 3.40 + 42.10 \pm .70 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 150 months < 216 months</td>
<td>length $\times 3.79 + 13.43 \pm 2.07 \ (p < .001, r^2 = .998)$</td>
</tr>
<tr>
<td>\geq 216 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Fibula</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length $\times 6.77 + 9.08 \pm 4.98 \ (p < .05, r^2 = .971)$</td>
</tr>
<tr>
<td>\geq 12 months < 84 months</td>
<td>length $\times 3.59 + 37.38 \pm .43 \ (p < .001, r^2 = 1.00)$</td>
</tr>
<tr>
<td>\geq 84 months < 150 months</td>
<td>length $\times 3.56 + 38.92 \pm .71 \ (p < .001, r^2 = .999)$</td>
</tr>
<tr>
<td>\geq 150 months < 216 months</td>
<td>length $\times 3.79 + 19.67 \pm 2.75 \ (p < .001, r^2 = .997)$</td>
</tr>
<tr>
<td>\geq 216 months</td>
<td>adult formula</td>
</tr>
</tbody>
</table>
Table 80. Regression Formulas for Calculating Stature of the Immature Remains of Female Children

<table>
<thead>
<tr>
<th>Age</th>
<th>Regression Formula (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 7.49 + 0.92 ± 2.76 (p < .05, r² = .993)</td>
</tr>
<tr>
<td>≥12 months < 84 months</td>
<td>length × 4.70 + 25.63 ± .63 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months < 150 months</td>
<td>length × 4.63 + 27.68 ± 1.62 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>≥150 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 10.45 - 5.05 ± 3.36 (p < .05, r² = .992)</td>
</tr>
<tr>
<td>≥12 months <84 months</td>
<td>length × 6.57 + 22.99 ± .81 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months <150 months</td>
<td>length × 6.11 + 30.66 ± 1.30 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>≥150 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 10.06 - 10.52 ± 3.24 (p < .05, r² = .993)</td>
</tr>
<tr>
<td>≥12 months <84 months</td>
<td>length × 6.13 + 19.90 ± .88 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months <150 months</td>
<td>length × 5.60 + 29.70 ± 1.45 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>≥150 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Femur</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 4.49 + 15.90 ± 1.94 (p < .05, r² = .994)</td>
</tr>
<tr>
<td>≥12 months <84 months</td>
<td>length × 3.01 + 34.15 ± .56 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months <144 months</td>
<td>length × 2.88 + 38.49 ± 1.16 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥144 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 6.69 + 6.72 ± 5.58 (p < .05, r² = .965)</td>
</tr>
<tr>
<td>≥12 months <84 months</td>
<td>length × 3.70 + 34.39 ± .55 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months <144 months</td>
<td>length × 3.34 + 43.68 ± 1.49 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>≥144 months</td>
<td>adult formula</td>
</tr>
<tr>
<td>Fibula</td>
<td></td>
</tr>
<tr>
<td>0 <12 months</td>
<td>length × 6.90 + 7.62 ± 5.71 (p < .05, r² = .963)</td>
</tr>
<tr>
<td>≥12 months <84 months</td>
<td>length × 3.65 + 35.98 ± .65 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>≥84 months <144 months</td>
<td>length × 3.58 + 38.69 ± 1.28 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>≥144 months</td>
<td>adult formula</td>
</tr>
</tbody>
</table>
The New York African Burial Ground

132 individuals from the New York African Burial Ground population. Comparisons to the CDC growth standards were then undertaken for stature estimates for all individuals under age 25 years for whom age assessments were made (n = 48).

Development

As noted previously, the extensive nature of the New York African Burial Ground and the fragmentary and variable representation of skeletal elements did not support an analysis of development at this time. Future studies are planned for such an analysis when additional data can be collected from radiographic films. However, it was possible to undertake a brief qualitative examination and discussion in relation to the presence of craniosynostosis. Craniosynostosis was observed in a total of 15 individuals under the age of 25 years. This high rate of occurrence will be examined in relation to primarily potential biomechanical, and to a lesser extent nutritional and genetic, stressors or causes.

These results were also compared to data available in the project database regarding trauma and nondisease pathologies related to biomechanical stressors in an attempt to assess explanatory relationships in an age- and sex-specific manner. Specifically, long-bone fractures were assessed in relationship to individual growth status, as were the nondisease pathologies of arthritic lesions, enthesopathies, and hypertrophies. Also, generalized nonspecific infectious lesions and anemias were correlated with stature to assess how differential access to nutritional resources may have impacted the growth of individuals in the New York African Burial Ground. All data analysis was accomplished using SPSS 10.0 Graduate Student Statistical Package for Windows. Specific tests used included chi-square and correlations, with significance levels set at 5 percent (p = .05). Power analyses were performed to determine the probability of detecting type

<table>
<thead>
<tr>
<th>Age</th>
<th>Regression Formula (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 7.51 + 1.17 ± 2.16 (p < .001, r² = .990)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 4.70 + 25.63 ± .63 (p < .001, r² = 1.00)</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 9.69 - 0.73 ± 2.58 (p < .001, r² = .987)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 6.57 + 22.99 ± .81 (p < .001, r² = .998)</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 9.32 - 5.67 ± 2.49 (p < .001, r² = .990)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 6.13 + 19.90 ± .88 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>Femur</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 4.54 + 16.08 ± 2.29 (p < .001, r² = .980)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 3.01 + 34.15 ± .56 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 6.63 + 7.51 ± 3.55 (p < .001, r² = .967)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 3.70 + 34.39 ± .55 (p < .001, r² = .999)</td>
</tr>
<tr>
<td>Fibula</td>
<td></td>
</tr>
<tr>
<td>0 < 12 months</td>
<td>length × 6.87 + 8.25 ± 3.17 (p < .001, r² = .973)</td>
</tr>
<tr>
<td>≥12 months < 144 months</td>
<td>length × 3.65 + 35.98 ± .65 (p < .001, r² = .999)</td>
</tr>
</tbody>
</table>
II (beta) errors (Hodges and Schell 1988). The power values, provided in Table 82, were calculated for small (w = 0.10), medium (w = 0.30), and large (w = 0.50) effects for the specific subsample sizes.

Analysis

There is a longstanding recognition of the synergistic relationships between (1) growth, (2) access to nutritional resources, and (3) chronic or acute infectious states (e.g., see Goodman 1992; Rankin-Hill 1997). However, few assessments of children in the archaeological record have included more than cursory examinations of activity-related skeletal indicators that integrate this triad of health factors. Therefore, the analysis presented below includes biomechanical indicators of stress as a means of enhancing the overall understanding of children’s lives by creating a quartet of interrelated factors and indicators of health. As noted previously, 48 individuals comprise a population subsample in the analysis presented below, relating to growth status, health, and labor.

Standardized Long-Bone Measures

Long-bone standardization is a relatively new method for assessing human growth from cross-sectional data that biological anthropologists often investigate. As was presented above, the method of standardization is a simple ratio (δ_l or δ_{mean}) of specific long bones to a corresponding growth standard by element. Table 83 provides the δ_l and sex-specific δ_{mean} values for the total population subsample ($n = 48$). As can be seen, this table also provides the actual number of available elements by sex for calculation of the ratio. This table illustrates that Sciulli’s (1994) conclusion—various long bones contribute differentially to δ_{mean}—is correct. When the chart in Figure 134 is consulted, it is obvious that this method does not allow the diagnosis of catch-up growth (accelerated adolescent growth that can greatly compensate for childhood growth retardation) in this population. However, Sciulli’s (1994) conclusions that environmental factors will more likely affect the long bones with the most rapid growth velocity may be valid for this population. Table 83 indicates that of the sex-specific calculations the femur, tibia, and fibula (but not the ulna) had some of the lowest δ_{mean} values. The relatively high value for the fibulae has more to do with the exceptionally low representation of this element in the remains analyzed here. The fibulae that were present for analysis represented some of the taller extremities to modern growth standards for height. This was done for both individual long-bone elements, as standardized measures, and stature estimates.

Table 82. Power Values for Statistical Chi-Square Tests Based on Subsample Sizes and Magnitude of Effect

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>w = 0.10</th>
<th>w = 0.30</th>
<th>w = 0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total subsample</td>
<td>48</td>
<td>0.1065</td>
<td>0.5472</td>
<td>0.9337</td>
</tr>
<tr>
<td>Males</td>
<td>3</td>
<td>0.0534</td>
<td>0.0815</td>
<td>0.1393</td>
</tr>
<tr>
<td>Females</td>
<td>5</td>
<td>0.0557</td>
<td>0.1029</td>
<td>0.2010</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>40</td>
<td>0.0969</td>
<td>0.4751</td>
<td>0.8854</td>
</tr>
<tr>
<td>0 < 6 years</td>
<td>30</td>
<td>0.0850</td>
<td>0.3759</td>
<td>0.7819</td>
</tr>
<tr>
<td>≥ 6 < 16 years</td>
<td>10</td>
<td>0.0615</td>
<td>0.1578</td>
<td>0.3526</td>
</tr>
<tr>
<td>≥ 16 < 25 years</td>
<td>8</td>
<td>0.0592</td>
<td>0.1357</td>
<td>0.2930</td>
</tr>
</tbody>
</table>

Note: Effect size is denoted by w.
(see discussion of stature below) and more mature members of the subsample, thus potentially skewing the value upwards.

Individual δ_l and δ_l values indicate that 73 percent ($n = 35$) of the total subsample fall below the level of unity. Within this subsample, only 1 female had a δ_l value in excess of unity, whereas 13 individuals of indeterminate sex and no males had δ_l values that exceeded unity. However, the lowest value for δ_l (0.69) represented an approximately 6-month-old infant (Burial 312). A close scrutiny of the aging and sexing database indicate that there were no discrepancies or errors made in the age assessment.

Overall, 79 percent of the individuals ($n = 38$) had δ_l values that were greater than 0.9. On the surface, this would seem to indicate that most children and young adults in this subsample had at least adequate nutrition to sustain growth. However, how standardized long-bone measures influence our interpretation of environmental interactions with growth will be incorporated more fully in the following analyses of stature and pathologies.
Stature Estimates

Stature estimates were calculated in a sex-specific manner for all individuals represented by long bones whose biological age could be determined according to the criteria set forth above. Thus, stature estimates were calculated for a total of 129 individuals (males, n = 54; females, n = 34 indeterminate, n = 41). Figures 135–137 illustrate individual stature estimates for these New York African Burial Ground individuals in relation to the select percentiles of the CDC/NCHS stature standards for males, females, and individuals of indeterminate sex, respectively. In these figures, male and female stature estimates are compared to
the twenty-fifth, fiftieth, and seventy-fifth percentiles of the CDC growth standards, and individuals of indeterminate sex are compared to the CDC male and female fiftieth percentiles. Although all three figures indicate a "normal" pattern of growth, especially as illustrated in Figure 137, they also indicate the presence of moderate to severe growth deficits at various points in the life span. Figure 135 identifies an overall growth deficit for nearly all the males in this mortuary subsample. When a close examination of males less than 25 years is undertaken by comparing Figure 135 and Table 84, it becomes apparent that all (n = 3) males fall below the tenth percentile and would be classified with moderate to severe growth impairment. There are two males (66.7 percent) who do fall below the third percentile. Females younger than 25 years, as represented by Figure 136 and Table 85, have consistently higher stature estimates for assessed age. Sixty percent of all females (n = 3) fall below the fiftieth percentile, whereas 40 percent (n = 2) fall at or above the fiftieth percentile. Two females (40 percent) fall below the twenty-fifth percentile in growth, which includes one female (20 percent) at the tenth percentile. However, females have a far greater percentage (n = 3, or 60 percent) of individuals who fall within and above the range for normal growth, with one of these females (Burial 276) falling above the ninetieth percentile.

Figure 137 is provided as an evaluation of using a composite male-female regression formula for estimating the stature for individuals of indeterminate sex. No calculations of growth percentiles were undertaken for this segment of the population subsample.

However, by looking at Figure 137 it is quite apparent that the individuals (predominantly infants and young children) were experiencing similar patterns in growth as the male and female standards, although the demarcation between those experiencing poor growth and those with normal or close to normal growth were more pronounced. As with the previous two figures, it is apparent that several individuals fall well below the twenty-fifth percentile of growth (male or female standards). Overall, an initial assessment of these data, based on the figures and tables provided above, illustrate that stature, as a gauge of health and nutritional status, indicates females within this mortuary sample were healthier in relation to their male counterparts. Yet, as pointed out by Wood et al. (1992), this conclusion may be precipitous if considered a direct evaluation of individual risk of death due to underlying differences in frailty. A further evaluation of the sex-specific stature estimates in relation to health are addressed below. The stature estimates provided above also need to be considered in relation to the standardized long-bone measurements and pathology assessment before fully committing to this conclusion.
The relationship between the δl_{mean} values presented above and stature is illustrated in Figure 138. The δl_{mean} values are presented by sex and in relation to stature estimates. They further illustrate that on the whole, the population was not reaching its growth potential. Of the 71 percent ($n = 35$) of the subsample that fell below the unity level, 3 (9 percent) were males, 5 (14 percent) were females, and 27 (77 percent) were individuals of young adolescents and children of indeterminate sex. This finding mirrors the 72 percent of the population subsample which fell at or below the twenty-fifth percentile for stature, considering that there were 39 immature individuals of indeterminate sex for which percentile rankings could not be assessed.
Correlations were undertaken to test the relationship between δl_{mean} and stature estimates, or their percentile rankings, to determine the validity of assessment of growth status based on the visual relationship between these two variables. The two-tailed test of δl_{mean} and stature estimates indicated there was a significant relationship between the two variables, something that could easily be predicted from Figures 134 and 137. However, the test of relationship between δl_{mean} and percentile rankings of stature was significant at the $p < .01$ level, with a correlation coefficient of 0.781 and an adjusted r^2 value of 0.601. The high but not perfect correlation between δl_{mean} values and percentile rankings is expected because both methods are founded on a common reference data set. However, the ability of each method to produce results that do not regress to the mean indicates that either or both of these methods can be used to probe issues of population health. The above analyses of growth status using standardized long-bone measures and stature estimates indicate that the population was, minimally, not having its physical needs met. However, physical growth, as measured by stature or long-bone growth, is not the only marker of nutritional status or health, nor is nutrition the only factor that influences growth. Therefore, the following section will present an analysis of data that relates to other skeletal indicators of nutritional stress, general infection, and indicators of biomechanical stress.

Nutritional and General Infection Indicators

Because of the synergy between nutrition and generalized infectious processes, this section will address both sets of pathologies. The first set of data to be considered is those associated most often with nutrition first and disease processes second. These data are related to anemia, specifically lesions found frequently in the craniofacial region known as porotic hyperostosis and their corresponding lesions in the eye orbit referred to as cribra orbitalia. Both orbital and cranial lesions will be referred to as porotic hyperostosis throughout the remainder of this chapter. Abnormal long-bone morphology can also be attributed to nutritional deficiencies, such as anemia, rickets (vitamin D deficiency), and scurvy (vitamin C deficiency), as well as biomechanically induced stress during growth or over prolonged periods of time. These indicators of either nutritional status and/or biomechanical stress will also be considered below. However, as there are only limited ways in which bone can react to various insults (Ortner and Putschar 1981), infectious- and dietary-related lesions may be similar in appearance at the gross level of analysis and can only be diagnosed at the microscopic or radiographic level. Thus, lesions characterized as reactive lamellar bone will be attributed to the category of generalized infectious processes, although undoubtedly some will eventually be diagnosed otherwise.

Nutritional Indicators

Porotic hyperostosis (PH) is most often associated with childhood nutritional deficiencies in iron during peak growth phases or may be attributed to genetic hemolytic disorders such as thalassemia or sickle cell anemia. The purpose of the analysis presented here is not to identify PH as iron deficiency anemia or as a hemolytic disorder; rather, it is to assess the presence of anemia-related lesions in relation to the health status of the infants, children, and young adults and its connections to their growth. Also, both nutritionally induced and inherited forms of anemias have negative consequences for growth, vis à vis their impact on cellular metabolism.

The individuals diagnosed with PH lesions in the subsample used in the current growth analysis are shown in Table 86. In addition to PH, infantile cortical hyperostosis (ICH), which is diagnosed in long
bones and may be a genetic condition or viral disease associated with anemia (Varma and Johny 2002), is included in the table. The number of PH and ICH lesions per individual is represented as a means to characterize individual frailty. Thirteen (27 percent) of 48 individuals have PH lesions, and a total of 29 percent of 48 individuals have hyperostosis lesions (PH or ICH). Males represent 7 percent (n = 1) of the affected individuals with sex assessments, and 33 percent of all males in this population subsample (n = 3). Females, in comparison, represent 14.3 percent (n = 2) of the individuals with PH, and 40 percent of the total number of females in the subsample. The individuals of indeterminate sex with PH (n = 11) were young infants and children. Five of these children (45.5 percent) were infants less than 2 years of age. In all, minimally 61 PH lesions were recorded for these 14 individuals. Given the small sample of individuals who could be sexed, the rate of lesions per individual (4.4) was calculated for the entire subsample. Tests for relationships between PH and δlmean and percentile rankings of stature were made using the chi-square test. These tests were made for the total population subsample, as well as separately for age and sex groupings when the sample size permitted. The results of these chi-square tests are presented in Table 87. As can be seen in this table, the significant levels (p) of the chi-square statistic were well above a standard alpha of 0.05. Additionally, the power values computed to assess the possibility of type II (beta) errors (Hodges and Schell 1988:175) are also indicated in this table. The values for power presented in this table are those

Table 86. Occurrence of Porotic Hyperostosis and Infantile Cortical Hyperostosis in the NYABG Population Subsample

<table>
<thead>
<tr>
<th>Burial</th>
<th>Age Range (yrs)</th>
<th>Long Bone</th>
<th>Frontal</th>
<th>Parietal</th>
<th>Temporal</th>
<th>Occipital</th>
<th>Orbital</th>
<th>Sphenoid</th>
<th>Maxillary</th>
<th>Zygomatic</th>
<th>Total Pathologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>343 19.0–23.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>205 18.0–20.0</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>122 18.0–20.0</td>
<td>—</td>
<td>1</td>
<td>4</td>
<td>—</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>186 0.0–0.17</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>64 0.38–0.88</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>225 0.5–1.25</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>91 0.67–1.30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>252 1.0–2.0</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7 3.0–5.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>55 3.0–5.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>138 3.0–5.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>39 5.0–7.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>35 8.0–10.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>368 10.5–13.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Total (n)</td>
<td>14 3 1 4 2 4 10 1 3 1</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
calculated assuming a large size effect (w = 0.50; also reported in Table 80).

Generalized Lesions of Infection

An analysis of generalized or systemic infectious lesions produced very similar results as those for the relationship between PH and growth status. The pathological observations that constituted generalized infection as a variable were: lamellar reaction (active lesion), sclerotic bone (healed lesion), bone loss, and presence of reactive woven bone (concurrently active and healing lesion). The analysis presented here focuses on the presence of infectious lesions in long bones as these skeletal elements contribute significantly to an individual’s overall stature at maturity. As with PH and ICH lesions, the number of infectious lesions per element per individuals is presented in Table 88 as a means to contemplate individual frailty. Table 88 demonstrates that it is possible to calculate that a total of 25 individuals (52 percent) in this subsample (n = 48) were diagnosed as having at least one lesion indicative of generalized infections. As with PH, individuals of indeterminate sex represent the largest group that was diagnosed with generalized infectious lesions. Females, though, had the highest rate of lesion occurrence (18 per person), followed by males and indeterminate individuals, with lesion rates of 15 per person and 10.6 per person, respectively. However, it should be noted that all males (n = 2) and all females (n = 3) with this diagnosis were over the age of 16 years, whereas all individuals of indeterminate sex (n = 20) were under 16 years of age.

<table>
<thead>
<tr>
<th>Chi-Square Test</th>
<th>Chi-Square Value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population subsample (n = 48; power = 0.9337)</td>
<td>4.168</td>
<td>.654</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>7.352</td>
<td>.499</td>
</tr>
<tr>
<td>PH by percentile ranking</td>
<td>5.284</td>
<td>.727</td>
</tr>
<tr>
<td>Age group: 0 < 6 years (n = 30; power = 0.7819)</td>
<td>4.541</td>
<td>.604</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>1.667</td>
<td>.435</td>
</tr>
<tr>
<td>Age group: 6 < 16 years (n = 10; power = 0.3526)</td>
<td>0.476</td>
<td>.788</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>1.60</td>
<td>.449</td>
</tr>
<tr>
<td>Age group: 16 < 25 years (n = 8; power = 0.2930)</td>
<td>5.156</td>
<td>.272</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>0.750</td>
<td>.386</td>
</tr>
<tr>
<td>Sex: male (n = 3; power = 0.1393)</td>
<td>3.00</td>
<td>.223</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>0.833</td>
<td>.361</td>
</tr>
<tr>
<td>Sex: female (n = 5; power = 0.2010)</td>
<td>5.000</td>
<td>.082</td>
</tr>
<tr>
<td>PH by δI_{mean}</td>
<td>4.333</td>
<td>.632</td>
</tr>
<tr>
<td>Sex: indeterminate (n = 40; power = 0.8854)</td>
<td>5.308</td>
<td>.724</td>
</tr>
</tbody>
</table>
Table 88. Generalized Infectious Lesions as Diagnosed in Long-Bone Skeletal Elements

<table>
<thead>
<tr>
<th>Burial No.</th>
<th>Age Range (yrs)</th>
<th>Humerus</th>
<th>Radius</th>
<th>Ulna</th>
<th>Femur</th>
<th>Tibia</th>
<th>Fibula</th>
<th>Total Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>16.0–20.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>343</td>
<td>19.0–23.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>17.0–19.0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>122</td>
<td>18.0–20.0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>383</td>
<td>14.0–18.0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.0–0.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.0–2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.25–0.75</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>108</td>
<td>0.25–0.75</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>225</td>
<td>0.5–1.25</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>91</td>
<td>0.67–1.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>252</td>
<td>1.0–2.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>363</td>
<td>1.0–2.0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>187</td>
<td>1.5–4.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>2.5–4.5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>3.0–5.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>3.5–5.5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>219</td>
<td>4.0–5.0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>5.0–7.0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>396</td>
<td>6.5–8.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>8.0–10.0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>11.0–13.0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>16+</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>253</td>
<td>13.0–15.0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total no. of individuals</td>
<td></td>
<td>25</td>
<td>296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 88 also indicates that 8 individuals (32 percent) had 15 or more lesions at multiple osseous sites. A total of 20 individuals (80 percent) had multifocal sites of infectious lesions in both upper and lower extremities; these individuals could be classified as having systemic (possibly chronic) infection and represent 42 percent of the total population subsample. Chi-square tests of relationship between infection and indicators of growth (percentile rankings and δ_{mean} groups) were computed for the total population subsample, by age group and by sex. The results of these tests, shown in Table 89, demonstrate that
infection was not related to δ_{mean} values or percentile rankings for stature in this sample. Additionally, a Fishers Exact chi-square evaluation of the potential relationship between anemia and infectious processes was undertaken. This test resulted in a majority of significance levels in excess of 0.100. The results of these analyses indicate that generalized infection does not contribute greatly to our understanding of the variation in growth status among members of this population’s subsample nor the presence of PH lesions.

Abnormal Bone Morphology

The presence of abnormal bone morphology, such as bowing, flared metaphyses, and “flattening” of long-bone shafts, can be a result of nutritional deficiency, infectious process, or biomechanical stress. These factors can work singly, or in combination, to produce various forms of shape abnormalities. For instance, vitamin D deficiency (rickets) creates a physiological environment in which the absorption of calcium into bone matrix is inhibited. This failure leads to a state where the structural integrity of the cortical bone is weakened, and the biomechanical stress of load bearing can cause bowing of the long bones. Symmetry of pre-mortem long-bone abnormal shape could not be assessed due to the unequal representation of long bones for most individuals.

There were 40 individuals (83 percent) of the population subsample that were diagnosed with some form of premortem abnormal shape in one or multiple long bones. Twelve individuals (25 percent) were diagnosed with either platycnemia or platymeria (flattening of the tibial and femoral shafts, respectively).

Table 89. Chi-Square Test Results for Relationship between Infectious Lesions and δ_{mean} and Percentile Rankings for Stature

<table>
<thead>
<tr>
<th>Chi-Square Test</th>
<th>Chi-Square Value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population subsample (n = 48; power = 0.9337)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>9.043</td>
<td>.171</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>9.997</td>
<td>.265</td>
</tr>
<tr>
<td>Age Groups: 0 < 6 years (n = 30; power = 0.7819)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>30.000</td>
<td>.414</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>12.254</td>
<td>.140</td>
</tr>
<tr>
<td>Age Group: 6< 16 years (n = 10; power = 0.3526)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>10.000</td>
<td>.350</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>1.667</td>
<td>.435</td>
</tr>
<tr>
<td>Age Group: 16 < 25 years (n = 8; power = 0.2930)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>8.000</td>
<td>.333</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>5.156</td>
<td>.272</td>
</tr>
<tr>
<td>Sex: Male (n = 3; power = 0.1393)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>3.000</td>
<td>.083</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>3.000</td>
<td>.223</td>
</tr>
<tr>
<td>Sex: Female (n = 5; power = 0.2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>1.875</td>
<td>.171</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>2.917</td>
<td>.233</td>
</tr>
<tr>
<td>Sex: Indeterminate (n = 40; power = 0.8854)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection by δ_{mean}</td>
<td>6.722</td>
<td>.347</td>
</tr>
<tr>
<td>Infection by percentile ranking</td>
<td>10.250</td>
<td>.248</td>
</tr>
</tbody>
</table>
Eighteen (37.5 percent) were also diagnosed with bowing of one or more long-bone shafts, and 36 (75 percent) individuals were diagnosed with flaring of the metaphyses of one or more long bones. Table 90 indicates the distribution of these pathologies for the total population subsample by age and by sex.

Potential relationships between shape abnormality and anemia, infection, and growth status were statistically tested using chi-square analyses. The results of these tests indicate that there is no relationship between long-bone shape abnormalities and anemia or δ_{mean} grouping values. The only significant association was between bowing and infection in children, from newborn to less than 6 years ($n = 30; p = .003, < .05$).

As was noted above, these morphological variables bridge the three categories of pathologies being analyzed in this chapter. The following section will proceed with an analysis of biomechanical stress indicators in an attempt to more fully elucidate the complex relationships between these factors.

Biomechanical Stress Indicators

Indicators of biomechanical stress can manifest themselves skeletally in a variety of ways. One is the absolute change in morphology of a skeletal element, as was mentioned above. Many biomechanical stress indicators are generally “built” over time and are often the result of interactions between load bearing and/or repetitive motion and other factors affecting bone metabolism. In some instances, the factor affecting bone metabolism is the natural process of metabolic slowdown related to aging. This is often the case with age-related osteoarthritis—years of “living and doing” manifest as symptoms of arthritis in increasing frequency as individuals age. Arthritis in younger adults and children may be a result of a variety of disorders such as juvenile rheumatoid arthritis and its related autoimmune disorder, lupus. Yet, osteoarthritis may also be a result of intense or increased physical activity (load bearing and repetitive actions) at points in the life span when bone (and cartilage) is undergoing rapid rates of remodeling due to growth cycles.

Intensified or increased physical activities can also leave their mark by accentuating points of muscle insertions or origins on bone (hypertrophies). These tend to be the result of long-term biomechanical stress on those areas. However, acute events of intense physical activity can result in the avulsion of bone at the site of muscle and ligature insertions (enthesopathy and arthropathy, respectively). Fractures are another class of acute events related to biomechanical stress. Whether a fracture is the result of purposeful or inadvertent action, the result of the action is that the bone is subject to a biomechanical force that exceeds its capacity to maintain structural integrity.

With this in mind, the New York African Burial Ground pathology database was probed for cases of biomechanical indicators of stress in long bones, specifically looking for occurrences of fractures, arthritis, enthesopathy/arthropathy, and hypertrophy in individuals under the age of 25 years. It should be noted that project osteologists paid close attention to discerning the differences between bone irregularities resulting from normal growth processes and those directly attributable to acute and/or chronic biomechanical stressors.

Table 90. Distribution of Abnormal Long-Bone Shape in the Total NYABG Population Subsample, by Age and Sex

<table>
<thead>
<tr>
<th>Age</th>
<th>Flattening</th>
<th>Bowing</th>
<th>Flaring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Percent</td>
<td>n</td>
</tr>
<tr>
<td>Total subsample</td>
<td>12</td>
<td>25.0</td>
<td>18</td>
</tr>
<tr>
<td>0 <6 years</td>
<td>1</td>
<td>3.3</td>
<td>9</td>
</tr>
<tr>
<td>6 <16 years</td>
<td>5</td>
<td>50.0</td>
<td>6</td>
</tr>
<tr>
<td>16 <25 years</td>
<td>6</td>
<td>75.0</td>
<td>3</td>
</tr>
<tr>
<td>Males</td>
<td>3</td>
<td>100.0</td>
<td>1</td>
</tr>
<tr>
<td>Females</td>
<td>3</td>
<td>60.0</td>
<td>2</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>6</td>
<td>15.0</td>
<td>15</td>
</tr>
</tbody>
</table>
A total of 19 people (39.5 percent) in the population subsample were diagnosed with these biomechanical stress indicators. Table 91 provides a summary of all individuals who were represented by at least one occurrence of any of these four biomechanical stress indicators. An X in a column designates the presence of at least one site of a specific indicator, although many individuals were diagnosed as having multiple sites of biomechanical stress. This table indicates that 5 (26.3 percent) of the 19 individuals were diagnosed with fractures. Approximately 42 percent of the population subsample, 8 out of 19, was diagnosed as having arthritis, and 16 (84.2 percent) and 11 (57.9 percent) individuals were recorded as having hypertrophies or enthesopathies, respectively. What is striking about these frequencies of biomechanical stress indicators is that 12 children (63.2 percent) under the age of 16 years had been diagnosed with fractures, arthritis, hypertrophies, or enthesopathies. Also, 8 of these children were between the ages of 4 and 10 years. The co-occurrence of hypertrophic attachments and enthesopathy was more prevalent in females (100 percent, n = 4), whereas males had a 66.7 percent (n = 2) co-occurrence, followed by indeterminate individuals with a co-occurrence of 33.3 percent (n = 4).

Statistical tests of observable relationships (Table 92) between the three indicators of biomechanical stress were made. Because of the small subsample size

<table>
<thead>
<tr>
<th>Burial</th>
<th>Age Range (yrs)</th>
<th>Fracture</th>
<th>Arthritis</th>
<th>Hypertrophy</th>
<th>Enthesopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>16.0–18.0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>16.0–20.0</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>19.0–23.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>18.0–20.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>259</td>
<td>17.0–19.0</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>122</td>
<td>18.0–20.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>383</td>
<td>14.0–18.0</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.5–5.5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>3.0–5.0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>4.0–5.0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>5.0–7.0</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>244</td>
<td>5.0–9.0</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>396</td>
<td>6.5–8.5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7.0–12.0</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>405</td>
<td>6.0–10.0</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>11.0–13.0</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>368</td>
<td>10.5–13.5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20.0–24.0</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>253</td>
<td>13.0–15.0</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total no. of individuals (n)</td>
<td>19</td>
<td>5</td>
<td>6</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>
for fractures, they were not included in this analysis or any of the following analyses. The results of Fisher’s Exact chi-square analyses provided in Table 92 demonstrate significant relationships in the pattern of co-occurrence of these variables (n = 48; $p < .05$). Statistical analysis of these biomechanical stress indicators in relation to growth status, PH, generalized infectious lesions, and abnormal shape variables were also tested. The statistically significant relationships for the total population subsample (n = 48) were between: hypertrophy and long-bone flattening ($\chi^2 = 9.341, p = .004$); arthritis and long-bone flattening ($\chi^2 = 13.642, p = .001$); enthesopathy and long-bone flattening ($\chi^2 = 11.361, p = .002$); hypertrophy and bowing ($\chi^2 = 4.713, p = .033$); and enthesopathy and bowing ($\chi^2 = 4.159, p = .047$). Among individuals of indeterminate sex, statistically significant relationships were also found among a small set of variables. These relationships were: hypertrophy and long-bone flattening ($\chi^2 = 6.536, p = .026$) and hypertrophy and long-bone bowing ($\chi^2 = 6.009, p = .020$). When considering the relationships between these variables by age grade, only stature ranking (percentile) and enthesopathy ($\chi^2 = 9.000, p = .011$) in children between 6 and 16 years of age, and δl_{mean} and enthesopathy ($\chi^2 = 8.000, p = .018$) in subadults/young adults between 16 and 25 years exhibited statistically significant results. The overall relationships among long-bone flattening and arthritis, hypertrophy, and enthesopathy may indicate that this particular form of abnormal bone shape was more likely to result from biomechanical stress rather than nutritional insufficiency. Additionally, the relationship between enthesopathy and δl_{mean} values and stature ranking in children over the age of 6 years is a strong indicator that childhood labor was impinging upon long-bone growth.

Craniosynostosis

The presence of craniosynostosis was observed in 15 individuals of the 48 individuals under the age of 25 years (31.3 percent) that comprised the subsample for analysis in this chapter. The suture(s) involved, sex, and age of each of these individuals are provided in Table 93. As can be seen in this table, 12 of the individuals (80 percent) were 6 years of age or older. When considering the prevalence of craniosynostosis in relation to growth, infection, nutrition, and biomechanical indicators, several evocative relationships were revealed. Table 94 provides only the statistically significant results between these variables and craniosynostosis. When these results are reviewed, one must remember that all individuals of indeterminate sex in the population subsample are under the age of 16 years. Several significant relationships ($p < 0.05$) exist between craniosynostosis and infectious, nutritional, and biomechanical indicators at the level of the total population subsample. However, the relationships observable among a large segment of the youngest members of this subsample indicate that, minimally, the presence of craniosynostosis in any given individual can be exacerbated by chronic or acute exposure to biomechanical, nutritional, and/or infectious stressors. In particular, nutritional and biomechanical stressors may accelerate or even cause the expression of this particular developmental pathology.

Discussion

Analyses of standardized long-bone measures and stature estimates of the New York African Burial Ground sample demonstrate that environmental stressors impacted overall growth. Goode et al. (1993) proposed that standardizing measures of long-bone length would facilitate intra- and interpopulation comparisons of growth and health. Within this population subsample, neither nutritional, generalized health, nor biomechanical indicators of environmental stressors were associated with low δl_{mean} values presented in Table 83. Sciulli (1994) has published the only comparable data for five Native American populations in the Ohio River Valley (3000–300 B.P.). Table 95 compares the values calculated for the New York African

<table>
<thead>
<tr>
<th>Table 92. Results of Chi-Square Tests of Relationships between Biomechanical Stressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square Test</td>
</tr>
<tr>
<td>Arthritis by hypertrophy</td>
</tr>
<tr>
<td>Arthritis by enthesopathy</td>
</tr>
<tr>
<td>Hypertrophy by enthesopathy</td>
</tr>
<tr>
<td>Burial</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>427</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>343</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>122</td>
</tr>
<tr>
<td>383</td>
</tr>
<tr>
<td>Indeterminate</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>252</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>405</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>368</td>
</tr>
<tr>
<td>Total no. of individuals (n)</td>
</tr>
</tbody>
</table>

Key: S = sphen; F = frontal; T = temporal; P = parietal.
Table 94. Chi-Square Test Results for Relationship between Craniosynostosis and Biomechanical, Nutritional, and Infectious Indicators

<table>
<thead>
<tr>
<th>Chi-Square Test</th>
<th>Chi-Square Value</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population subsample (n = 48; power = 0.9337)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniosynostosis by arthritis</td>
<td>8.828</td>
<td>.006</td>
</tr>
<tr>
<td>Craniosynostosis by hypertrophy</td>
<td>12.738</td>
<td>.001</td>
</tr>
<tr>
<td>Craniosynostosis by enthesopathy</td>
<td>6.967</td>
<td>.013</td>
</tr>
<tr>
<td>Craniosynostosis by flattening</td>
<td>14.255</td>
<td>.0001</td>
</tr>
<tr>
<td>Craniosynostosis by bowing</td>
<td>11.953</td>
<td>.001</td>
</tr>
<tr>
<td>Craniosynostosis by infection</td>
<td>3.948</td>
<td>.046</td>
</tr>
<tr>
<td>Age group 0 <6 years (n = 30; power = 0.7819)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniosynostosis by bowing</td>
<td>7.778</td>
<td>.021</td>
</tr>
<tr>
<td>Sex indeterminate (n = 40; power = 0.8854)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniosynostosis by hypertrophy</td>
<td>14.400</td>
<td>.001</td>
</tr>
<tr>
<td>Craniosynostosis by arthritis</td>
<td>5.926</td>
<td>.042</td>
</tr>
<tr>
<td>Craniosynostosis by flattening</td>
<td>6.536</td>
<td>.026</td>
</tr>
<tr>
<td>Craniosynostosis by bowing</td>
<td>10.276</td>
<td>.002</td>
</tr>
</tbody>
</table>

Table 95. A Comparison of NYABG \(\delta_l \) and \(\delta_{l mean} \) Values with Those of Five Native American Populations (Sciulli 1994)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_l)</th>
<th>(\delta_{l mean})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humerus</td>
<td>Radius</td>
</tr>
<tr>
<td>NYABG (18th century)</td>
<td>0.95</td>
<td>1.04</td>
</tr>
<tr>
<td>n</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>Archaic (3,000 years B.P.)</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>n</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>Pearson (850 years B.P.)</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>n</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Sunwatch (800 years B.P.)</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>n</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>Monongahela (600 years B.P.)</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>n</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Buffalo (300 years B.P.)</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>n</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>
Burial Ground sample (n = 48) to those presented by Sciulli (1994). Although the samples compared in this table exhibit temporal heterogeneity, they all show the differential impact that \(\delta I \) have on \(\delta I_{\text{mean}} \) values. Also, all skeletal series illustrate that the long bones of the lower extremity, generally the femur, tend to have the lowest \(\delta I \) values within each population. Although there are considerable differences between \(\delta I \) values, patterns of long-bone growth are quite similar when subsample size is taken into consideration.

This finding demonstrates that the calculation of standardized long-bone measures may be quite useful, as Goode et al. (1993) predicted, for comparisons of growth when the goal is to assess variation that disease has on growth. As these authors noted, it is necessary to broaden the definition of disease within this context. Although Goode-Null (2002) promoted the inclusion of trauma, this study has included other biomechanical stress indicators that are more frequently associated with chronic or intense physical activity as a means of investigating labor-related activities of children.

The estimation and assessment of stature for the New York African Burial Ground sample indicate that most of young adults and children were falling well below the twenty-fifth percentile of the CDC/NCHS height for age standards. When the possible factors that may have influenced the overall poor growth status of these individuals are considered, none of the variables representing nutritional status, generalized health status, or biomechanical stress proved to have a significant relationship with estimated stature for the population subsample. Another factor that must be considered is that error in age estimation of young individuals could have influenced the application of regression formulas. These factors could either overestimate or underestimate stature calculations depending upon which error was made. However, close examinations of dental aging scores did not demonstrate errors in the extrapolation of mean dental ages. Additionally, the age ranges for each of the juvenile regression equations are generally broad enough to capture minor errors in dental age estimation.

Steckel (1996) provided the only comparable data for enslaved individuals under age 25 years. Reporting on stature estimates taken from ship manifests supplying the antebellum South (1820–1860), he provided mean-stature calculations for enslaved males and females from 4.5 years of age through adulthood. A comparison of the New York African Burial Ground stature estimates and those reported by Steckel are provided in Figures 139 and 140 for males and females, respectively (Figure 141 provides a comparison of the New York African Burial Ground stature estimates for individuals of indeterminate sex and those reported by Steckel for males and females). It should be noted that the values at age 25 years in both figures actually
reflect adult stature estimates for both the New York African Burial Ground population and those individuals comprising Steckel’s sample. This comparison indicates that there were no significant differences between the New York African Burial Ground and antebellum South samples of enslaved Africans and African Americans. The lack of significant differences between the two population samples suggests that (1) enslavement was equally detrimental to the health of individuals (as reflected by growth status) in the North and in the South, and (2) the regression formula used to estimate stature for the New York African Burial Ground juvenile remains provides an accurate reflection of the growth status of these individuals.

Although growth status can stand alone as an indicator of population health and nutritional status, it is the result of a complex set of interactions among nutritional intake, disease processes, and energy expenditure during physical activity. Thus, the fact that the majority of independent nutritional and health indicators were not significantly correlated with growth status within the New York African Burial Ground subsample warrants further discussion. Nutritionally, minimally one-quarter of the sample had experienced an episode of anemia. Interestingly, of all lesions diagnosed and identified as PH, only one individual, an approximately 8-month-old infant of indeterminate sex (Burial 64), had lesions coded as active only. All other individuals in the subsample had PH lesions noted as healed and were, therefore, not actively experiencing iron deficiency at the time of their death. This situation may explain why there was no correlation between the presence or absence of PH lesions and stature, percentile of growth ranking, or \(\delta_{\text{mean}} \). Those individuals who were in the New York African Burial Ground sample that had experienced an anemic episode had already recovered or had begun to recover their growth—they either had experienced or were experiencing a catch-up phase of growth at the time of their death. This possibility is not one that can be confirmed or rejected based on the data available from a cross-sectional view study.

The relationship between growth and generalized lesions makes quite apparent that more than half of these young people (52 percent) experienced bouts of chronic infection. However, there were no significant relationships between growth status and the rates of infectious lesions. Nor was there a significant relationship between rates of PH and generalized infectious lesions. This absence is contrary to Rankin-Hill’s (1997) findings for the FABC population in Philadelphia where the co-occurrence of these two pathologies was significant at the \(p < .01 \) level. Again, this finding...
may result from the vast majority of PH lesions in the New York African Burial Ground sample being healed lesions in contrast to the 40 percent active rate for PH lesions in the FABC sample. This difference in the frequencies of active versus inactive PH lesions may actually address the issue of heterogeneous risk of death within and between populations by indicating differential levels of individual frailty, and this warrants future consideration.

Statistical tests of abnormal bone shape demonstrated no significant associations with PH in the total population subsample by age or by sex. However, bowing of the long bones did have statistically significant relationships with infection in children from birth to 6 years of age.

The results from the analysis of biomechanical stress indicators did not demonstrate any significant relationship with growth status. However, several thought-provoking patterns did emerge from this analysis. First, approximately 40 percent (n = 19) of the population subsample demonstrated some form of biomechanical stress—nearly all (n = 18) of the subset of the 19 individuals in this analysis exhibited at least one area of hypertrophic muscle attachment—whereas 12.5 percent and 22.9 percent had been diagnosed with arthritis and enthesopathies, respectively. In general, there were more females than males with biomechanical stress indicators. However, there were also eight children, biologically aged from 4 to 8 years, who exhibited hypertrophic attachment—four of whom also had at least one enthesopathy and one who also had arthritis. Given the care that was taken to not inadvertently diagnose normal developmental features of the muscle attachment sites as hypertrophic, and given the co-occurrence of hypertrophy with arthritis and enthesopathies, these individuals are a clear example that enslaved children in New York City engaged in strenuous physical activities.

Chi-square tests for associations between these biomechanical stress indicators and abnormal bone shape in the total population subsample (Table 96) revealed that flattening was related to all three biomechanical variables. This analysis supports a conclusion that long-bone shaft flattening should be considered another indicator of biomechanical stress, even in young individuals (n = 12). Flattening of the long bones was also associated with hypertrophies ($\chi^2 = 6.536, p = .026$) in indeterminate individuals as was bowing and hypertrophies ($\chi^2 = 6.009, p = .020$). Biomechanical stress indicators were not related to the occurrence of PH lesions in the total population subsample, by age or by sex.

Conclusion

The analysis of growth and development presented above does not provide a clear picture of cause and
effect in relation to growth status. This chapter used bivariate statistical analyses to affirm that the relationships between disease, nutrition, biomechanics, and the underlying genetics and biology of growth and development are complex. However, this bivariate analysis does allow a few general conclusions:

1. Indicators of growth status, particularly stature rankings, clearly indicate a population that was not reaching its growth potential. Given that growth status is often used as a proxy for overall population health, it is not injudicious to put forth that the overall health status of the New York African Burial Ground population was poor.

2. Evidence of biomechanical stressors in individuals as young as 4 years indicates that children were participating in strenuous activities. Given that this population is known to be composed of enslaved Africans and African Americans and supported by historical documentation (see Franklin 1967; Kruger 1985), it is more likely that these youngsters were engaged as laborers.

3. Relationships observed between the presence of craniosynostosis, nutrition, biomechanics, and infection indicate that development was affected negatively by its social milieu. This point is of particular concern, as impairments in developmental processes may have long-term effects on the reproductive and productive capabilities of individuals within any population.

<table>
<thead>
<tr>
<th>Chi-Square Test</th>
<th>Chi-Square Value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertrophy by flattening</td>
<td>9.341</td>
<td>.004</td>
</tr>
<tr>
<td>Arthritis by flattening</td>
<td>13.642</td>
<td>.001</td>
</tr>
<tr>
<td>Enthesopathy by flattening</td>
<td>11.361</td>
<td>.002</td>
</tr>
</tbody>
</table>

Table 96. Results of Chi-Square Tests of Relationships between Biomechanical Stressors and Abnormal Flattening of Long Bones
The number of Africans imported into the New York colony between 1700 and the eve of the Revolutionary War has been estimated to range between 6,800 and 7,400. The higher estimates are based on undercounting of captives due to smuggling from New Jersey, and possibly other states, to avoid tariffs. According to Lydon (1978:382–383), the minimum estimate, based on extant records for the eighteenth century, includes approximately 2,800 people, or 41 percent, brought directly from Africa and 4,000 from the Caribbean (and less significantly the southern colonies).

Perhaps one-fifth to one-quarter of those disembarked in the New York port remained within the city (Lydon 1978), with many of these individuals living there for the rest of their lives and eventually being buried in the African Burial Ground. Some gained legal freedom, gradually building a free African population, but most died enslaved.

A major research focus of the New York African Burial Ground Project has been the relationship between the political economy of slavery in the urban north and the demography and health of the captive people. This focus included how the routing of captives to New York and the specific character of the market for forced labor in the colonial city affected the demographic patterns reported earlier in Chapter 7. Therefore, the research objectives were to identify (1) the nature of the political economic regime in place during the period the African Burial Ground was in use, (2) how the priorities and demands of the regime were regulated and perpetuated, (3) the factors that may have affected the implementation of the political economic system, and (4) how the regime impacted the lives of enslaved Africans as can be observed demographically. The basic premise is that although demographic assessment is fundamentally biological in nature (providing a window into the adaptation, health status, and survivability of a population), demography is equally reflective of the social conditions in which individuals are embedded and upon which they are physiologically dependent.

Sources for the analyses presented in this chapter include the demographic assessment from Chapter 7; historical, archival, and medical historical research undertaken by the historians, archaeologists, and public education and information office research specialists; and the skeletal biological evidence assessed by the physical anthropologists.

Pervasive in many historical studies of African Americans is the concept that somehow slavery in the New World stands as an isolated historical deviation of which the Western world should be ashamed, apologize for, rationalize and/or study as a separate phenomenon. Others have studied American slavery from a more universal context, as Williams (1961:4) has contended:

Slavery was an economic institution of the first importance. It had been the basis of Greek economy and had built the Roman Empire. In modern times it provided the sugar for the tea and the coffee cups of the Western World. . . . It produced the cotton to serve as a base for modern capitalism. . . . Seen in historical perspective, it forms a part of that general picture of the harsh treatment of the underprivileged classes, the unsympathetic
poor laws and severe feudal laws, and the indifference . . . of the rising capitalist class.

Thus, enslaved Africans were placed into a system that was already formulated and transforming. In the English colonies, Africans were legally and in practice treated as indentured servants until the legislation of the 1660s. One generation later a unique form of racial, chattel slavery would distinguish the plight of African labor in America from feudal and ancient forms of human bondage (Smedley 1993). Williams (1971:14) maintained in his controversial work, Capitalism and Slavery, that the origin of Negro slavery was economic not racial; it had to do not with the color of the laborer, but the cheapness of labor. . . . The features of the man, his hair, color, and dentition, his “subhuman” characteristics so widely pleaded, were only the later rationalizations to justify a simple economic fact: that the colonies needed labor and resorted to Negro labor because it was cheapest and best.

Southern plantation slavery was and continues to be the central focus of the majority of historical studies. The themes discussed earlier were essentially explored within the context of New World slavery as separate and distinct sociohistorical phenomena based on racism and hatred. Much of the debate concerning slavery can be described as two polarized approaches to antebellum American history: that of social historians versus that of economic historians.

Moreover, despite the voluminous anthropological, historical, and sociological literature on the topic of slavery, several areas of research still have been ignored. These include such topics as (1) the heterogeneous nature of western hemisphere African American communities because of diverse African provenience and admixture with diverse Europeans and/or Native Americans; (2) the experience of urban enslaved African Americans and freedmen during the colonial and antebellum periods; (3) the living conditions, health status, and life styles of Africans and African Americans who were enslaved or free; (4) changing sociocultural conditions (e.g., industrialization) and their impact on African American conditions; and (5) the health status and biological adaptability or resilience of African Americans under very stressful conditions. In addition, multidisciplinary, integrative research approaches to the study of African Diasporic populations in the Americas have rarely been undertaken.

The economic, political, and sociocultural characteristics of the trade in human captives will be considered in this chapter. Those characteristic structures and processes are reflected in the criteria for determining the sex and age of the enslaved who would best fulfill the needs of the Dutch, English, and Euroamerican New York population, which could be characteristic of colonial New York, as well as the needs, perceptions, and/or priorities of those engaged in the buying and selling of human cargo.

The Trade in African Captives

Data on the trade in captives for colonial New York are available from shipping records, which provide information on the place and timing of the trade, from newspaper advertisements, and from both private and official correspondence, which indicate some of the parameters of local demand. Although a number of cargoes direct from Africa came into New York in the seventeenth century, imports from the West Indies were much more important in the eighteenth century, up to the 1740s. After 1741, the trade shifted to an emphasis on direct imports from the African continent rather than from the West Indies (see Foote 1991; Kruger 1985; Lydon 1978).

We suggest that the age-sex structure and ultimately the sex ratio of colonial Africans among New York City’s African population was linked to changes in the port’s trade in captives, specifically because of changing and intentional selection criteria and the differences between African and West Indian cargoes. It is important to recognize that most captives from the West Indies were African born and had spent as little as a few weeks to several years of “seasoning” in the Caribbean (see Mullin 1995).

Intermittent periods of direct African trading and importation occurred in 1705, 1710–1712, 1715–1717 and 1721 (Brodhead 1853–1887:5:814; Lydon 1978:377). The late 1720s and 1730s brought the largest cargoes of enslaved Africans from the West Indies. In 1763, large shipments of enslaved Africans were brought in from the continent. And there were several factors driving the structure of the trade. The especially sharp (and permanent) decline in imports from the West Indies were in most likelihood a reaction to the New York “slave uprisings” of 1712 and 1741, followed by the subsequent conspiracy trials of 1742. These were a catalyst for the redirection to African importation. This redirection was based on a general impression that West Indian consignments often contained individuals who were potentially threatening to the stability of the slaveholding colony.
Indeed, Akan-led Maroons defeated the British to establish treaty-protected territories in Jamaica in 1739 after years of warfare (Agorsah 1994).

Most slaveholdings in colonial New York County were quite small (one, two or three persons). Households that included enslaved Africans usually had at least one female domestic. Despite its early agrarian nature (small farmsteads), enslaved Africans were also used as dock laborers, construction workers, skilled craftsmen, and domestics. Historians have suggested that the New York market shifted from one largely concerned with agricultural and dock labor in the seventeenth and early eighteenth centuries to one, in the mid-eighteenth century, which also was driven by the need for domestic servants, best obtained while quite young. Cadwallader Colden, for example, wrote to a correspondent requesting to purchase a “Negro girl about 13 years old” for his wife, to keep the children and sew, and two young men about 18 years old, strong and well made for labor (Colden 1918–1937:1:51). Girls were considered to be ready for productive domestic work in urban households at younger ages than boys, who were more likely to be needed for physical labor. Thus, this early “urbanization” established the need for age and sex selection in the slave trade for the local market place. New York merchants, well aware of the local market, then initiated a preferential system whereby African cargoes were more likely to include youths, especially girls, than were West Indian shipments.

Age Selection

The youth of new imports appears to have been a selling point in the slave market of New York City. Jacobus Van Cortlandt wrote in 1698 that the New York market was for Negroes aged 15–20 (cited in Foote 1991:82). It appears from historical accounts and documents that shipments from the continent contained young girls in particular, who then remained in the city because they were in demand as domestics in a typically characteristic urban market. Men and adolescent boys, although in demand as laborers in the port town, were also more in demand in the nearby agricultural areas. It is important to note that selection criteria, preferences, and regulations were reinforced and institutionalized through laws and tariffs.

Africans from the continent who were more than 4 years of age were subject to an import tax as of 1732 (New York State 1894). Presumably, any younger children who somehow were included in cargoes were not taxed because of their high risk of dying and low potential for immediate productivity, whereas older ones were considered valuable commodities. Overall, it appears that enslaved Africans were put to work by their preteen years. This was certainly the case for domestic workers; males in their late teens would have been put to work at the most demanding types of physical labor on the docks, in construction, hauling, etc.

In addition, there was a selection bias against older enslaved men and women. Apparently, they were considered a burden by slave owners. They were valued at lower rates for tariff and tax purposes, with age 50 generally used as a cutoff. Colonial laws also reflect anticipated problems with owners of elderly Africans. In 1773, (New York State 1894:5:533) An Act to prevent aged and decrepit slaves from becoming burthensome within this Colony, was passed by the provincial Assembly. The act cited “repeated instances in which the owners of slaves have obliged them after they are grown aged and decrepit,” to go about begging for “victuals, cloths, or other necessaries” as well as owners who by “collusive bargains, have pretended to transfer the property of such slaves to persons not able to maintain them, from which the like evil consequences have followed.” The penalty imposed was £10 for allowing a slave to beg for necessities, and £20 for each enslaved individual sold to a person who could not support them (and the sale was voided). In 1785, a certificate from the overseer of the poor was needed to free an enslaved person; slaveholders could only obtain the certificate for persons under age 50.

Sex Selection and the Sex Ratio

The local necessity for young women, or those in their early teens, to be the primary choice for urban domestic household enslavement is corroborated in the New York Census data (Table 97). The 1746 census indicates a sharp increase in girls over boys (in the under 16 years of age category). Corresponding to this is an inflated adult sex ratio for the year because there were fewer women than men because so many of the females were too young to be counted as adults (Table 98). Three years later, the sex ratio declined abruptly as girls reached ages 16–18. These fluctuating values for the 1740s most probably represent the influence of an influx of new captives, rather than a natural population increase.

Throughout the eighteenth century, sex ratios tended to indicate an excess of females or equal numbers of
both sexes. A substantially greater number of males are reported only for 1737 (see Tables 97 and 98 and Tables 18 and 19). The proportion of males (but not their absolute numbers) decreased most markedly following the 1712 African rebellion, the alleged 1741 African rebellion, and the American Revolutionary War that entailed massive African allegiance to and departure with the British. (See Medford [2009] for a discussion of the events of 1712 and 1741.)

During the first two historic events, the relative excess of females occurred for adults and may either reflect the increased importation of females or sale and exportation of men to areas beyond the city. The substantially larger number of girls, during the 1740s, indicates the effects of high importation of African girls into New York City and/or sale of boys to areas outside of the city. Lydon (1978), Kruger (1985), and Foote (1991) have suggested that the English reaction to the alleged 1741 African uprising in New York caused this reduction in the relative (but increase in the absolute) number of African males who were imported during this period. It does seem odd, however, that the absolute number of boys nearly doubled between 1737 and 1746, if fear of rebellious males had actually brought about the skewed sex ratio. On the other hand, boys could be indoctrinated into not becoming dangerous men. Women and older children were preferred for importation during this period, as were direct African imports, as means of limiting the militant resistance of enslaved people (Foote 1991; Kruger 1985; Lydon 1978). Demands elsewhere in the international trade might also have had a negative impact on the availability of men for sale in New York. The sex ratio shifted steadily downward (a proportional increase in females) between 1703 and 1723, with a noticeable drop in the proportion of men to women appearing in the 1723 census. It is also the case that between the census years 1756 and 1771, the sex ratio went from 96.7 to 85.9. Conversely, the sex ratio began to climb (a proportional increase in males) during the years that saw the heaviest importation from the West Indies (the late 1720s and 1730s) (Figure 142).

Table 97. African Population by Age and Sex, Eighteenth-Century Censuses

<table>
<thead>
<tr>
<th>Year</th>
<th>Adults</th>
<th></th>
<th></th>
<th>Children</th>
<th></th>
<th></th>
<th>Label in Census</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cut-Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1703</td>
<td>298</td>
<td>276</td>
<td>124</td>
<td>101</td>
<td>≤16</td>
<td>negroes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1712</td>
<td>321</td>
<td>320</td>
<td>155</td>
<td>179</td>
<td>≤16</td>
<td>slaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1723</td>
<td>408</td>
<td>476</td>
<td>220</td>
<td>258</td>
<td>not given</td>
<td>negroes and other slaves</td>
<td>presumed 16</td>
<td></td>
</tr>
<tr>
<td>1731</td>
<td>599</td>
<td>607</td>
<td>186</td>
<td>185</td>
<td>≤10</td>
<td>blacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1737</td>
<td>674</td>
<td>609</td>
<td>229</td>
<td>207</td>
<td>≤10</td>
<td>black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1746</td>
<td>721</td>
<td>569</td>
<td>419</td>
<td>735</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 76 males over 60</td>
<td></td>
</tr>
<tr>
<td>1749</td>
<td>651</td>
<td>701</td>
<td>460</td>
<td>556</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 41 males over 60</td>
<td></td>
</tr>
<tr>
<td>1756</td>
<td>672</td>
<td>695</td>
<td>468</td>
<td>443</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 68 males over 60</td>
<td></td>
</tr>
<tr>
<td>1771</td>
<td>932</td>
<td>1085</td>
<td>568</td>
<td>552</td>
<td>≤16</td>
<td>black</td>
<td>black adult males includes 42 males over 60</td>
<td></td>
</tr>
<tr>
<td>1786</td>
<td>896</td>
<td>1207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>slaves, negroes</td>
<td></td>
</tr>
</tbody>
</table>

Note: From United States Bureau of the Census (1909), checked against Brodhead (1856–1887). Some discrepancies in the numbers appearing in Kruger (1985) and Foote (1991) have been corrected.
Most historians have pointed to the low overall sex ratio for Africans in New York as a typical pattern for urban slavery. Yet, the significant fluctuation observed in the sex ratio appears to be highly associated with political upheaval and subsequent attempts at social and legal controls that preserved the institution of enslavement for reasons of economic stability. In addition, one must also take into consideration the intensity of biological risk factors that included workload, health, and nutritional status and the mortality regime associated with environmental conditions encountered by the population.

Table 98. African Adult Sex Ratio, New York County, 1703–1771

<table>
<thead>
<tr>
<th>Year</th>
<th>Sex Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1703</td>
<td>107.9</td>
</tr>
<tr>
<td>1712</td>
<td>100.3</td>
</tr>
<tr>
<td>1723</td>
<td>85.7</td>
</tr>
<tr>
<td>1731</td>
<td>98.7</td>
</tr>
<tr>
<td>1737</td>
<td>110.7</td>
</tr>
<tr>
<td>1746</td>
<td>126.7</td>
</tr>
<tr>
<td>1749</td>
<td>92.9</td>
</tr>
<tr>
<td>1756</td>
<td>96.7</td>
</tr>
<tr>
<td>1771</td>
<td>85.9</td>
</tr>
</tbody>
</table>

Source: From United States Bureau of the Census (1909). Discrepancies were found in Foote’s (1991) and Kruger’s (1985) numbers and have been corrected. The numbers in United States Bureau of the Census (1909) were checked against Brodhead (1856–1887).

Note: The 1786 state census and the 1790, 1800, and 1810 federal censuses do not count blacks by sex. According to Kruger (1985:370), local censuses for the early 19th century indicate ratios declining from 72.3 in 1805 to 65.8 in 1819.

*a In 1731 and 1737, the censuses counted persons over or under 10 years of age; thus “adults” were not all of child-bearing years. The overall sex ratio for these years was 99.1 for 1731 and 110.6 for 1737.

Figure 142. African adult sex ratio: eighteenth-century New York City.
Mortality

Mortality for the seventeenth and eighteenth centuries in America was high, especially in cities. New York experienced very similar health and disease patterns as other colonial American urban centers, in particular port cities such as Philadelphia. The impact of periodic epidemics had a differential effect on populations based on their health status and risk factors (Nash 1988).

Contemporary observers believed that black mortality throughout the northern colonies, especially among infants, was so high that only importations could prevent the black population from gradually dying off (Anthony Benezet, writing in 1773, cited in Nash [1988:33]; Nash also cited Benjamin Franklin in 1751 and a Bostonian chronicler in 1775). Bills of mortality for Philadelphia in the period 1767–1775 indicate an average of 75 burials of Africans per year; this represented about 7 burials for every 100 blacks per year, a rate about 50 percent higher than among whites (Nash 1988:34). If a similar death rate were applied to New York, about 219 individuals would have been buried per year in the same period (based on the 1771 census count of 3,137 blacks). In each of these circumstances there was an undercount of Africans, so mortality rates were actually higher. The Philadelphia rates are more reliable than New York because of the Abolition Society’s active role in documenting the accomplishments and conditions of “people of colour” in that city (Rankin-Hill 1997).

Environmental and living conditions during the colonial period tended to be unhealthy; there were problems of poor sanitation, indoor pollution (e.g., coal fires), impotent water, and crowded dwellings. For captives, the conditions were most insalubrious leading to high rates of morbidity and mortality (Curry 1981; Rankin-Hill 1997). In addition, American cities throughout the seventeenth, eighteenth, and nineteenth centuries were hot zones for epidemics, providing perfect conditions for pathogens to thrive.

Outbreaks of smallpox, yellow fever, measles, diphtheria, influenza, and other unspecified fevers in colonial New York have been documented from historical sources. Smallpox was the greatest single epidemic killer during the period of the African Burial Ground’s use (Duffy 1968:34–35). Smallpox outbreaks occurred in 1702, 1731, 1745–1747, and 1752. It is likely that smallpox accounted for a significant portion of the death toll, appearing as a fatal childhood disease rather than as an epidemic between 1756 and 1767 (Duffy 1968:53–58).

An examination of the deaths reported in the 1731 smallpox epidemic indicated that both European and African New Yorkers suffered considerable losses. The 1731 bills of mortality are actually numbers of persons buried at the city’s church cemeteries, tallied by denomination. The number of “Blacks” buried is listed but with no church denomination. This indicates that burials at the African Burial Ground were being counted in some form. It is not known how or by whom. During the period of smallpox reporting, 477 Europeans (6.77 percent of their population) and 71 Africans (4.50 percent of their population) died. The overall death toll for August to December of 1731 was 7 percent of Europeans and 5 percent of Africans. This difference in frequency may indicate an underreporting of black burials, which is not surprising since historical accounts imply that the burial ground was most often used without direct observation by Euroamericans. As noted earlier, Philadelphia records indicated an average death rate of 7 percent per year among blacks in the 1767–1775 period, with a rate of about 5 percent for whites—a similar differential probably characterized general mortality in New York.

Although African deaths may have been underreported, another possible basis for a lower African death rate was the existence of a smallpox inoculation. Reportedly, some African societies practiced inoculation and a “Guaramantese” (or Akan man), who had been given the name “Onesimus,” taught the technique to a Boston clergyman who, in turn, shared it with physicians in Boston and London (quoted material from letter by Cotton Mather dated July 12, 1716 [Koo 2007]). One of these physicians, Zabdiel Boylston, apparently used the technique in time to have helped reduce the impact of a Boston epidemic in 1721–1722 (Cobb 1981:1199–1200). Smallpox inoculation was controversial among the English (see Medford 2009), who feared the practice could spread the disease and prolong its presence, and many English colonials in the city were hesitant to allow inoculation of their slaves, fearful of negative outcomes. Nevertheless, if Africans in America were familiar with the practice of inoculation, it is not unlikely that inoculation may have been practiced by some in the New York black community, with or without the knowledge of slaveholders. The fact that many African New Yorkers had survived smallpox in their youth (whether in Africa, in the West Indies, or in the city) is attested to by the
frequent citing of smallpox scarring in descriptions of runaways from the city and as a selling point in sale advertisements; such documents have been compiled for the period by the Office of Public Education and Interpretation of the New York African Burial Ground Project.

Endemic to the West Coast of Africa, yellow fever is caused by an infectious virus; therefore it is reasonably assumed that some of the Africans brought to the Americas had been exposed to the disease in their youth, thus acquiring some resistance. In New York, a 1702 epidemic killed hundreds of residents within just a few months (Duffy 1953:146); the Society for the Preservation of the Gospel’s account of 570 deaths probably included all deaths rather than just yellow fever deaths. The provincial census for 1703 indicated a drop in the overall population of New York City that historians had long attributed to the yellow fever epidemic. The drop in the African population from 700 in 1698 to 630 in 1703 (Table 99) has also been interpreted as a result of yellow fever deaths (e.g., Goodfriend 1992:113). However, a tally of the African population of the city in 1703, based on the household-by-household count, puts the total number of Africans at 799 (United States Bureau of the Census 1909). Thus, it would appear that their mortality from the epidemic was lower than among Europeans. No ethnic breakdowns of the overall New York mortality figure of 217 were recorded for the 1743 yellow fever outbreak (Duffy 1968:86).

Other diseases, less widespread but also deadly, visited the town over the course of the eighteenth century. A number of outbreaks of unspecified diseases occurred in New York in the eighteenth century, which Duffy (1968:19, 34) suggested may have included smallpox, whooping cough, and malaria or typhoid. A few cases of measles were reported in 1713, and the disease appeared again in epidemic proportions in 1729 (Duffy 1968:58; Colden 1918–1937:1: 274, 280). Measles made a third appearance in the fall of 1788. Diphtheria, mentioned earlier as a major cause of children’s deaths in 1745, reappeared in 1755 and late in the 1760s (Duffy 1968:59). Influenza was a killer in 1789–1790.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Black</th>
<th>White</th>
<th>Percent Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>1698</td>
<td>4,937</td>
<td>700</td>
<td>4,237</td>
<td>14.2</td>
</tr>
<tr>
<td>1703a</td>
<td>4,391</td>
<td>799</td>
<td>3,592</td>
<td>18.2</td>
</tr>
<tr>
<td>1712</td>
<td>5,861</td>
<td>975</td>
<td>4,886</td>
<td>16.6</td>
</tr>
<tr>
<td>1723</td>
<td>7,248</td>
<td>1,362</td>
<td>5,886</td>
<td>18.8</td>
</tr>
<tr>
<td>1731</td>
<td>8,622</td>
<td>1,577</td>
<td>7,045</td>
<td>18.3</td>
</tr>
<tr>
<td>1737</td>
<td>10,664</td>
<td>1,719</td>
<td>8,945</td>
<td>16.1</td>
</tr>
<tr>
<td>1746</td>
<td>11,717</td>
<td>2,444</td>
<td>9,273</td>
<td>20.9</td>
</tr>
<tr>
<td>1749</td>
<td>13,294</td>
<td>2,368</td>
<td>10,926</td>
<td>17.8</td>
</tr>
<tr>
<td>1756</td>
<td>13,046</td>
<td>2,278</td>
<td>10,768</td>
<td>17.5</td>
</tr>
<tr>
<td>1771</td>
<td>21,863</td>
<td>3,137</td>
<td>18,726</td>
<td>14.3</td>
</tr>
<tr>
<td>1786</td>
<td>23,614</td>
<td>2,107</td>
<td>21,507</td>
<td>8.9</td>
</tr>
<tr>
<td>1790</td>
<td>31,225</td>
<td>3,092b</td>
<td>28,133</td>
<td>9.9</td>
</tr>
<tr>
<td>1800</td>
<td>57,663</td>
<td>5,867c</td>
<td>51,796</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Note: From Foote (1991:78) and White (1991:26), except 1703. Both Foote and White have corrected the raw figures. See also Kruger (1985:131), though there are some discrepancies in the percentages for 1786, 1790, and 1800.

a From census of households in New York City (see below). These figures differ from those given in the 1703 census of the colony of New York, which listed only 630 blacks.

b Includes 1,036 free and 2,056 enslaved blacks.

c Includes 3,333 free and 2,534 enslaved blacks.
(Duffy 1968: 86). Both influenza and whooping cough (pertussis) ravaged European and African populations in the West Indies; as these diseases were considered more prevalent in colder climates, they may have been present in New York to a greater extent than the records suggest.

Parasitic loads were a common cause of anemia in enslaved communities in the Caribbean and may have also been a health risk in colonial New York. The most prevalent parasites were round worms (Ascaris lumbricoides), pork tapeworms (Taenia solium), Guinea worms (Dracunculus medinensis), and hookworm (Necator americanus). The Caribbean plantation environment, with poor sanitation, dirt floors, and chronic damp, was an ideal breeding ground for such organisms. Geophagy (consumption of dirt), often observed among Africans on West Indian plantations, was also frequently cited as the means by which worms were ingested. Infected West Indians brought as captives to New York would have carried their parasites with them. Incidence of infection in New York would have been much reduced because of the colder climate. Completed parasitological studies on a small number of soil samples from the pelvic area of skeletal remains from the New York African Burial Ground did not provide any evidence of parasites. Preservation factors may account for the complete lack of remains, as parasitic infections were not uncommon in colonial America.

New York African Burial Ground Mortality

The synthesis of the paleodemographic profile developed in Chapter 7 and the political economic and historical epidemiological scenarios discussed in the preceding section contextualize the experience of captive Africans in New York. The impact of the political economic regimes’ selection processes, the intense physical labor, and disease environments of colonial New York can be assessed by the patterns observed in the New York African Burial Ground skeletal sample. These include:

- The low mean-age at death for the population of 22.3 is even lower than that of a Barbadian-plantation enslaved people (Handler and Lange 1978) under a regime of plantation sugar production. This points to the synergistic effect of political-economy, environment, and biological susceptibility.
- Subadults comprised 43.2 percent of the burial ground sample; a preponderance of subadult deaths (39.2 percent) occurred during the first year of life, especially during the first 6 months, followed by another 16.1 percent in the second year. Therefore, infants and children were at high risk of dying both in utero and for the first 2 years of their lives. Fifty-five percent of all the subadults died by age 2. Thus, the potential for population replacement was being severely compromised.
- The mortality pattern of adults was the highest in the 30–34 age group (15.8 percent). The second highest was the 45–49-year-olds (14.6 percent), followed by 15–19- and 20–24-year-olds (8.8 percent each), and 35–39-year-olds (8.4 percent).
- Adult mortality peaked in the fourth decade of life, when 28 percent of adults had died. This loss of adults indicates the reduction in potential reproductive members early in the life cycle and also corroborates the impact of captivity on the men and women interred in the African Burial Ground.
- Differential mortality patterns indicate that 62 percent of females had died by age 40, compared to 45 percent of the males. Although women and girls were being selected as domestic laborers, their lot was arduous and increased their risk of dying.
- The third highest adult mortality age group was composed of adolescents aged 15–19. Loss in this age group forebodes potential limitations on population reproductive and replacement rates. The high rates of males and females dying in the 15–24-year age group are also indicative of the high rates of forced migration to New York for Africans of those ages.
- Differential mortality patterns were observed in the 15–19 age group where 11.6 percent of girls died, compared to 6.9 percent of boys, although not statistically significant. Women were being removed from the population during a time when they were capable of reproducing or were biologically preparing for reproduction.
- The trends observed in the paleodemography of the New York African Burial Ground corroborate what has been learned about the conditions of captivity from historical, archival, and medical historical sources. These include patterns of differential mortality, especially for males and females at ages associated with adult work regimes and living conditions; forced migration; biological development selecting against the survival of women; and reduced fecundity that should have suppressed infant and childhood mortality rates.
Nineteenth-Century New York Trends

The data available on African mortality in New York in the period following termination of the use of the African Burial Ground are of some interest in assessing data from the burial ground, especially the sex ratio. The New York African Burial Ground skeletal records reveal a smaller proportion of females than the historical and demographic data on the living population. This observation, along with the trend toward higher risk of mortality at younger ages in males and in females over the age of 15 years, has led us to question the sex ratio among children. Are excess females among the dead girls? Because we are unable to determine the sex of subadults with available methods, we have turned to the burial records of related cemeteries. Spotty death records survive for the period between 1801 and 1815, when a new cemetery for Africans was opened on Christie Street in Manhattan, and the newly founded African Methodist Episcopal Zion Church began using its own cemetery. The adults (16 years and older) numbered 10 women and 15 men, approximating the skewed ratio found at the New York African Burial Ground. The preponderance of men at the later cemetery, as at the earlier one, is at odds with census data on the living African New York population, in which sex ratio declined steadily to a low of 61.4 in 1820. Sampling error aside (the records for the period are incomplete), the apparent discrepancy may be attributed to differential official reporting of burials based on sex.

Among the infants, girls in the Christie Street sample experienced slightly higher mortality from 0 to 2 years of age (nine girls and six boys). The excess of girls over boys in older age categories was more marked. In the 5–15-year-old group, there were seven girls and only one boy buried, but no deaths of young women (16–20 years old) were recorded.

Mortality data are also available for a later New York African community known as Seneca Village (1826–1851). In the first decade, which saw final emancipation in New York in 1827, the death records include 8 girls and 5 boys in the 0–2-year-old range, again, the same excess of girls seen in the earlier samples. Boys predominated slightly among older children reported from Seneca Village. By the second decade of the Seneca Village mortality data (1836–1846), recorded infant deaths include 12 girls and 16 boys. It is possible there was a lowering of female infant mortality over time with the ending of slavery in New York (These unpublished data for Seneca Village were generously provided by N. Rothschild, D. Wahl, and E. Brown). The sample sizes, especially for the colonial period New York African Burial Ground, were too small to detect statistically valid differentials in child mortality. What this comparison indicates is a greater likelihood for a higher representation of female infants and children than of boys among the New York African Burial Ground remains. Questions of differential survival of the sexes will have to await chromosome analysis data for definite answers.

Population Growth and Fertility

Both paleodemographic and historical demographic analyses have limitations as to what can be inferred from the data. Paleodemography provides a means of evaluating the impact of environmental conditions on mortality patterns and health status. Historical records and analyses of vital statistics can provide insight into the period but are always biased based on the manner in which the information was recorded, reported, stored, and interpreted. Therefore, the data used from historical and osteological sources for fertility are proxy measures. Content analysis of historical sources, shipping records, censuses for the period, newspaper advertisements, and private and official correspondence provide a means of assessing and reconstructing some of the parameters of local demand and characteristics of the New York trade in human beings.

New York City municipal census data for the eighteenth century indicate the exceedingly slow growth in the city’s African population. Population increase among Europeans was also slow but far more evident during the same period. The trends for New York County for 1698–1800 indicate that the African (“Black”) population remained fairly low throughout; concurrently, importation of Africans from the continent and the West Indies continued with little impact on the overall population (see Table 98). The European population increased slowly early on, followed by significant growth starting at mid-century (see Table 99).

The pattern of little or no population increase in African populations early in enslavement was also observed in the lower western shore of Maryland (Menard 1975:32), South Carolina (Wood 1974), Virginia (Vaughn 1972; Wax 1973), and Philadelphia (Nash 1988). All of these populations shared the inability to reproduce themselves owing to deaths that exceeded births. In all locations except New York City
and some of the Caribbean islands, black population increases occurred later (Fraginals 1977). For example, regionally in the lower western shore of Maryland in 1658 there were 100 (Menard 1975:32) enslaved Africans, approximately 3 percent of the total population; by 1710, however, there were 3,500 enslaved Africans constituting 24 percent of the population, the result of importations, increased birth rate, and a slight decrease in mortality.

The question then is, why was there little or no growth in the enslaved African population with the ongoing importation of Africans to the port of New York? The historical accounts and demographic and paleopathological assessments provide significant explanatory evidence directly associated with the changing economic imperatives of that developing colony.

Sex Ratio and Mortality

As was reported earlier, the period was primarily characterized by a low sex ratio. The importation directly from Africa had the effect of shifting the sex ratio among New York City’s enslaved population in favor of girls and women, whereas shipments of Africans from the West Indies shifted the ratio in favor of males. The former shift is associated with the aftermath of, and English responses to, African rebellions. Because of the changing needs of the growing urban households, girls were considered to be ready for productive domestic work in urban households at younger ages than boys, ultimately increasing the demand for females (see Figure 142). Therefore, the high numbers of females and adolescent girls with the potential to reproduce, at minimum should have led to a natural increase in the African population.

Juxtaposed is the effect of high mortality with differential patterns selecting against infants and toddlers, women and adolescent girls and boys. This establishes a synergistic effect that eliminates segments of the population that are the procreators and the progeny of those that managed to reproduce.

Fertility

Kruger (1985:403–420) has made the most ambitious attempt to analyze the meager data available pertaining to childbearing and fertility in New York’s enslaved African population.

Almost no data are available on African women’s ages when their children were born. In 1796, an individual named “Africanus” proposed emancipation of all enslaved females born after 1796 at age 17, along with all their children. He estimated that three-fifths of them would already have borne children at that age (Daily Advertiser, January 26, cited in Kruger 1985:405). Therefore, African young women were reproducing prior to age 17. Kruger (1985:410–412) calculated median birth spacing at 28 months and inferred that during the period of 1799–1826 breast-feeding appeared to have continued for 16–18 months after birth. Therefore, women were potentially capable of producing four to six offspring between the ages of 15 and 30.

Child-To-Woman Ratios

Despite the potential for population growth, the low child-to-woman ratios (a proxy for direct fertility data) derived from census data attest to the absence of increase in the New York African population. The 1746 peak in the presence of African children in New York City appears to be associated with importations of girls and boys under 16 years old, not to births in New York. This is evidenced by the marked decline in the ratio of children per woman of childbearing years as importations abated (Figure 143). These data show clearly that an African woman of reproductive age (and her male partner) had one or fewer children on average. If the number of children in the census who were actually born in New York is small, then fertility in New York City may have been much lower than one child per African woman of reproductive age.

Our general assessment is that although many of these children would have been African born and forced to migrate to New York, most of those who died as children and were buried in the burial ground were born in New York. This inference is consistent with the chemical tracing data reported in Chapter 6 and hypoplasia data of Chapter 8. The census data used here largely represent survivors and persons imported after ages of highest mortality risk. These children were likely to show disproportionately high frequencies of African birth, compared to those children who were born to captive parents and who died very young. Also, given our evidence of relatively low mortality for children 5–14 years of age in New York, a preponderance of the older children of the census were probably surviving to die in concert with the adult age-specific mortality patterns that we have shown previously. We would, therefore, predict that future testing of those individuals with
African-associated chemical levels (Pb and Sr) in early-developing teeth and North American chemical levels in later-developing teeth and bone would represent the children identified in the census.

Paleopathology

Paleopathological evidence for the people interred in the New York African Burial Ground site indicates that African women were involved in strenuous labor from adolescence onward and were nutritionally compromised. They also had high rates of degenerative joint disorders and exhibited evidence of enthesopathies and muscle hypertrophy (see Chapter 11), as well as nutritional deficiencies, including porotic hyperostosis and general infection (see Chapter 10). Each of these factors has a potential negative impact on fecundity (the ability to conceive and to bring a fetus to term). The large number of perinatal and newborn infants points to these effects just cited.

In addition, subadult data indicate that infants and toddlers were at risk because of nutritionally compromised mothers, weaning, nutritional insufficiency, and infection as evidenced by dental enamel defects of both the deciduous and permanent teeth (see Chapter 8), rates of infection and porotic hyperostosis (anemia) (see Chapter 10), and retarded growth and development (see Chapter 12).

The political economic regime (Figure 144) established a biological lifestyle of arduous work for adolescent and adult females that resulted in physiological disruption due to the synergistic interaction of:

- intensive physical exertion and energy expenditure;
- intensive utilization of dietary nutrients;
- intensive utilization of marginal nutritional stores;
- chronic exposure to environmental hazards;
- intensive utilization of immunological and psychophysiological responses.

Therefore, the demographic, paleodemographic, and paleopathological data indicate that:

- High mortality among women at the beginning of their reproductive years affected the population fertility (reproductive rates) and fecundity, the biological potential for procreation.
- Nutritional inadequacy, infectious-disease loads, and mortality indicate a compromised adult female population, thus reducing fertility (e.g., low fat stores followed by amenorrhea), and a potential for immunosuppression and an increase in susceptibility or risk factors for morbidity and mortality.
Trade in Africans

Responsive to local political, social, and economic forces
Mainly from West Indies through 1740
More direct from Africa after 1741

Urban situation

Typical low sex ratio
Demand for dockworkers and other day labor, domestic labor

Local market

Agricultural and public needs shifted in eighteenth century to domestic and day labor needs
Youth emphasized in local sales
Increasing demand for young girls for domestic drudge labor

Holding size

Small urban households with limited in-house labor needs
Average holding of enslaved Africans: 2.4
Sales of young children beginning at age 5
Neglect and disposal of older Africans

Social control

Political and market response to active resistance
Decreased importation of men, decreased importation from West Indies

Ideology

Unlimited Goods

Figure 144. Summary of relevant factors of the political economic regime of colonial New York.
Infants and children began life compromised and at high risk of illness and dying. Those who survived past the second year of life were faced with strenuous physical exertion from early childhood and the cycle of exertion, deprivation, increased susceptibility (although it could be argued that these children were the most adaptable), and early adulthood death.

Therefore, the economic needs and environmental constraints established by New York slaveholders produced a regime of physiological disruption that substantially impacted the fertility rates and almost certainly created a situation of impaired fecundity, which contributed significantly to the lack of population growth in the enslaved African population of seventeenth- and eighteenth-century New York. In addition, this economic strategy was one of “unlimited good.” Because enslaved captives could be replaced continuously, European enslavers had no incentive for encouraging fertility or intensive caregiving of infants, who demanded high investment but could do little work. Although the abusive practices of the British Caribbean colonies, where infants might be taken from their mothers immediately so that loss of labor would be minimized, are not documented for New York, this city’s slaveholders demonstrated no desire to possess young Africans or to “breed” their captives. They only needed them to keep the market’s products and profits flowing.
The explanatory frameworks of this study are heavily influenced by our understanding of the historical expediencies of European economic exploitation and power, and the ways these imperatives came to be played out in the condition of Africans in the Atlantic World. Of course, imperatives of safety, profit, moral legitimacy and so forth were negotiated as Europeans wrestled with conditions they could not entirely control, including the needs and responses of Africans themselves. The “hows” and “whys” of the biological effects we have examined are largely explicable in terms of historical, political, and economic motivations, practices, and policies, as well as modes of resistance to them and other limiting factors, such as the natural environment. Why were babies dying? Slaveholders did not want them for economic reasons at this time and in this place. The evidence of growth delays in children suggests a lack of investment in them by those empowered to do so. Although African women also at times allowed their children to die rather than make them into slaves, at other times we see clear archaeological evidence (see The Archaeology of the New York African Burial Ground, Volume 2 of this series) of profound love of children, in this mortuary context. And in New York, there were few opportunities for family formation with men and women working and sleeping in isolated workshops and homes, respectively (see Medford, Brown, Carrington, et al. 2009b; Medford, Brown, Heywood, et al. 2009). The sex ratio, ages, and sources of new arrivals reflected English struggles to control Africans who rebelled and to capitalize on market availability and the price of captives. Sex ratio affects fertility, and the spread of diseases affects child mortality, particularly when females are disempowered as they were under American slavery. Each chapter has examples of biological effects of power and poverty. We will not attempt to explain the more interesting details, which each author does best in his and her own words. This discussion is meant as a starting point for pulling together the shadowy evidence that human skeletons bear on 419 all-but-forgotten lives.

The Main Findings of Our Study

What are the findings of the skeletal biological research and what are the limitations and further implications of this work? As to the origin and affiliation of the persons buried in the New York African Burial Ground, the results of genetic analyses (see Chapter 5), coupled with historical and archaeological research, suggest that most individuals were derived from a variety of known states and empires mainly, but not exclusively, in West and West Central Africa.

Complementing the above, the preponderance of the ethnohistorical and chemical evidence indicates that most of the New York African Burial Ground individuals who died as adults were African-born, free people who were captured and who then underwent the Atlantic passage to subsequently die enslaved in New York. Conversely, those who died before their first 8 years of life were very likely to have been born in New York. Historical documentation suggests that some individuals, especially early in the eighteenth century, would have come from Africa to the Caribbean first and then to New York. Strontium isotope data (see Chapter 6) suggest that individuals among a small, tested sample may have grown up in the Caribbean.

Chapter 6 presented results from two chemical methods for assessing where individuals were born and grew up. In the case of strontium isotope analysis, individuals below the age of 8 years matched the
isotopic signature associated with Manhattan, whereas the majority of individuals over the age of 8 years did not. This was especially true for individuals with culturally modified teeth. Similarly for elemental signature analysis, young individuals clustered together, suggesting they were born in New York—adding support to our interpretation of the strontium isotope analyses. These conclusions, however, are based on the small sample of individuals whose chemistry was assayed. Notably, historical evidence points to 9 years as the youngest common age of forced migration from Africa to New York. The study of hypoplasia in the third molar (see Chapter 8) shows high stress that also seems associated with exposure to the slave trade and New York between 9 and 16 years of age. The convergence of these data seems important.

High lead levels in the teeth of individuals who were plausibly born in New York were an unexpected finding. Samples of enamel that were calcified during the first years of life were also taken using an innovative methodology and technology: laser ablation inductively coupled-plasma mass spectrometry. These results indicate that lead levels were probably high during breast-feeding and weaning. It is reasonable to speculate that lead absorption was an additional stressor that had a negative interaction with infant and childhood diets and illnesses. For example, a poor intake of calcium would have increased the absorption of lead, which then could have led to anorexia and decreased intake of food.

Enamel hypoplasia data in Chapter 8 suggest that infant and childhood health were worse for individuals who were born in New York and died in childhood than for individuals who were more likely to have been born in Africa but who died as adults. Enamel hypoplasia frequencies representing malnutrition and disease events in childhood were extraordinarily high for children born in New York when compared to samples from other archaeological sites. A similar trend was shown for infectious disease (Chapter 10). An analysis relying on age-differentiated samples showed that older persons who were most likely to have spent childhoods in central and West Africa had the fewest hypoplasias even when occlusal wear was controlled. An analysis comparing individuals with and without culturally modified teeth showed a similar trend, but the difference was not statistically significant. Planned is a far more rigorous test, comparing enamel defects among a large sample (approximately 200) of individuals whose places of birth can, as we predicted in 1993, be shown on the basis of their chemical signatures, of the differences in childhood health in New York, Africa, and the Caribbean. The scientific results of this test would shed light on the human cost of enslavement. Our data do make clear, however, that those who died as children and were buried in the New York African Burial Ground can be frequently characterized by delayed growth and development due to a combination of nutritional, disease, and probable work-related stresses (see Chapter 12).

Infant mortality was high and estimated to be much higher than in the English population of New York City. Infants, especially newborns, and weaning-age children, had especially high levels of new infection, anemia, and other indicators of poor nutrition such as growth retardation and stunting. Low frequencies of pathology, especially active lesions, in children relative to adults may indicate that those who died as children tended to die of acute disease and/or nutritional stresses without bearing extended morbidity and recovery from disease. As is frequently the case among diverse human societies, older children were the healthiest persons in the population.

Late adolescents and young adults (15–25-year-olds) also experienced distinctively early and high mortality when compared either to their English contemporaries or to later African American populations. But might this not be partly an artifact of the immigrant nature of those populations? Among Africans, high mortality in those ages reflects the proportionately large number of adolescents and young adults who were forced to migrate to New York and then to die young, becoming numerically prominent among the buried. Generally, adolescents are expected to show low mortality that rivals that of older children. Females also had high rates of active infection during these ages, unlike males. Adolescent females, young women, infants, and young children were distinctively exposed to new active infection relative to healed lesions, although adolescent females and young women also had substantial evidence of healed lesions, unlike infants (see Chapter 10). Oral health related to constraints upon menu and hygiene was also generally poor (Chapter 9).

Throughout the eighteenth century, the size of the New York African population remained fairly constant despite continuous importation—nor had the African population increased by virtue of fertility, which was actually below replacement values (see Chapters 7 and 13). This lack of natural increase is consistent with severely exploited enslaved populations in the
Caribbean, a trend that is associated with an open transatlantic trade in human captives in which the large supply renders the enslaved disposable.

The New York population was probably not exposed to syphilis for very long, unlike Caribbean populations whose low fertility has been partly attributable to the introduction of the venereal disease and high sex ratios. Life expectancy was low, and few Africans lived to old age. Yet, the instability of the population with regard to migration makes the interpretation of life tables somewhat problematic. The percentage of New York African Burial Ground individuals living beyond 55 years is similar, however, to census data from municipal records (between 1 and 3 percent). This observation is consistent with the study of the Newton Plantation in Barbados, demonstrating comparability between skeletal and archival data on adult mortality, unlike the fragile skeletal remains of infants that underrepresent mortality by virtue of their rapid decay in the ground or selective interment. The English community, who would have presumed to own these Africans, exhibited opposite mortality trends, with many times more English males and females living to old age. Young English men, however, were well represented among the dead, most likely owing to ages of migration, interpersonal violence, trauma, and stressful conditions as seems the case for even younger African men, women, and adolescents.

Both African men and women experienced elevated work stresses, with some differences in the distribution of load-bearing—toward the upper spine in women and the lower spine in men. The overlap in evidence of muscle hypertrophy in the limbs and degenerative joint disease across gender is perhaps more impressive than the differences (see Chapter 11). It is clear that most men and women were exposed to arduous work for extended periods of time.

New York Africans are among highly stressed populations examined by paleopathologists over broad spans of time and space. The physical effects of slavery in New York resemble those of southern plantations and were not in any sense benign. Comparisons with other studies must be considered to be approximate because of the differences in diagnosis, scoring, and data recovery protocols with which the field of skeletal biology continues to contend. However, every effort has been made to put these comparisons forward, with the necessary qualifying information, for a fair evaluation of their meaningfulness. Comparisons between the New York African Burial Ground and other archaeological sites can be most directly made in relation to our own previous projects, such as the FABC, for which we directed the methodology (see Chapter 8).

In some respects, such as the absence of natural population increase, African New Yorkers resemble the mean conditions of workers on Caribbean and Louisiana sugar plantations and South Carolina, during a time when open transatlantic trade made it easier to replace dead workers than would be the case after the 1808 cessation of a legal African supply. African New Yorkers were in a quite different geographical setting than the more familiar plantation economies. They were, nonetheless, part of that larger, slavery-fueled, Atlantic World economy, owned and managed by the same colonial European captors as in the British West Indies and the South.

New Problems and Solutions

Some interesting points have been learned as a project, in moving away from racist and inhumane anthropological practices of the past. Those practices are not as readily escaped as some of us had believed, even though we were willing to confront problems head-on. Every effort to make comparisons with other skeletal populations attempted to drag us back to race. Whether DNA, dental morphology, or craniometry, the comparative data of anthropologists tended to have taken perfectly good measurements of specific ethnic, linguistic, or historically particular regional groups and then aggregated them into sub-Saharan, West African, black, white, or some other pseudobiological category. Such essentially racial categories are irrelevant to ascertaining the more specific African geographical regions and the historically relevant cultural groups within such regions, with which a skeleton’s biological distinctiveness is associated. Sometimes where specific groups were available for comparison, they had no direct relevance to the early colonial American experience. There are few biological data available on eighteenth-century English, Dutch, Seneca, Delaware, Bakongo, Akan, or Yoruba, specifically. A case in point is the Gold Coast (Akan) cranialia that we measured at the American Museum of Natural History, thanks to the collegial aid of Dr. Ian Tattersall. They had apparently not been of much interest to previous researchers, yet this comparative sample cannot be neglected for assessing cranial affinities of the African Diaspora. Interestingly, no English sample was available for comparison from the same museum. The craniometric database gratefully received from
Dr. W. W. Howells had no British, Irish, or Dutch (we used the Scandinavian sample). Indeed, it seems that with racial thinking any conveniently measured or sampled Eastern European, Southwestern Native American, or sub-Saharan African has been allowed to suffice as a surrogate for any other specific population on those continents. The race concept has allowed this kind of loose thinking to persist and even to pass as rigor when such categories are permitted to define research questions. The research team’s use of comparative databases is still imprecise and includes some lumped groups and historically implausible parental samples of cranial measurements. We, nonetheless, believe these data are far less muddy in this regard than usual and we will continue to refine them.

The dearth of DNA data from state-level central African societies, but sufficient Pigmy and Khoi San samples, communicates much concerning how many physical anthropologists and geneticists view the significance of Africa. We encourage our colleagues to obtain disaggregated data (or to disaggregate secondary data ourselves) to restore culturally and genetically identifiable populations from the lumped, racialized constructions that obscure the historically real populations to which we want to assess American relationships. The team’s collaborators at the University of Maryland are taking another strategy, teaming with African nations using sampling methods that are more useful to us in order to obtain proper comparative data. By discussing the range of cultural historical groups who were imported, we have begun to establish the range, if not the specific, nonracial identities of New York African Burial Ground individuals. By addressing questions raised by African American community members and scholars, we have begun to identify highly consequential voids in the corpus of anthropological knowledge. The work initiated by this research project, under Dr. Fatimah Jackson’s leadership, toward the establishment of African genetic databanks in Cameroon and elsewhere, has been an unanticipated outcome of our observations. In order to make comparisons of New York African Burial Ground remains to African cultural groups that would result in accurate population affiliations, a more complete set of genetic data needs to be created on descendants of the state-level societies that had been involved in the trade of human captives. A similar case can also be made of European and Native peoples who contributed to early North American colonial history and the genome. The public interest in this research question also spurred interest in the possibility of tracing living African Americans’ ancestry. The possibility of recovering some of the identity and intercontinental ties that slavery destroyed in order to dehumanize blacks seems an outstanding use of a very different anthropology than we have seen before. The New York African Burial Ground Project has resolved significant methodological and technical problems with both chemical sourcing and DNA affiliation studies. Yet it is not currently possible to reliably determine a dead or living person’s African ethnic (“tribal”) ancestry on the basis of DNA. No one has yet published controlled studies to support such a claim.

Continuously, we have been asked by reviewers, overseers, and audience members about comparisons of the New York African Burial Ground sample to colonial European-American samples. For some, this was a critically important question, one that would validate or invalidate the findings of the New York African Burial Ground Project research. From the very beginning, the project sought comparative European-American colonial skeletal and historical cemetery samples. The search was basically unsuccessful; first, apparently European-American populations are rarely disinterred and/or studied; second, when European-American populations are excavated, they are predominantly from poorhouses or almshouses. We considered these populations inappropriate comparisons for establishing the relative conditions of enslaved Africans and colonial Europeans, despite the encouragement from some government oversight agencies and their consultants for us to pursue those comparisons.

Poorhouse or almshouse samples are primarily composed of the insane, sick, aged, lame, blind, chronically intemperate, and indigent (e.g., Elia 1991; Lanphear 1988). In most studies, the greater proportion of inmates was there for intemperance. To argue that these represent the laboring lower classes of Euro-Americans does not seem plausible. In fact, many if not most were social outcasts, not the class of Europeans who were bound to indentured servitude and who would have been a reasonable comparative sample. Some portion of the laboring lower social classes is probably represented in poorhouse and almshouse samples, but those segments have not been distinguished from the insane, infirm, and nonlaboring inmates. Inmates of these institutions, at a minimum, experienced similar exposure to infectious diseases and poor nutrition as did enslaved people. Nevertheless, the lower classes and/or social outcasts are not socially, biologically, or political-economically com-
parable to the people interred in the African Burial Ground. The latter are representative of the average or vast majority of Africans in New York; the former represents a small minority of unrepresentative Europeans and Americans, even for the nineteenth-century context from which these collections usually derive. A consequence of comparison would be to artificially produce a closer proximity between the conditions of enslaved Africans and free Europeans than is justified. Our solution has been to use cemetery death records for Trinity Church Yard, and these are qualified as evidence of the mortality of those who would have presumed to own Africans in New York, given the high proportion of landowning Englishmen in that congregation. This seems fair until a sample of the majority European population in colonial New York City has been excavated and made available for study using methods comparable to ours.

It should also be noted, with regard to such comparisons as these, that those who were enslaved had no designated social class. Even their membership in the human race was being intensely debated and contested during their lives in New York. Chattel does not have a social class.

Interestingly, only one anthropologist has asked us about the health status of contemporaneous skeletal populations in Africa itself and was quite disappointed when the response was that none had been sufficiently studied and reported (see Chapter 2). What would their lives, health status, and mortality have been if those who made up the New York African Burial Ground population, and others like them, had not been captured and enslaved? That is the question for many people ultimately impacted by these consequences.

Finally, the project may have helped improve African American interest in archaeology, and archaeologists’ and physical anthropologists’ interest in ethics. These would be good things, and we hope to have contributed to it. It seems true, however, that these groups still remain at a distance.

Along with the history and archaeology reports, the skeletal biology report is part of a trilogy that should be read together. These reports document the first historical anthropological efforts to tell in detail the story of the eighteenth-century enslaved African American population of New York. In this report, we have been able to reinsert into the historical record, with solid evidence, some of the trials and transformations of this diverse group of individuals. Their bones and teeth speak eloquently of their lives before death, bearing witness to the stresses of malnutrition, infection, poor medical care, lead pollution, overwork, and injury. Individuals came to New York via diverse routes and from diverse areas. Some were born into slavery, but most adults probably were not. Unfortunately, the hardships they endured rival those confronted by and imposed on any other group. Nevertheless, the enslaved Africans of New York rebelled against, survived, endured, and built the material foundation of the financial capitol and capital of the Western world. By the evidence thus ascertained, let these reports put to rest any assumption that this achievement came without the extraordinary abuse and work of Africans in eighteenth-century New York.
References

Acheson, R. M.

Acsádi, G., and J. Nemeskéri

Agorsah, E. K.

Agorsah, E. K. (editor)

Albert, A. L., and D. L. Greene

Allegre, C. J., B. Dupre, P. Negrel, and J. Gaillardet

Allen, L. H.

Alt, K. W., and S. L. Pichler

Amarasiriwardena, D., S. F. Durrant, A. Lásztity, A. Krushevsky, M. D. Argentine, and R. M. Barnes

Ambrose, S. H.

Ameyaw, M. M., E. S. Collie-Duguid, R. H. Powrie, D. Ofori-Adjei, and H. L. Mcleod

Andah, B. W.

Angel, J. L.
Angel, J. L., J. O. Kelley, M. Parrington, and S. Pinter
Ansa, K. O.
Aptheker, H.
Arizona State University Dental Anthropology System
Armelagos, G. J.
Armelagos, G. J., D. S. Carlson, and D. P. Van Gerven
Armelagos, G. J., and A. H. Goodman
Armelagos, G. J., A. Goodman, and K. H. Jacobs
Armelagos, G. J., J. H. Mielke, and J. Winter
Armstrong, D. V.
Armstrong, D. V., and M. Fleishman
Arriaza, B. T.
Asala, S. A., and F. E. Mbajiorgu
Aufderheide, A. C.
Aufderheide, A. C., F. D. Neiman, L. E. Wittmers, and G. Rapp, Jr.

Aufderheide, A. C., and C. Rodriguez-Martin

Aufderheide, A. C., L. E. Wittmers, Jr., G. Rapp, Jr., and J. Wallgren

Ayala, F. J., and A. A. Escalante

Baber, W. L.

Bailit, H. L.

Baker, L. D.

Bass, W. M.

Bastide, R.

Beavers, R. C., T. R. Lamb, and J. R. Greene

Benjamin, M., T. Kumai, S. Milz, B. M. Boszczyk, A. A. Boszczyk, and J. R. Ralphp

Berlin, I.

Bernal, M.

Biondi, G., O. Rickards, C. Martinez-Labarga, T. Taraborelli, B. Ciminelli, and G. Gruppioni

Bird, A. R., P. Ellis, K. Wood, C. Mathew, and C. Karabus
Blakely, R. L., and L. A. Beck

Blakey, M. L.

Blakey, M. L., and G. J. Armelagos

Blakey, M. L., S. B. Jenkins, D. Jamison, and T. Leslie

Blakey, M. L., and C. J. La Roche

Blakey, M. L., T. E. Leslie, and J. P. Reidy

Blum, J. D., E. H. Taliaferro, M. T. Weisse, and R. T. Holmes

Boas, F.

Bocquet-Appel, J. P., and C. Masset

Bogin, B.

Bogue, D. J.

Bolles, A. L.

Bond, G. C.

Boom, R., C. J. Sol, M. M. Salimans, C. L. Jansen, P. M. Wertheim-van Dillen, and J. van der Noordaa

Bortolini, M. C., F. M. Salzano, M. A. Zago, W. A. Da Silva Junior, and T. de A. Weimer

Boyde, A.

Brakez, Z., E. Bosch, H. Izaabel, O. Akhayat, D. Comas, J. Bertranpetit, and F. Calafell

Brehm, A., L. Pereira, H. J. Bandelt, M. J. Prata, and A. Amorim

Bridges, P. S.

Brodhead, J. R.

Brooks, S., and J. M. Suchey

Broussal, G., G. Coeurdeuil, and O. Ouedraogo

Browne, D. L.
Buckley, R. N.

Budd, P., J. Montgomery, A. Cox, P. Krause, B. Barreiro, and R. G. Thomas

Buikstra, J. E.

Buikstra, J. E., and D. C. Cook

Buikstra, J. E., and L. W. Konigsberg

Buikstra, J. E., and D. H. Ubelaker (editors)

Burman, M. S., and H. C. Clark

Burton, J. H., and T. D. Price

Burton, J. H., and L. E. Wright

Buxton, L. H. D., J. C. Trevor, and A. H. Julien

Byers, S. N.

Campana, S. E., A. J. Fowler, and C. M. Jones

Capasso, L., and G. DiTota

Capasso, L., K. A. R. Kennedy, and C. A. Wilczak

Carlson, S. J.

Carlyle, S. W., R. L. Parr, M. G. Hayes, and D. H. O’Rourke

Carrington, S. H. H.

Carter, D. R., B. Miki, and K. Padian
Carter, D. R., M. C. H. van der Meullen, and G. S. Beaupré

Carvalho-Silva, D. R., F. R. Santos, J. Rocha, and S. D. Pena

Cavalli-Sforza, L. L., and M. W. Feldman

Chen, B.-Y., and H. W. Janes

Chen, Y. S., A. Olckers, T. G. Schurr, A. M. Kogelnik, K. Huoponen, and D. C. Wallace

Chen, Y. S., A. Torroni, L. Excoffier, A. S. Santachiara-Benerecetti, and D. C. Wallace

Chilbeck, P. D., K. S. Davison, D. G. Sale, C. E. Webber, and R. A. Faulkner

Chima, S. C., C. F. Ryschkewitsch, K. J. Fan, and G. L. Stoner

Ciminelli, B. M.

Cipollaro, M., G. Di Bernardo, G. Galano, U. Galderisi, F. Guarino, F. Angelini, and A. Cascino

Clarke, S. K.

Cleymaet, R., P. Bottenberg, D. Slop, R. Clara, and D. Coomans

Coale, A. J., and P. Demeny

Cobb, W. M.

Colden, Cadwallader

Condon, K. W., and J. C. Rose

Cook, K.

Corporation of Trinity Church
1969 Corporation of Trinity Church of Trinity Parish Church Total Alphabetical Population in the City of New York, 27th of October 1969.

Corruccini, R. S., A. C. Aufderheide, J. S. Handler, and L. E. Wittmers, Jr.

Corruccini, R. S., J. S. Handler, and K. P. Jacobi

Corruccini, R. S., J. S. Handler, R. J. Mutaw, and F. W. Lange

Corruccini, R. S., K. P, Jacobi, J. S. Handler, and A. C. Aufderheide

Cox, A., F. Keenan, M. Cooke, and J. Appleton

Cox, G., and J. Sealy

Cox, G., J. Sealy, C. Schrire, and A. Morris

Crist, T. A., R. H. Pitts, A. Washburn, J. P. McCarthy, D. G. Roberts, and M. Hickey

Crosby, A. W.

Crummell, A.
1861 The Relations and Duties of the Free Colored Men in America to Africa. Case, Lockwood, Hartford, Connecticut.

Currey, J. D., and G. Butler

Curry, L. P.

Curzon, M. E. J.

Curzon, M. E. J., and T. W. Cutress (editors)
1983 *Trace Elements and Dental Disease,* edited by M. E. J. Curzon and T. W. Cutress, John Wright, Boston, Massachusetts.

Curzon, M. E. J., F. L. Losee, and A. S. Macalister

Dasch, E. J.

Davenport, C. B., and M. Steggerda

Day, D. B.

DeCorse, C. R.

2001 *An Archaeology of Elmina: Africans and Europeans on the Gold Coast, 1400–1900.* Smithsonian Institution Press, Washington, D.C.

Delany, M. R.

Demirjian, A.

de Pablo R., J. M. Garcia-Pacheco, C. Vilches, M. E. Moreno, L. Sanz, M. C. Rementeria, S. Puente, and M. Kreisler

Derevenski, J. R. S.

de Villiers, H.

Diop, C. A.

Diouf, S. A. (editor)

Dittrick, J.
1979 Sexual Dimorphism of the Femur and Humerus in Prehistoric Central California Skeletal Samples. Unpublished Master's
thesis, Department of Anthropology, California State University, Fullerton.

Douglass, F.

Drake, St. C.

Drake, St. C., and H. R. Clayton

Du Bois, W. E. B.

Duffy, J.

Dutch Reformed Church

Ebelen, J. E.

Edwards, G. F.

Elia, R. J.

El-Najjar, M. Y., M. V. De Santi, and L. Ozebek

Epperson, T. W.

Ericson, J. E.

Forman, S. (editor)

Fowler, C.

Fraginals, M. M.

Franklin, J. H.

Frazier, E. F.

Frost, H. M.

Fujii, K., and Y. Matsuura

Galera, V., and M. D. Garralda

Garn, S. M.

Garn, S. M., K. Koski, and A. B. Lewis

Garn, S. M., C. G. Rohmann, and M. A. Guzmán

General Services Administration

Genovese, E. D.

Gibbons, A.

Gilbert, C., J. Sealey, and A. Sillen

Gilbert, S. F.

Gillett, R. M.

Gladstone, M., Y. Lasne, L. Sann, and G. Putet

Golden, M. H.

Goldstein, S. J., and S. B. Jacobsen

Gomez, M. A.

Goncalves, M. S., J. F. Nechtman, M. S.

Goode, H., T. Waldron, and J. Rogers

Goode-Null, S. K.

Goodfellow, J.

Goodman, A. H.

Goodman, A. H., and G. J. Armelagos

Greene, L. S.

Greenhalgh, S.

Gruelich, W. W., and S. I. Pyle

Grupe, G.

Guatelli-Steinberg, D., J. D. Irish, and J. R. Lukacs

Guatelli-Steinberg, D., and J. R. Lukacs

Guiteras, P. J.
1927 *Historia de la Isla de Cuba*. Cultural S.A., Havana, Cuba.

Gulson, B. L., C. W. Jameson, and B. R. Gillings

Gulson, B. L., and D. Wilson

Guo, S. S., A. F. Roche, W. C. Chumlea, C. Johnson, R. J. Kuczmasrski, and R. Curtin

Gupta, A., and J. Ferguson

Gustafson, B. E., and G. Koch
1974 Age Estimation Up to 16 Years of Age based on Dental Development. *Odontologisk Revy* 25:297–306.

Gutman, H. G.

Guy, H., C. Masset, and C. A. Baud

Haack, K., S. Hummel, and B. Hummel

Haas, J.

Habermas, J.

Hägg, U., and J. Taranger

Hall, G. M.

Hals, E., and K. A. Selvig

Hamblin, M. T., E. E. Thompson, and A. Di Rienzo

Handler, J. S.

Handler, J. S., and R. S. Corruccini

Handler, J. S., R. S. Corruccini, and R. J. Mutaw

Handler, J. S., and F. W. Lange

Harrington, S.

Harris, J. E.

Harrison, F. V.

Hawkey, D. E.

Hawkey, D. E., and C. F. Merbs

Hemenway, R. E.

Herring, D. A., S. R. Saunders, and M. A. Katzenberg

Herskovits, M. J.

Hewitt, R., A. Krause, A. Goldman, G. Campbell, and T. Jenkins

Higgins, R. L., M. R. Haines, L. Walsh, and J. E. Sirianni

Higman, B. W.

Hill, M. C., M. L. Blakey, and M. E. Mack

Hillson, S. W.

Himes, J. H.

Hodges, D. C., and L. M. Schell

Hoffman, J. M.

Holl, A. F. C.

Hooton, E. A.

Hoppa, R. D.

Hoppa, R. D., and C. M. FitzGerald

Hoppa, R. D., and K. L. Gruspier
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1925</td>
<td>The Old Americans.</td>
<td>Williams and Wilkins, Baltimore, Maryland.</td>
</tr>
</tbody>
</table>
Ingman, M., H. Kaessmann, S. Paabo, and U. Gyllensten

Inoue, N., R. Sakashita, M. Inoue, T. Kamegai, K. Ohashi, and M. Katsivo

Inoue, N., R. Sakashita, N. Tadashige, and T. Kamegai

Irish, J. D.

İşcan, M. Y., S. R. Loth, and R. K. Wright

Ivanhoe, F.

Jackson, F. L. C.

Jacobi, K. P., D. C. Cook, R. S. Corruccini, and J. S. Handler

Jacobs, H. A.

Jantz, L. M., and R. L. Jantz

Jantz, R. L., and D. W. Owsley

Johansson, S. R., and S. Horowitz

Johnston, F. E.

Johnston, F. E., and C. E. Snow

Johnston, F. E., and L. O. Zimmer

Jones, A.

Jones, D. G.
1990 Preliminary Excavations at a Burial Ground at Galways Plantation, Montserrat, West Indies. Department of Archaeology, Boston University, Boston, Massachusetts.

Jordan, W. D.

Jorde, P. K.

Jurmain, R.

Jurmain, R., L. Kilgore, W. Trevathan, and H. Nelson
2003 Introduction to Physical Anthropology. 9th ed. Wadsworth, Belmont, California.

Kagerer, P., and G. Grupe
2001 Age-at-Death Diagnosis and Determination of Life-History Parameters by Incremental Lines in Human Dental Cementum as an Identification Aid. Forensic Science International 18:75–82.

Karol, L. A.

Katz, D., and J. M. Suchey

Katzenberg, M. A., D. A. Herring, and S. R. Saunders

Katzenberg, M. A., S. R. Saunders, and W. R. Fitzgerald

Kayser, M., S. Brauer, H. Schädlich, M. Prinz, M. A. Batzer, P. A. Zimmerman, B. A. Boatin, and M. Stoneking
Keclard, L., V. Ollendorf, C. Berchel, H. Loret, and G. Merault

Kelley, J. O., and J. L. Angel

Kennedy, K. A. R.

Khudabux, M. R.

King, W.

Kiple, K. F., and V. H. King

Kiple, K. F., and V. H. Kiple

Kister, J., C. Prehu, J. Riou, C. Godart, J. Bardakjian, D. Prome, F. Galacteros, and H. Wajcman

Kjaer, I.

Klein, H. S.

Knight, F. W., and P. K. Liss (editors)

Knodel, J., and H. Kintner

Knüsel, C.

Kohn, M. J.

Kolman, C. J., and N. Tuross

Konigsberg, L. W., S. M. Henss, L. M. Jantz, and W. L. Jungers
Konstantopoulos, K., T. Vulliamy, D. Swirsky, J. D. Reeves, J. Kaeda, and L. Luzzatto

Koo, K. S.

Koziel, S. M.

Kreshover, S. J.

Krogman, W. M.

Kruger, V. L.

Kutz Television, Inc.

Lampl, M., and F. E. Johnston

Lang, S. S.

Lanphear, B. P., M. Weitzman, and S. Eberly

Lanphear, K. M.

Lapoumeroulie, C.

La Roche, C. J., and M. L. Blakey

Larsen, C. S.

Lassen, C., S. Hummel, and B. Herrmann

Levy, L. F.

Lewis, A. B., and S. M. Garn

Lignitz, H.
Liversidge, H. M.

Livshits, G., K. Yakovenko, L. Kletselman, D. Karasik, and E. Kobylansky

Lochner, F., J. Appleton, F. Keenan, and M. Cooke

Long Papers
n.d. Archived material. Add Ms. 18,273, folio 131.

Lorenz, J., A. Vosbikian, J. Beck, P. Bender, A. Whittemore, and F. Jackson

Lovejoy, C. O., R. P. Mensforth, and G. J. Armelagos

Lovejoy, P. E.

Lovejoy, P. E.

Lovell, N. C.

Luis, J. R., S. Dios, J. C. Carril, R. Herrera, and B. Caeiro

Lukacs, J. R.

Lydon, J. G.

Mack, M. E., and M. L. Blakey

Mack, M. E., M. L. Blakey, and A. H. Goodman

Mack, M. E., C. M. Hill, and M. L. Blakey

Mandel, I. D.

Mange, A. P., and E. J. Mange
Mann, A., M. Lampl, and J. Monge

Mann, K., and R. Roberts (editors)

Mann, R. W., and J. Krakker

Mann, R. W., L. Meadows, W. M. Bass, and D. R. Watters

Mansilla, J., and C. M. Pijoan

Maples, W. R.

Marcus, R.

Maresh, M. M.

Margo, R. A., and R. H. Steckel

Marks, M. K., J. C. Rose, and W. D. Davenport, Jr.

Martin, D. L., A. L. Magennis, and J. C. Rose

Marquez-Morfin, L.

Massler, M., I. Schour, and H. Poncher

Mateu, E., D. Comas, F. Calafell, A. Perez-Lezaun, A. Abade, and J. Bertranpetit

May J., D. Comas, F. Calafell, A. Perez-Lezaun, A. Abade, and J. Bertranpetit

McCaa, R.

McCammon, R. W.

McCord, C. P.

McKee, S.

McManus, E. J.

Meckel, R.

Medford, E. G.

Medford, E. G. (editor)

Medford, E. G., E. Brown, L. Heywood, and J. Thornton

Meindl, R. S., and C. O. Lovejoy

Meindl, R. S., C. O. Lovejoy, R. P. Mensforth, and R. A. Walker
1985 A Revised Method of Age Determination using the Os Pubis, with a Review and Tests of Accuracy of other Current Methods of Pubic Symphyseal Aging. Ameri-
Menard, R.

Mendez, H.

Merbs, C. F.

Meyer, C. G., and L. Schnittger

Monsalve, M. V., and E. Hagelberg

Minutes of the Court of General Sessions

Mintz, S. W.

Mintz, S. W., and R. Price

Monsalve, M. V., and E. Hagelberg
Monteiro, C. A., and A. M. Torres

Monyeki, K. D., N. Cameron, and B. Getz

Moore, J. A., A. C. Swedlund, and G. J. Armelagos

Moreau, J. L., P. Rouas, and A. Rouas

Morgan, Philip

Morris, A. G.

Mouele, R., J. M. Bodo, D. M. Mpele, J. Feingold, and F. Galacteros

Moynihan, D. P.

Mullin, M.

Mwaria, C.

Nagy, B. L., and D. E. Hawkey

Nash, G. B.

National Historic Preservation Act

National Institute of Standards and Technology (NIST)

Native American Graves Protection and Repatriation Act

Needleman, H. L.

Needleman, H. L., and D. Bellinger
New York City Common Council

New York State

Nichol, C. R.

Nicolls, C.

Nott, J. C., and G. R. Gliddon
1854 Types of Mankind; Or, Ethnological Researches, based upon the Ancient Monuments, Paintings, Sculptures, and Crania of Races, and upon their Natural, Geographical, Philological, and Biblical History. Lippincott, Grambo, Philadelphia, Pennsylvania.

Nurse, G. T., M. C. Botha, and T. Jenkins

Nurse, G. T., and T. Jenkins

Nurse, G. T., T. Jenkins, J. H. David, and A. G. Steinberg

Oberfield, S. E., D. L. Wethers, J. L. Kirkland, and L. S. Levine

Ofodile, F. A.

Ogden, J. A.

Ogden, J. A., R. F. Hempton, and W. O. Southwick

Ogden, J. A., and S. M. McCarthy

Ogden, J. A., and S. B. Phillips

Olin, M. S., H. A. Young, D. Seligson, and H. H. Schmidek

Onat, T.

Orser, C. E., Jr.

Ortiz, F.

Ortner, D. J.

Pereira, L., V. Macaulay, A. Torroni, R. Scozzari, M. J. Prata, and A. Amorim

Perrson, M.

Perry, W. R.

Perry, W., and M. L. Blakey

Perry, W. R., J. Howson, and B. A. Bianco (editors)

Perry, W. R., and R. Paynter

Phenice, T. W.

Physician/Pharmacist Day Book

Piersen, W. D.

Pittard, E.

Pollitzer, W. S.

Powell, J. S.

Price, R., and S. Price

Price, T. D., G. Grupe, and P. Schroter

Pryor, J. W.

Purchase, N. G., and J. E. Fergusson

Pyle, S. I., and N. L. Hoerr

Rathbun, T. A.

Rathbun, T. A., and J. D. Scurry

Rathbun, T. A., and R. H. Steckel

Reed, W. L.

Reich, D. E., S. B. Gabriel, and D. Altshuler

Relethford, J. H.

Relethford, J. H., and H. C. Harpending

Relethford, J. H., and L. B. Jorde

Ribot, I., and C. Roberts
Ricklan, D. E., and P. V. Tobias

Ripley, W. Z.

Rivero de la Calle, M.

Rodahl, K.

Rodríguez Romero, W. E., G. F. Sáenz Renaud, and M. A. Chaves Villalobos

Rogers, J.

Rose, J. C. (editor)

Rose, J. C., K. W. Condon, and A. H. Goodman

Rose, J. C., and L. G. Santeford

Rosen, J. F., and J. G. Pounds

Ross, H. B., A. M. Adams, and L. M. Williams

Rosser, Z. H.

Rothschild, N. A.

Rovillé-Sausse, F.

Rudney, J. D., R. V. Katz, and J. W. Brand

Ruff, C. B.

Runia, L. T.

Ryan, A. S.
Salas, A., M. Richards, T. De la Fe, M. V. Lareu, B. Sobrino, P. Sánchez-Diz, V. Macaulay, and A. Carracedo

Samford, P.

Sanday, P. R.

Sarr, M., B. Toure, A. W. Kane, F. Fall, and M. M. Wone

Satake, T.

Satter, L., and H. Harpending

Saunders, S. R.

Saunders, S. R., and L. Barrans

Saunders, S. R., C. DeVito, A. Herring, R. Southern, and R. Hoppa

Savitt, T. L.

Schell, L. M.

Scher, A. T.

Scheuer, L., and S. Black
Schmerer, W. M., S. Hummel, and B. Herrmann

Schmidt, P. R., and T. C. Patterson (editors)

Schour, I., and M. Massler

Schultes, T., S. Hummel, and B. Herrmann

Schultz, M.

Schurr, M. R.

Schwarz, H. P., L. Gibbs, and M. Knyf

Schwarz, H. P., and M. J. Schoeninger

Sciulli, P. W.

Scott, E. C.

Scott, G. R.

Scott, G. R., H. Rosario, Y. Potter, J. F. Noss, A. A. Dahlberg, and T. Dahlberg

Scott, G. R., and C. G. Turner II

Scozzari, R., A. Torroni, O. Semino, F. Cruciani, G. Spedini, A. S. Santachiara Benerecetti

Scozzari, R., A. Torroni, O. Semino, G. Sirugo, A. Brega, and A. S. Santachiara-Benerecetti

Scrimshaw, N.

Sealy, J., R. Armstrong, and C. Schrire

Sealy, J. C., and A. Sillen
1988 Sr and Sr/Ca in Marine and Terrestrial Foodwebs in the Southwestern Cape,

Sealy, J. C., N. J. Van der Merwe, A. Sillen, F. J. Kruger, and H. W. Krueger

Serjeant, G. R.

Shapiro, I. M., H. L. Needleman, and O. C. Tuncay

Sharon, I. M.

Sharpe, John

Shieh, A. C., and K. A. Athanasiou

Shields, E. D.

Shields, E. D., and G. Jones

Sillen, A., and M. Kavanagh

Sillen, A., J. C. Sealy, and N. Van der Merwe

Simpson, S. W., and C. A. Kunos

Singleton, T. A.

Singleton, T. A., and M. D. Bograd

Smedley, A.

Smith, B. H.

Smith, D.

Soodyall, H., and T. Jenkins

Sow, A., E. Peterson, O. Josifovska, M. E. Fabry, R. Krishnamoorthy, and R. L. Nagel
Spencer, F.

Sperber, G. H., and J. L. Moreau

Spinola, H., A. Brehm, E. Williams, J. Jesus, and D. Middleton

Stampp, K. M.

Steckel, R. H.

Steinbock, R. T.
1976 Paleopathological Diagnosis and Interpretation, Bone Diseases in Ancient Human Populations. Charles C Thomas, Springfield, Illinois.

Steinlechner, M., K. Schmidt, H. G. Kraft, G. Utermann, and W. Parson

Stevenson, J. C.

Stewart, C. P., and D. Guthrie (editor)

Stewart, T. D.
1939 Negro Skeletal Remains from Indian Sites in the West Indies. Man 39:49–51.

Stewart, T. D., and J. R. Groome

Steyn, M., and M. Henneberg

Stirland, A. J.

2000 Raising the Dead: The Skeleton Crew of King Henry VIII’s Great Ship, the Mary Rose. Wiley, Chichester, Great Britain.

Stoddard, L.

Stoneking, M., D. R. G. Hedgecock, L. V. Higuchi, and H. A. Erlich
Subcommittee on Zinc, Committee on Medical and Biologic Effects of Environmental Pollutants

Subscribers for the Abolition of Slavery

Suchey, J. M., D. V. Wisely, R. F. Green, and T. T. Nogouchi

Sundick, R. I.

Sutherland, L. D., and J. M. Suchey

Swedlund, A.

Swofford, D.

Tague, R. G.

Tanner, J. M.

Taylor, N. A. S., and J. G. Wilkinson

Ten Cate, A. R.

Thieme, F. P.

Thieme, F. P., and W. J. Schull

Thilander, B.

Thomas, D. H.

Thomas, D. H., S. South, and C. S. Larsen

Thomas, J. A., D. L. Rimoin, R. S. Lachman, and W. R. Wilcox

Tieslerbos, V. G., and R. L. B. Frausto

Tobias, P. V.

Todd, T. W.

Tomas, G., L. Seco, S. Seixas, P. Faustino, J. Lavinha, and J. Rocha

Torday, E.

Torrioni, A., M. D. Brown, M. T. Lott, N. J. Newman, and D. C. Wallace

Tosti, L. L.

Trotter, M.

Trovao da, M. J., C. Alves, L. Gusmao, A. Abade, A. Amorim, and M. J. Prata

Turner, C. G., II

Ubelaker, D. H.

Ubelaker, D. H., and J. L. Angel

Ubelaker, D. H., and L. G. Grant

Underhill, P. A.

United States Bureau of the Census

United States Department of Health and Human Services

Webb, E., S. Tauch, E. F. Green, A. Goodman, and D. Amarasiriwardena 2003 Determination of Elemental Concentrations and Lead Isotope Ratios in Teeth from Solis, Mexico, Kalama, Egypt and Bronze Age Magan in Tell Abraq, UAE, by Inductively Coupled Plasma–Atomic Emission Spectroscopy (ICP-AES) and...

Weintraub, M.

Weiss, E.

Weiss, K. M.

Wentzel, P. J.

Westphal, O.

White, C. D., M. W. Spence, F. J. Longstaffe, H. Stuart-Williams, and K. P. Law

White, C. D., M. W. Spence, H. L. Q. Stuart-Williams, and H. P. Schwarcz

White, S.

Whitten, N. E., Jr., and J. R. Szwed

Wienker, C. W.

Wienker, C. W., and J. E. Wood

Wilczak, C. A.

Wilczak, C. A., and K. A. R. Kennedy

Willcox, M., G. Beckman, and L. Beckman

Williams, E.

Willis, W. S., Jr.

Wood, G. S.

Woodward, C. V.

Woodward, J. A.

Wright, L. E., and F. Chew

Wright, L. E., and H. P. Schwarcz

Yamin, R. (editor)

Yasar, I. M., and M. Steyn

Yeboah, E. D., J. M. Wadhwni, and J. B. Wilson

Y’edynak, G.

Zago, M. A.

Zago, M. A., M. S. Figueiredo, and S. H. Ogo
Index

Individuals who are mentioned in historical accounts but for whom no surname is given are listed here alphabetically by first name.

Key to locators: Numeral without an accompanying letter is the page number for a mention in text only; numeral followed by f refers to a figure on that page; similarly, n refers to a footnote and t to a table.

A
Abolition Society, 260
abscesses, dental, 29, 157–166
in deciduous dentition, 162–163, 165t
female and male comparison, 161t, 162f, 162t
in females, 160t
frequencies by tooth type, 159t, 160t
in Harney Site Slave Cemetery, Montserrat, sample, 39
in Hull Bay, St. Thomas, sample, 29
in males, 159t
population comparisons, 163, 166t
acculturation, 22, 25, 31, 32
Act to prevent aged and decrepit slaves from becoming burdensome within this Colony, An (1773), 257
adinkra symbol. See Sankofa symbol
Advisory Council on Historic Preservation (ACHP), 9, 10, 15, 33. See also excavation of the New York African Burial Ground: requests to end; Memorandum of Agreement
Affimetryx Corporation, 91
Africa. See Central Africa; West Africa; West Central Africa
“African Abroad or the African Diaspora, The” (1965), 24
African American bioarchaeology, 15
African bioarchaeology, 26n
awareness toward, as a result of the New York African Burial Ground Project, 15, 273
contrasts with diasporic research traditions, 20
definition of, 20, 24–25
development and evolution of, 20, 28, 33–40
engagement of African historical analysis, 30–31, 34
and lack of interest in African Diaspora history and culture, 25, 28, 29, 31, 39n, 40
See also African American biohistory; African Diaspora bioarchaeology; African Diaspora studies; public engagement with the New York African Burial Ground
African American biohistory, 20, 32, 128. See also African American bioarchaeology; African Diaspora bioarchaeology; African Diaspora studies; public engagement with the New York African Burial Ground
African American history, 255–256
critical and corrective approaches to, 22, 23, 24, 25, 42, 46, 198
African American graduate students with contributions to, 23
as a guide for bioarchaeological research, 41
as a guide for New York African Burial Ground research, 41
by the Pan-Africanist movement, 22
collaboration between black and white diasporans, 23, 24
Euroamerican contributors to, 22–23, 24, 27
formerly enslaved captives with contributions to, 20–21
individuals with contributions to, 20–22, 27–28
institutions with contributions to, 20–22
literature with contributions to, 20–22
distortions and omissions to, 21, 24, 26n, 27, 40, 256
Christianity as a defining factor, 25
denial of the presence of blacks and slavery, 42
European acculturation as a defining factor, 22, 25, 32
forensic studies as factor of, 40n
patronizing approaches, “white” scholarship perceived as, 22
plantation life as a defining factor, 31
portrayal as an acultural and ahistorical group, 22, 25, 32, 42 (see also “Myth of the Negro Past”)
prior enslavement in Africa as a misconception, 44
See also acculturation; African American bioarchaeology: lack of interest in African Diaspora history and culture; African Diaspora studies; Davenport, Charles; Hooton, Earnest; Hrdlička, Ales; Morton, Samuel; “New Negro”; New York African Burial Ground Project: application of alternative research approaches; New York African Burial Ground: colonial African experiences, as a source for; racial focus in past studies; Steggerda, Morris; Types of Mankind
African American human rights organizations. See Lift Every Voice, Inc.; Malik Shabazz Human Rights Institute
African Americans, 8, 21, 23, 120
community development, 8
political activism, 22, 31
political views of, 8 (see also Black Consciousness movement; Black Nationalism; Civil Rights movement; Integrationism; Leftist movement; Pan-Africanism)
social institutions, 3, 5, 8, 44
See also African American bioarchaeology;
African Anthropologist, 91
African Burial Ground, 4f
boundaries of excavated area, 3
desecrations to, 6, 7, 8, 9, 10
designation as a New York and National Historic Landmark, 10, 44
designation as the first United States National Monument to its African founders, 10
eighteenth-century North American historical evidence, as a source for, 10
European references regarding the uses of, 6
history of, 3–8
memorialization of, 3, 8, 10
nomination to the United Nations World Heritage Site list, 10
significance as an important site, 14, 15
significance for the African community, 4, 5, 6, 10
size estimate of, 3
African Diaspora bioarchaeology, 10, 11, 24, 26n, 33, 35
biocultural approaches, 11–12, 13, 14
development and evolution of, 39–40
first bioarchaeological study of a burial site, 33
outside of the United States, 37
See also African American bioarchaeology; African American biohistory; African Diaspora studies
African Diaspora studies
African American graduate students, participation of, 23
collaboration between black and white diasporans, 23, 24
contrasted with African American bioarchaeology, 20
definition of, 19–20
development and evolution of, 20–24
as a guide for research, 41
university programs, 20, 24
See also African American bioarchaeology;
Africanisms, 22, 32
African Methodist Episcopal Zion Church, 263

African sources of enslaved labor, 71, 124
- Anamaboo, 70
- Angola, 70, 78
- Benin, 88t
- Bight of Benin, 72f, 88t
- Bight of Biafra, 72f, 88t
- Bonny, 70
- Burkina Faso, 88t
- Calabar, 88t
- Cameroon, 70, 88t, 89
- Cape Mount, 70
- Central Africa, 88t, 89
- Central African Republic, 88t
- Democratic Republic of the Congo, 78
- Gambia, 70
- Ghana, 78
- Gold Coast, 72f, 88t
- Guinea, 88t
- Mali, 88t
- Morocco, 88t
- New Calabar, 70
- Niger, 88t, 89
- Nigeria, 88t, 89
- Northwest Africa, 88t
- Old Calabar, 70
- Senegal, 88t
- Senegambia, 72f, 78, 88t
- Sierra Leone, 88t
- Upper Guinea, 72f, 88t
- West Africa, 88t, 89
- West Central Africa, 72f, 88t
- Windward Coast, 88t

See also trade in enslaved Africans; West Indian sources of enslaved labor

Africanus (advocate of emancipation for women and children), 264

Afro-American Anthropology: Contemporary Perspectives (1970), 23

Afro-Caribbeans, 29, 92, 143, 186

Afrocentricity, 15, 26n

Afrocentrism, 15

Agassiz, Louis, 20

age determination
- in adults, 57–59, 59f
- in children, 57, 58f

composite age determination methods, 56–60

in growth studies, 228

Ainu (Japanese ethnic group), 79t

Akan (African ethnic group), 37, 46, 77, 110, 198, 257, 260, 271

Alabama, 204

Alaskan natives, 208

Algeria, 72f, 84t

Algonquins (North American tribe), 76t

ameloblasts, 97, 98, 143

American Anthropological Association, 12, 43

American Association of Physical Anthropologists, 34, 43, 92

American Dilemma (1945), 23, 24

American Museum of Natural History (AMNH), 30, 77, 78, 79t, 108t, 271

American Negro Academy, 21

American Revolution. See Revolutionary War

Americas. See United States

Anamaboo. See under African sources of enslaved labor: Anamaboo

Andaman Islands, India, 79t

anemia
- in Cedar Grove cemetery, Arkansas, sample, 33
- in colonial African and African American skeletons, evidence in, 35
- genetic anemia, 16, 186
- in Harney Site Slave Cemetery, Montserrat, sample, 39
- in infants, 33, 265, 270
- iron deficiency, 102, 185, 186, 240
- parasites and, 262
- porotic hyperostosis and, 185–186, 240, 265
- relationship with infection, test of, 244
- relationship with growth and stature, test of, 234, 241, 245, 251
- on South Carolina plantation, 34
- sickle cell, 186, 240

See also cribra orbitalia; porotic hyperostosis

Angel, J. Lawrence, 29, 29n, 30, 35, 36, 120, 147

See also “Bases of Paleodemography, The”

Angola, 70, 72f, 78, 79t, 88, 107t, 108t. See also African sources of enslaved labor: Angola

Ankara, 79t

antemortem tooth loss, 56f, 157–158, 162, 162t, 163, 166t

in deciduous dentition, 165t

extractions, a type of cultural modification, 28, 107t

female and male comparison, 161t, 162f, 162t

in females, 160t

frequencies by tooth type, 159t, 160t

in males, 159t

population comparisons, 163, 165–166, 166t
sex determination, complicating factor for, 55
in Water Island, St. Thomas, sample, 28
anthropometric methods, 54–55
Antilles, 103
Anyang, Korea, 79t
Arawak (Taino; Caribbean ethnic group), 28. See also origin studies: by craniometric data
“Archaeology of the African Diaspora in the Americas, The” (1995), 31
Arizona. See life expectancy: African Americans in early twentieth-century Arizona
Arizona State University Dental Anthropology System, 60
Arkansas, 33, 128, 132t, 133, 134t, 136, 140, 163, 166t, 174t. See also Cedar Grove Baptist Church cemetery, Arkansas
Armelagos, George, 33, 36
arthrosis. See osteoarthrosis
Asante (African ethnic group), 39, 77. See also Ashanti
Ashanti (African ethnic group), 76t, 77, 79t, 108t
Asians. See Asia
Asia, 25, 26n, 71, 81f, 83f, 92, 105
dispersal of inhabitants, 73, 74. See also Anyang, Korea; Butan; China; India; Japan; Korea; Nepal; Pakistan
Association for the Study of African American Life and History, 21, 31
Association for the Study of Negro Life and History. See Association for the Study of African American Life and History
Atayal (Taiwan ethnic group), 79t
Atlanta, 130, 132t. See also Oakland Cemetery, Georgia
Atlanta University, 22, 26n
Atlanta University Studies, 21
Atlantic Slave Trade: A Census (1969), 32
Australia, 74, 79t, 81f, 83f, 105

B
Back-to-Africa movement, 8
Baez, Socorro, 38n
Bailey, Ronald, 31
Bakongo (African ethnic group), 108t, 271
Bantu (language), 73, 76t, 89
Barbadian burial site, 28. See also craniometrics: comparisons between Barbadian and Gabon burials; origin studies: by craniometric data
Barbadian sugar plantation, 130, 262
Barbados, 28, 39, 96, 108t, 117, 128, 219. See also Barbadian burial site; Barbadian sugar plantation
“Bases of Paleodemography, The” (1969), 120
Bastide, Roger, 22
BaSuku (African ethnic group), 76t
Beck, Jeanné, 91
Bellevue Plantation, South Carolina, 34n, 166t
Benin, 72f, 76t, 84t, 88, 90t. See also African sources of enslaved labor: Benin
Berg, Sweden, 79t.
Bight of Benin, 92. See also African sources of enslaved labor: Bight of Benin
Bight of Biafra, 92. See also African sources of enslaved labor: Bight of Biafra
Bioanthropology Research Laboratory, University of Maryland, 89
bioarchaeological studies. See African American bioarchaeology; African Diaspora bioarchaeology
biological distance analyses. See origin studies
biomechanical stress
in children, 246, 252, 253
craniostenosis, co-occurrence, 247, 249t
fractures, as evidence of stress, 204, 206–208, 222f, 245, 246t
and long-bone flattening, test of relationship, 247, 252, 253t
os acromiale, as possible evidence for stress, 35 osteoarthritis and osteophytosis, as evidence for stress, 203–204
Schmorl’s nodes, 204, 206
spondylolisthesis, 206–208
See also degenerative changes; enthesopathies; hypertrophies; musculoskeletal stress markers (MSM); osteoarthritis
Black Consciousness movement, 8, 24, 32
Black Folk in Slavery and Freedom, The (1976), 32
Black Folk Here and There (1987, 1990), 23
Black Folk Then and Now, 23
Black Metropolis (1945), 23
Black Nationalism, 8
Black Power, 24
Black Studies programs, 20, 24. See also African Diaspora studies
Blakey, Michael, 9, 19n, 35, 51f, 147
director of New York African Burial Ground research, 3, 12, 17, 34, 36, 91, 97, 153
See also Howard University; New York African Burial Ground Project: research design: redrafting by Michael Blakey and research team
Boas, Franz, 22, 23, 27, 40. See also African history: critical and corrective approaches to; Boasian school; Boasians

Boasian school, 15. See also Boas, Franz

bone chemistry analysis. See elemental signature analysis (ESA); trace element analysis; isotopic analysis

Bonny. See under African sources of enslaved labor: Bonny

Boston, 198, 260

Boylston, Zabdiel, 260

Bransby Plantation, Montserrat, 39

Brazil, 21, 23, 92

Britain. See British, the

British, the, 105, 106, 257, 272

African Diaspora studies by, 20
departure from New York after Revolutionary War, 8, 258
 occupation of West Indian islands, 28, 257, 267, 271
 trade in human captives from Africa, 20, 153, 256
 See also British social anthropology; English, the; Europeans; Irish, the; manumission: in exchange for British military service; Scotland; trade in enslaved Africans: by the British

British social anthropology, 15, 23

Broadway, 3

Bronze Age, 204

Buffalo (Native American tribe), 249t

Burial 6, 90t, 108t, 109t, 111t, 112, 113f, 114, 116f, 189f

Burial 7, 90t, 109t, 113f, 116f, 146f, 241t

Burial 9, 90t, 108t, 109t, 112, 113f, 114, 116f, 146f

Burial 11, 90t, 207, 208, 208t, 210f

Burial 12, 90t, 165, 168f

Burial 20, 59f, 90t, 172f

Burial 22, 109t, 112, 113f, 116f, 243t

Burial 23, 88, 108t, 109t, 112f, 113f, 114, 116f

Burial 25, 90t, 222, 224–226, 225f, 246t

Burial 32, 90t, 179, 181f, 226

Burial 35, 99f, 109t, 113f, 116f, 241t, 243t, 248t

Burial 37, 90t, 207–208, 208t

Burial 39, 57f, 109t, 113f, 116f, 164f, 167f, 189f, 241t, 243t, 246t, 248t

Burial 40, 58f, 90t, 201f, 209f, 211f

Burial 43, 109t, 113f, 116f

Burial 45, 109t, 113f, 116f

Burial 47, 90t, 108t, 109t, 112, 113f, 114, 116, 116f

Burial 55, 109t, 113f, 116f, 241t, 243t

Burial 58, 90t, 243t, 246t, 248t

Burial 63, 90t, 201f, 203f

Burial 64, 187f, 241t, 251

Burial 91, 241t, 243t, 248t

Burial 95, 158, 158f, 246t, 248t

Burial 96, 229, 239t, 246t, 248t

Burial 97, 88, 90t, 207, 208, 208t

Burial 101, 64, 90t, 108t, 109t, 110, 112, 113f, 114, 116, 116f, 163f, 182f

Burial 106, 108t, 109t, 112, 113f, 114, 116, 116f

Burial 107, 90t, 163f, 207, 207f, 208t, 222f

Burial 115, 90t, 108t, 109t, 113f, 114, 116f

Burial 122, 90t, 239t, 241t, 243t, 246t, 248t

Burial 126, 109t, 113f, 116f

Burial 137, 6, 6f, 109, 109t, 112, 113f, 114, 116f.

See also trauma: burning at the stake, possible evidence for

Burial 138, 58f, 90t, 109t, 113f, 116f, 187f, 241t, 246t

Burial 151, 90t, 108t, 188f, 222

Burial 160, 112, 109t, 113f, 116f

Burial 165, 111, 108t, 109t, 113f, 114, 116f

Burial 167, 109t, 113f, 116f

Burial 169, 109t, 113f, 116f

Burial 180, 91t, 109t, 113f, 116f, 223, 243t, 246t, 248t

Burial 205, 223, 224f, 239t, 241t, 246t

Burial 219, 91t, 109t, 112, 113f, 116f, 243t, 246t

Burial 236, 109t, 113f, 116f

Burial 241, 108t, 114, 158f

Burial 244, 109t, 113f, 116f, 246t

Burial 252, 57f, 241t, 243t, 248t

Burial 253, 223, 224f, 243t, 246t, 248t

Burial 259, 239t, 243t, 246t

Burial 266, 101f, 108t, 109t, 112, 113f, 114, 116, 116f, 163f

Burial 270, 108t, 109t, 113f, 116f

Burial 281, 108t, 109t, 113f, 114, 116f

Burial 286, 109t, 113f, 116f

Burial 304, 109t, 113f, 116f

Burial 323, 7, 7f. See also burial population of the New York African Burial Ground: possible non-African or ambiguous burials; dissection; grave robbing

Burial 340, 91t, 108t, 109t, 112, 113f, 116f

Burial 343, 239t, 241t, 243t, 246t, 248t

Burial 354, 6. See also trauma: burning at the stake, possible evidence for

Burial 366, 108t, 109t, 113f, 114

Burial 367, 108t, 109t, 113f, 114, 116, 116f

Burial 368, 241t, 246t, 248t
Burial 383, 239t, 243t, 246t, 248t
Burial 405, 109t, 113f, 116, 116f, 246t, 248t
Burial 427, 239t, 243t, 246t, 248t

burial population of the New York African Burial Ground

eighteenth-century North American historical evidence, as a source for, 10
estimated number of possible burials, 70
head-foot orientation, 39
impacts to burials, 7
possible Native American burials, 75
possible non-African or ambiguous burials, 7 (see also Burial 323)
total number of skeletal remains excavated, 3, 10, 47, 49, 70, 121, 132t, 170, 174t, 200

See also dissection: possible case at the New York African Burial Ground; Howard University: transfer of remains to; infants; life expectancy: in New York African Burial Ground sample;

burial sites in Central America
Oaxaca sugar plantation cemetery, 38n

burial sites in North America
discovery of, by way of construction projects, 3, 8, 9, 10, 11, 30–31, 33, 34, 132–133

See also African Burial Ground; African Methodist Episcopal Zion Church; Belleview Plantation, South Carolina; Catotin Furnace ironworks, Maryland; Cedar Grove Baptist Church cemetery, Arkansas; Charleston elites, South Carolina; Christie Street Cemetery; Cliffs Plantation, Virginia; Cypress Grove Cemetery, New Orleans; Hull Bay, St. Thomas; First African Baptist Church Cemetery (FABC); Kingsley Plantation, Florida; Mount Pleasant Plains; New York African Burial Ground; Remley Plantation, South Carolina; Rochester Poorhouse, New York; Site 38CH778, South Carolina; Seneca Village, New York; Trinity Anglican Church; Water Island, St. Thomas

burial sites in the Caribbean. See Barbadian burial site; Bransby Plantation, Montserrat; Guadalupe, French West Indies, cemetery; Harney Site Slave Cemetery, Montserrat; Jamaica burial site; Newton Plantation, Barbados; Seville Plantation, Jamaica

burial sites in South America. See Waterloo Plantation, Suriname

burial sites of Africans, accidental discovery of, 28, 29, 30
Burial, Siberia, 79t
Burkina Faso, 88. See also African sources of enslaved labor: Burkina Faso
Bush, President George W., 10
Bushman, 79t
Butan, Asia, 92
Buxton, L. H. D., 28, 108t

C

Calabar, 76t, 88t, 108t. See also African sources of enslaved labor: Calabar
California, 76t, 87, 88
Cameroon, 76t, 84t, 88, 92, 107t
as a site for the first DNA bank in Africa, 70, 91, 272
See also African sources of enslaved labor: Cameroon
Cameroon Academy of Sciences, 91
Cameroon Ministry of Health, 91
Cameroon Ministry of Tourism, 91
Cameroon Prime Minister's Office, 91
Canada, 8, 27
fur traders, 219
See also Algonquin; Nova Scotia
Cape Mount. See under African sources of enslaved labor: Cape Mount
Cape Province, South Africa, 208
Cape Town, South Africa, 26n, 106, 108t
Capitalism and Slavery (1971), 256
Carabelli's cusp, 82, 82t, 84
Caribbean, the, 28, 39, 44, 46, 105, 106, 143, 185, 271
culture in, 21
diasporic populations in, 13, 19
enslaved groups and plantations in, 37, 38, 96, 97, 106, 117, 124, 125, 126, 130, 131, 139, 185, 262, 264, 267, 271
genealogy of, 103
as intermediary between Africa and New York, 71, 73f, 95, 104, 117, 149, 153, 255, 256, 269
See also Afro-Caribbeans; syphilis: eighteenth-century New York compared to Caribbean; West Indian sources of enslaved labor: Caribbean
caries, dental
in deciduous teeth, 165t
definition of, 157, 158
and diet, 161, 162, 166
in females, 160t, 161
female and male comparison, 161t, 162f, 162t
in First African Baptist Church sample, 163, 166t
frequencies by tooth type, 158, 159t, 160t
in Harney Site Slave Cemetery, Montserrat, sample, 39
in Hull Bay, St. Thomas, sample, 29
population comparisons, 163, 166t
in subadults, 164, 164f, 164t
Carnegie Foundation, 24
Case Western Reserve University, 27
Catholicism. See Christianity; enslaved Africans in the Caribbean: investigations of, by Spanish Catholics; Native Americans: investigations of, by Spanish Catholics; Trinity Anglican Church: ban on African, Jewish, and Catholic burials within
Catholics, 20
Catoctin cemetery
population sample of, 130, 132t, 133, 134, 134t, 140, 147, 148t, 167t, 174t, 195, 220, 220t, 221, 226
See also enamel hypoplasias: population comparisons; mortality rates: in Catoctin Furnace ironworks, Maryland, sample; porotic hyperostosis: population comparisons; rickets: population comparisons; trauma: in Catoctin Furnace ironworks, Maryland, sample
Catoctin Furnace ironworks, Maryland, 35, 133, 140, 147
Cedar Grove Baptist Church cemetery, Arkansas, 33, 34, 134t, 135, 135t, 136, 139, 140, 170, 171, 174t, 175–179, 186, 191t, 192–194, 196–198
acceptance for listing in the National Register of Historic Places, 33
See also under anemia; degenerative changes; fractures; infectious disease; life expectancy; malnutrition; mortality rates; periostitis; population comparisons; porotic hyperostosis: population comparisons; rickets; scurvy; trauma: cementum, 96, 97, 98–100, 99f, 99t, 100f
Center City, Philadelphia, 133
Centers for Disease Control (CDC), 116, 230, 231, 231n, 234, 237–238, 250
Central Africa, 26, 70, 74, 75, 76t, 77f, 87, 88–92, 269, 272. See also African sources of enslaved labor: Central Africa; DNA: West and Central Africa, as a source of New York African Burial Ground genetic diversity
Central African Republic, 88, 88t, 107t. See also African sources of enslaved labor: Central African Republic
Central America. See trade in enslaved Africans: Central American export sites
Centre Street, 3
Chad, 84t
Chambers Street, 3
Charity Hospital of New Orleans, 34. See also Cypress Grove Cemetery, New Orleans
Charleston, South Carolina, 34, 34n, 117, 126, 132, 147, 148t, 166t, 220t
Charleston elites, South Carolina, 166t
chattel slavery, 5, 20, 32, 44, 256, 273. See also enslaved labor
Chicagoans. See Chicago school; University of Chicago
Chicago school (of social anthropologists), 22–24, 26n
Child Research Council, Denver, Colorado, 229
China, 81, 81f, 83f, 92, 105. See also Hainan, China
Christianity, 6, 25, 46
African participation in, 8
forced conversion of enslaved Africans, 5
prevention of conversion to deny human rights, 5
See also African history: distortions and omissions to: Christianity as a defining factor; enslaved Africans in New York: exclusion of blacks from burial with whites in a Christian space; justification of slavery and inequality, efforts toward: religious justification; manumission: conversion to Christianity in exchange for
Christie Street Cemetery, 263
cimarrones. See maroons
City Hall, 3
Civil Rights movement, 5, 8, 21, 22, 24, 27, 28, 32
“Claims of the Negro Ethnologically Considered, The,” 20
Cayton, Horace R., 23
Clifts Plantation, Virginia, 117
Cobb, W. Montague, 21, 23, 27, 27f, 28, 37, 40, 198
Cobb Laboratory. See under W. Montague Cobb
Biological Anthropology Laboratory
Colden, Cadwallader, 257
Cole, Johnetta, 22, 36
Collect Pond, 3, 4f
College of William and Mary, 18, 61. See also
Institute for Historical Biology, College of William and Mary
Colombia, South America, 73f, 92
“Colonial to Modern Skeletal Change in the U. S. A.,” 29, 35
Colored Benevolent Association, 39n
Columbia University, 22, 23, 24, 28
Columbians. See Columbia University
Comas, Juan, 38n
Common, the, 3, 4f, 6, 7
Congo, 72f, 79t, 84t, 88, 92, 108t. See also Democratic Republic of the Congo; Kongo
Congressional Subcommittee on Transportation and Grounds, 12
Congress of the Pan-African Association for Prehistory and Related Studies, 31n
Connecticut, 76t, 100, 110
Coramantine, 106
Coriell Institute for Medical Research, 91, 93t
cotton industry, 33, 38, 255
plantations, 37
cranial modification, 28n
as a Taino cultural practice, 28
craniometrics, 69–80
analysis for explaining African remains among the Arawak, at the Jamaican burial site, 28
comparisons between Barbadian and Gabon burials, 28
environmental causes of cranial development in blacks and whites, 27
testing for the presence of Taino individuals, in Water Island, St. Thomas, 28
See also cranial modification; craniosynostosis; Glidddon, George; Hamman-Todd Collection; justification of slavery and inequality, efforts toward: in craniometric studies; Morton, Samuel; Nott, Josia; origin studies: by craniometric data; racial classification and ranking: in craniometrics; racial focus in past studies: in craniometrics; Todd, T. Wingate; Types of Mankind

craniosynostosis
definition of, 228
nutritional and biomechanical stress as possible factors, 164, 234, 247
relationship with stress and infection, tests of, 249t, 253
by suture, 248t

Crawford, Michael, 89
cribra orbitalia
active lesions, 186, 192
definition of, 186, 189f, 240
distribution by age and sex, 190t, 191t
population comparisons, 186, 186n, 191f, 191t, 198
See also porotic hyperostosis
Crisis, The, 21

Crummell, Alexander, 21
Cuba, 21, 108t
geology of, 103
See also culturally modified teeth: in Cuba
Cugoano (freed or escaped captive African), 20
culturally modified teeth, 26n, 143
as a biocultural practice, 107–108
in Cuba, 29
chemical comparison to nonmodified teeth
elemental signature analysis, 109–114, 113f, 116, 116f
strontium isotope analysis, 114–115, 115f
continuance of, 105, 112
dental mutilation, 28n
discontinuance of, 106, 108
enamel hypoplasia frequency in, compared to unmodified teeth, 154–155, 155t, 156
history and description of, 105–106
hostility toward slaveowners, viewed as, 105, 106
as a marker of African social identity, 106
maroons, association with, 29
mean age at death, compared to unmodified individuals, 155
in Newton Plantation, Barbados, sample, 38, 105, 106, 108
pipe notches, 39, 62t, 145
prohibition of, by Europeans, 105
in runaway advertisements as a descriptor, 106
types of modifications, 107t, 108t, 154f
in Water Island, St. Thomas, remains, 28
as a West Indian cultural practice, 28, 28n
See also antemortem tooth loss: a type of cultural modification
cultural practices of Africans, 39, 95, 96, 105, 106, 199. See also cranial modification
cultural resources management (CRM), 30, 34, 35
Curtin, Philip, 32
Cypress Grove Cemetery, New Orleans, 34

D
Damara, 108t
Danes (Danish), 74, 84t. See also Denmark
Davenport, Charles, 26
David C. Driskell Center for Diaspora Studies, University of Massachusetts, 93t
Davis, Allison, 23, 54f
Day, Caroline Bond, 26n. See also Study of Some Negro-White Families in America, A
degenerative changes, 17, 55
in African Diaspora skeletal series, 130
in age determination, 56–59, 199
in appendicular skeleton, 208–213
and biomechanical stress, 203–204
in Cedar Grove cemetery, Arkansas, sample, 33
in Harney Site Slave Cemetery, Montserrat, sample, 39
scoring methods, 200
and spondylolysis, 208t
in vertebrae, 35, 200–204
in young adults, 202, 202f, 203, 210
See also biomechanical stress; osteoarthritis;
Schmorl’s nodes
de la Calle, Rivero, 29
Delany, Martin, 21
Delaware (state), 35, 76t
Delaware (ethnic group), 271
Democratic Republic of the Congo, 76t, 78, 107t, 108t. See also African sources of enslaved labor: Democratic Republic of the Congo
Denmark, 92. See also Danes (Danish)
dental mutilation. See under culturally modified teeth: dental mutilation
dentin, 96–101, 99f, 99t, 105, 114
vs. enamel strontium values as means of detecting migration, 115–117, 115f
dentition
in age estimation, 57, 58f
chemical analyses of, to determine birthplace and evidence of migration, 80, 85, 96, 97–98, 103–113, 115f
crowding, 164, 167f
deciduous, 58
detecting lead exposure in, 105
development of, 98–99, 143
development of, 98–100
Hutchinson’s incisors, 38
hypercementosis, 38, 39, 96
hypodontia, 163, 164, 165, 167f
Moon’s molars, 38
morphology, 82t
pipe notches, 39
recording methods, 60–61, 62t, 158f
supernumerary tooth, 163, 165, 168f
See also abscesses, dental; antemortem tooth loss;
Carabelli’s cusp; caries; cementum; culturally modified teeth; dentin; odontoblasts; origin studies: by dental traits
descendant community, 9, 12, 13, 14, 15, 16, 17, 19, 37, 41–46, 69, 108, 118, 189
indignation toward African Burial Ground excavations, 12, 15, 37
Diamond, William, 8
Dickson Mounds, Illinois, 152
diet
caries formation, as factor in, 17, 161, 162, 240
in colonial period, 161, 162
effect of lead in, 270
essential trace elements, 101–105
reconstruction of, 101–102, 102f, 161, 162, 166
See also malnutrition; nutrition
Diggs, Irene, 21
Dimintyeye, Charles, 91
Dinks, David, 8, 9, 10, 11f, 12
Diop, Cheikh Anta, 21, 26n
direct trade with Africa. See under trade in enslaved Africans
disease. See infectious disease
dissection, 7, 27, 30, 34
in Cypress Grove Cemetery, New Orleans, 34
possible case at the New York African Burial Ground, 7, 7f
See also Burial 323; grave robbing
DNA, 16, 17, 52
African DNA bank, 70, 91–92, 272
contamination of samples, methods to eliminate, 64, 86, 87
extraction and isolation methods, 9, 53, 63, 85–88
mtDNA
African origins, test of, 73, 74, 90t–91t
maternal affiliations, as indicator of, 70
West and Central Africa, as a source of New York African Burial Ground genetic diversity, 69–70, 90t
See also National African DNA bank; origin studies: by molecular genetics
Doctors’ Riot (1788), 6, 7, 10. See also grave robbing
Dodson, Howard, 11f, 12
Dogon (African ethnic group), 76t, 79t. See also Mali
Dominase, 110. See also Ghana: excavations within
Dominica, 70
geology of, 103
Douglass, Frederick
counterargument to racial ranking presented in
Types of Mankind, 20, 25
efforts to correct African American history, 5, 24,
40, 42
report on the enslaved life of, 20–21
Drake, St. Clair, 12, 23, 24
Dschagga (African ethnic group), 76t
Duane Street, 3
Du Bois, W. E. B., 21, 22, 23, 26, 27
Dunham, Katherine, 21
Dutch, the, 44, 74, 78, 126, 256, 271, 272. See
also Dutch Reformed Church; trade in enslaved
Africans: by the Dutch
Dutch Reformed Church, 124

Easter Island, 79t
eburnation. See osteoarthritis
Eden Cemetery, Philadelphia, 35
Edwards, Jerome Otto, 64f
Eguao, Ghana, 110
Egypt, 21, 23, 25, 26n, 79t. See also Nile Valley;
Nubia
Egyptians, 25
Egyptology, 20
elemental signature analysis (ESA), 97, 102, 103,
106–109, 112, 113f, 114, 115
iron, 102
laser ablation (microsampling method), 98, 99f,
100, 100f, 110
lead, 100f, 105, 116, 116f
strontium and barium, 101
zinc, 102
See also bone chemistry analysis; diet:
reconstruction of; inductively coupled-plasma
mass spectrometry; origin studies: by elemental
signature analyses; trace element analysis
Elk Street, 3
emancipation. See manumission
Embassy of the Republic of Cameroon, 91. See also
Cameroon
enamel hypoplasias
in African Diaspora skeletons, 29, 36, 130, 131
biocultural interpretations of, 153–154, 156
causes, 97, 143–144
chronology of, 97, 145, 147t, 151–153
in culturally modified teeth, 154, 155t
in deciduous teeth, 145, 146f, 148t, 149, 155, 156
definition of, 143–144, 144f, 146f
and enamel hypocalcification, 145t, 156
female and male comparison, 36n, 147, 147t, 149t,
152t
in Harney Site Slave Cemetery, Montserrat,
sample, 39
and infectious disease, 144
in Newton Plantation, Barbados, sample, 38
population comparisons, 29, 147–151, 148t
recording methods, 144–145
stress, as evidence of, 38, 97, 130, 143, 149–150,
153–155, 156, 164, 164f, 270
in third molars, 149–150, 150f, 152t, 270
and weaning, 36n
England. See English, the
English, the, 74, 84t, 260
colonies of, 10, 78, 198, 256
population comparisons with Africans, 34, 39,
127, 128, 270, 271, 273
responses to African rebellions, 258, 264, 269
slaveholders, 10, 18, 39, 256, 271
See also British, the; Euroamericans; Europeans;
Trinity Anglican Church: burial records for
English slaveholding populations
enslaved Africans in the Caribbean, 37, 153, 185,
270–271
investigations of, by Spanish Catholics, 20
See also African history: critical and corrective
approaches to: formerly enslaved captives with
contributions to; enslaved labor; maroons; sex
ratio: in enslaved populations
enslaved Africans in New York, 17, 19, 20, 34n, 37,
38n, 44, 70, 71, 73f, 75, 97, 102, 120, 121, 126,
128, 172, 185, 224f, 227, 256, 257, 264, 272, 273
advertisements of, 153, 256, 261, 263 (see also
runaway advertisements)
attempts to dehumanize, 5, 27, 40, 42, 256, 272
control over the activities of, 5, 6, 154, 156 (see
also under laws, regulations, and ordinances)
exclusion of blacks from burial with whites in
Christian spaces, 5, 6
languages, suppression of, 5
marketability of, 153, 269
purchase of, 185, 257
renaming of, 5
selling of, 5, 153, 258, 261
separation of families, 5, 153
See also African history: critical and corrective approaches to: formerly enslaved captives with contributions to; enslaved labor; maroons; runaways; sex ratio; in enslaved populations
enslaved Africans in North America, 70, 71, 74, 88, 88t, 89, 95, 96, 106, 117, 118, 148t, 166t, 195, 199, 220t, 221, 251, 271
demography, nutrition, and health of, 32
See also African history: critical and corrective approaches to: formerly enslaved captives with contributions to; enslaved labor; maroons; Nova Scotia: relocation of enslaved Africans to; Revolutionary War: participation of Africans in military forces; sex ratio; in enslaved populations
enslaved labor
African participation in, 43–44
arduous labor (see biomechanical stress)
born into slavery, 151, 153, 154
child labor, 199, 253
domestic labor, 34, 44, 117, 126, 133, 153, 199, 221, 257, 262, 264
economic importance of, 255, 256, 257
industrial labor, 132t, 174t, 220, 220t
plantation enslavement, 132t, 174t, 220, 256
political economic effects on, 265, 266f, 267
rural enslavement, 39, 126, 132t, 174t, 199, 220, 221
sparse records for, in the Americas, 20
urban enslavement, 132t, 119, 174t, 199, 219, 221, 256, 259
variability, 199, 208
See also African history: critical and corrective approaches to: formerly enslaved captives with contributions to; chattel slavery; indentured servitude; justification of slavery and inequality, efforts toward: religious justification; trade in enslaved Africans
enthesopathies
and arthritis, 246t, 247t
biomechanical stress, as evidence of, 213, 221, 234, 245, 247, 247t, 252, 253, 265
in children, 246, 246t, 247, 252
craniosynostosis, test of correlation, 249t
definition of, 213
distribution by age and sex, 246
and hypertrophic attachments, 246, 246t, 247
and long-bone flattening, 247, 253t
epidemics. See measles; smallpox; yellow fever
Equiano (freed or escaped captive African), 20
Eskimo, 79t
Essomba, Joseph-Marie, 91
Ethiopia, 24n, 92
eugenics, 25
anti-eugenic concerns, 27
biological research on mixed-race families, 26n
research on the deleterious effects of miscegenation, 26
sociological research on mixed-race families, 26n
Europeans. See African history: critical and corrective approaches to: Euroamerican contributors to; racial focus in past studies: Euroamerican racial reductionism
Europe. See Europeans
Europeans, 26n, 27, 35, 43, 44, 84t, 88, 92, 93t, 110, 124, 230
admixture with Africans, 256
African Diaspora studies by, 22, 25, 40, 41
attempts to dehumanize Africans, 5
colonialism and of economic regime of, 17, 198, 269, 271
comparison of remains with New York African Burial Ground population, 38, 70, 71, 73, 74–75, 76t, 77f, 78, 78f, 80, 81, 81f, 83f, 85, 126–128, 139, 198, 214, 260–263, 272–273
commentary on African burial practices, 105
migration to New York, 8
slaveholders, 267
use of the African Burial Ground as a dump, 6
See also African Burial Ground: European references regarding the use of; racial classification and ranking: characteristic of European studies
Ewe (African ethnic group), 37
excavation of the New York African Burial Ground, 3, 4f, 7, 11, 11f
archaeologists involved with (see Historic Conservation and Interpretation [HCI]; John Milner Associates; Metropolitan Forensic Anthropology Team [MFAT])
halt of, 3, 8, 10, 12
history of, 3–8
recommendations to the General Services Administration for continuation, by the Federal Advisory Steering Committee, 9–10
requests to end, 3, 8–9, 15
See also National Historic Preservation Act of 1966: Section 106; New York African Burial Ground Project; postexcavation; 290 Broadway site
executions, 6
as a result of the 1712 Uprising, 3

F
Fairbanks, Charles, 31
Federal Advisory Steering Committee, 9–10, 12, 15
Ferrell, Robert, 89
fertility
in the Caribbean, 38
estimates for late-seventeenth- through early-
 eighteenth-century New York Africans, 264
reduced rate, 262, 265, 267, 270–271
in Suriname, 38
Firenze, City of, 76t
Firmin, Antenor, 21, 40
First African Baptist Church (FABC) Cemetery,
Philadelphia, 35, 36, 132t, 133, 134, 134t,
135, 135t, 136, 139, 140, 147, 148t, 149, 151,
163, 166t, 170, 171, 174t, 175, 176, 176t, 178,
179, 186, 191t, 192, 193–196, 197, 197t, 251,
252, 271. See also under abscesses, dental:
population comparisons; antemortem tooth
loss: population comparisons; caries, dental:
population comparisons; Eden Cemetery: enamel
hypoplasias: population comparisons; fractures:
growth; infectious disease: life expectancy:
population comparisons; malnutrition: mortality
rates; osteoarthritis: periostitis: population
comparisons; porotic hyperostosis: population
comparisons; reinterment of remains; stature:
population comparisons; trauma
Florida, 31
Foley Square, 3, 9
Foley Square Federal Office Tower Building, 9. See
also 290 Broadway site
Fon (language), 37
forensic anthropology, 7, 11, 26, 29, 33
biocultural methods, in contrast to, 11–12, 29, 33,
37, 39–40, 40n
in Cypress Grove Cemetery, New Orleans, 34
in Harney Site Slave Cemetery, Montserrat, 39
process and the uses of, 40n
See also African history: distortions and
omissions to: forensic studies as a factor;
racial classification and ranking: in forensic
anthropology
fractures
biomechanical stress, as cause of, 29, 204, 206–
207, 222f, 245, 246t
in Cedar Grove cemetery, Arkansas, sample, 33
depression fractures, 184f
female and male comparison, 205t, 223, 223t,
246t
in First African Baptist Church Cemetery,
Philadelphia, sample, 35
in Harney Site Slave cemetery, Montserrat,
sample, 39
in Hull Bay, St. Thomas, sample, 29
parry fractures, 35, 226
perimortem fractures, 204, 205t, 222, 222f, 223–
226, 223t, 224f
radiographs, in assessment of, 49, 53, 61, 63, 164,
167f, 185, 186, 234, 240
ring, 222f
scoring methods, 222
by skeletal element, distribution of, 205t
by skeletal region, distribution of, 223, 223t
spiral, 225, 225f
spondylolysis, 206–208
in St. Catherine’s Island, Georgia, sample, 30
in subadults, 223, 224f, 246, 246t
in teeth, 157
violence, as evidence of, 35, 222f, 224–226, 225f
France. See French, the
Francophone regions, 21, 91
Franklin, John Hope, 22. See also From Slavery to
Freedom: A History of Negro Americans
Frazier, E. Franklin, 23, 26
Frederick County, Maryland, 132. See also Catoctin
Cemetery; Catoctin Furnace ironworks, Maryland
free Africans, 5, 6, 8, 20, 21, 33, 35, 117, 124, 125t,
126, 130, 134, 151, 170, 174t, 198, 199, 221, 255,
256, 261t, 269
in Arkansas, 32, 33, 163
freeborn, 132t, 133, 147, 156, 174t
quality of life after emancipation, 33
See also population counts of Africans: free
Africans
French, the, 74, 76t, 131. See also Francophone
regions; French West Indies; Guadaloupe,
French West Indies, cemetery; Lyon, City of,
France; racial focus in past studies: French racial
reductionism
French West Indies, 75. See also Guadaloupe,
French West Indies, cemetery
From Slavery to Freedom: A History of Negro
Americans (1974), 22
Froment, Alain, 69, 76t, 89
Fulbe (African ethnic group), 90t–91t
Fuller, Douglas, 51f
Gabon, 28, 72f, 76t, 77, 79t, 84t, 88
Gambia, 72f. See also African sources of enslaved labor: Gambia
Gambia River, 72f
Garvey, Marcus, 21
General Services Administration (GSA), 3, 12, 14, 16, 17, 18, 43, 45, 47, 85, 92n, 117n
dismissal of African American descendant
community views regarding the New York
African Burial Ground Project, 12
dismissal of requests to end excavation, 8–9 (see also excavation of the New York African Burial Ground: requests to end
evacuation with descendant community over
New York African Burial Ground research, 45 exequipd excavations perceived as desecration
of the New York African Burial Ground, 8, 10, 43, 45
See also excavation of the New York African
Burial Ground: recommendations to the General Services Administration for continuation, by
the Federal Advisory Steering Committee;
Memorandum of Agreement
Georgia, 26n, 30, 106, 132t
Germans. See Germany
Germany, 74, 92
Ghana, 44, 76t, 77, 78, 79t, 84t, 88, 92, 109, 109t, 110, 112, 113t, 114, 115, 115f
excavations within, 109, 110
See also Ashanti; Dominase; Eguado, Ghana; Ewe
Ghanaian National House of Chiefs, 44
Gliddon, George, 25
Global Dimensions of the African Diaspora (1993), 24n
Gold Coast, 77, 79t, 92, 108t, 271. See also African
sources of enslaved labor: Gold Coast
greco robbing, 27
petitions and warnings against, 6
possible case at African Burial Ground, 7
See also Burial 323; dissection; Doctors’ Riot
Greece, 35, 255
Greenland, 73f, 84t, 104
Grenada, West Indies, 105, 108t
Grodcek, Poland, 76t
Groniosaw (freed or escaped captive African), 20
growth
in age estimation, 57
biomechanical stress factors, test of association
with, 247, 252
in children, 238, 239
dietary deficiencies and, 102
females compared to males, 238, 239f
in First African Baptist Church Cemetery, Philadelphia, sample, 35
health, as indication of, 18, 227, 229, 247, 251, 253
impaired, 238–239, 253, 269, 270
infection, test of association with, 242–244, 244t, 251
porotic hyperostosis, test of association with,
240–242, 242t, 251
in South Carolina plantation sample, 34
standardization of long-bone lengths, 229–230, 235, 251
See also stature
Guadaloupe, French West Indies, cemetery, 75, 76t, 78f
Guam, 79t, 105
Guamanians. See Guam
Guinea, 72f, 92, 107t. See also African sources of
enslaved labor: Guinea; Guinea-Bissau; Gulf of
Guinea; Upper Guinea
Guinea-Bissau, 72f. See also Guinea
Gulf of Guinea, 72f. See also Guinea
Gutman, Herbert, 32
Hainan, China, 79t
Haiti, 21
Hamann-Todd Collection, 27
Hammerschmidt, John Paul, 9
Hampshire College, 100, 118
Hansberry, William Leo, 21
haplogroups, 73, 74, 88–92, 90t, 91t, 93t. See also
origin studies
Harare, Zimbabwe, 31n
Harlem Renaissance, 8, 21, 23
Harlem State Government auditorium, 43
Harney Site Slave Cemetery, Montserrat, 39.
See also under abscesses, dental; anemia;
caries, dental; degenerative changes; enamel
hypoplasias; forensic anthropology; fractures;
malnutrition; periostitis
Harrapa, India, 204
Harris County, Texas, 34
Harris, Joseph, 22, 24, 24n
Harris, Marvin, 23
Harvard University, 21, 23, 26
keeper of American slave trade records, 20
Hausa (African ethnic group), 90t
Hawaii, 79t, 105
Herskovits, Melville, 21, 22, 23, 24, 25, 32
Hill, M. Cassandra, 64f, 224
Historic Conservation and Interpretation (HCI), 3, 11f, 12
History of Negro Slavery in New York, A (1966), 153
Hooton, Earnest, 26, 26n
House of Representatives’ Subcommittee on Buildings and Grounds, 9
Howard University, 3, 12, 13, 13f, 15, 21, 24, 24n, 26, 27, 28, 36, 37, 45, 49, 89
College of Dentistry, 63
Department of Anatomy, 12
Department of Orthopedics, 63
Department of Sociology and Anthropology, 12
New York African Burial Ground Project assigned research design by, 13
Howard University Cobb Laboratory. See W. Montague Cobb Biological Anthropology Laboratory
Howard University Hospital
Department of Radiology, 63
Howells series, 76t, 77, 78, 78t, 79t
Howells, W. W., 272
Hrdlička, Ales, 26, 28, 76t
Hispaniola, 28
Hull Bay, St. Thomas, 29. See also under abscesses, dental; caries, dental; fractures; infectious disease; periostitis
Hungary, 79t
Huron (Native American ethnic group), 76t
Hurst, Keisha, 54f
Hurston, Zora Neale, 21, 22
hypertrophies
age, correlation with, 214
and arthritis, 246t, 247t
biomechanical stress, as evidence of, 130, 207–208, 215, 218–219, 218f, 220, 221, 245, 252
in children, 246, 246t, 252
craniosynostosis, test of correlation, 249t
definition of, 213, 214f, 217f, 218f
distribution by age and sex, 245t, 246t
and enthesopathies, 246, 246t, 247t
female and male comparison, 215, 218–219, 220, 221
and long-bone flattening, 247, 252, 253t
scoring methods, 213
See also musculoskeletal stress markers (MSM)
hypocalcification. See enamel hypocalcification
hypolasias. See enamel hypoplasias
I
Ibo (African ethnic group), 76t, 106
Iceland, 84t
Ife (African ethnic group)
shrine at the Cobb Laboratory entrance, 64, 65f
See also Yoruba
indentured servitude, 256, 272
India, 92, 105. See also Andaman Islands, India; Harappa, India
inductively coupled-plasma mass spectrometry (ICP-MS), 100, 101, 102, 105, 106, 107, 108, 109, 110, 111f, 116
infantile cortical hyperostosis, 240–241, 241t
infants
age assessment of, 57, 228
infectious disease, evidence of, 175, 177, 177f
low birth weight, 144
stature estimation, 238f
underrepresentation in archaeological cemeteries, 128, 132, 134
See also mortality: infants; porotic hyperostosis
infectious disease
active vs. healed lesions, 175, 177
in Cedar Grove cemetery, Arkansas, sample, 33
chemical analysis, use of, 102
distribution by age and sex, 174–175, 175t
distribution in long bones, 243t
and enamel hypoplasias, 144
in First African Baptist Church Cemetery, Philadelphia, sample, 35
in Hull Bay, St. Thomas, sample, 29
malnutrition, interaction with, 195–198, 196t, 197f, 197t
in Newton Plantation, Barbados, sample, 39
population comparisons, 175–176, 176f, 176t, 179
See also inoculations, by Africans; periostitis: as indicator of infectious disease; treponemal infections
inoculations, by Africans, 198, 260
Institute for Historical Biology, College of William and Mary, 61
Institutional Review Board (IRB), 92
Integrationism, 8, 23
International Congress of African Historians, 24
interracial marriage and miscegenation, 22, 26, 26n, 121, 179n, 186n
Inuit (Native American ethnic group), 217, 219
Ireland. See Irish, the
Irish, the, 74, 92, 272
migration to New York, 151
See also anemia: iron-deficiency
Iron Age, 26n, 76t, 105
isotopic analysis
carbon, 102
in diet reconstruction, 98, 102, 104–105
lead, 105
nitrogen, 102
in origin and migration studies, 96, 103–105, 106,
114–117, 269–270
oxygen, 96, 104–105
sampling process in teeth, 100–101
strontium, 96, 103–104, 104f, 114–116, 269–270
Italy, 76t, 92
Ivory Coast, 72f

J
Jackson, Fatimah, 16, 70, 91, 92, 272
Jamaica, 21, 26, 28, 39, 257
Jamaican burial site, 28
Japan, 79t, 81, 81f, 83f, 105
Jea, John, 5, 20
Jim Crow laws, 8
John Milner Associates (JMA), 3, 36
collaboration with Smithsonian Institution, 35
research design by, 13, 45, 92n
Johnson, Charles, 23
Jomon. See Japan
Jones, Joseph, 53f
Jorde, Peggy King, 11f, 12
Journal of Negro History (1916), 21, 22
justification of slavery and inequality, efforts toward
craniometric studies, 26
physical anthropological justification, 25, 28
religious justification, 5, 8

K
Kalkhook Pond. See Collect Pond
Kelley, Jennifer, 35
Kenya, 76t, 79t, 92, 107t
Khoi. See Khoi San
Khoi San (African ethnic group), 81, 83f, 84f, 84t, 272
Khudabux, Mohamad, 37, 38
Kidd, Kenneth, 89
Kilimandjaro, Tanzania, 76t
Kingsley Plantation, Florida, 31
Kongo, 76t. See also Congo; Democratic Republic of the Congo
Kordofanian (language), 89
Korea, 92. See also Anyang, Korea

L
Labrador (Newfoundland ethnic group), 76t
Lafayette, Arkansas, 33
Landmarks Preservation Commission. See New York Landmarks Preservation Commission
laws, regulations, and ordinances
absence of a law protecting African burial grounds, 9
amendment, 1731, to 1722 law (prohibiting more than 12 Africans from attending a funeral, and prohibiting use of palls), 6
law, 1722 (New York Common Council, restricting burials of Africans to daylight hours), 6
law, 1799 (assurance of gradual emancipation), 8
slave trade selection, 257
See also An Act to prevent aged and decrepit slaves from becoming burthensome within this Colony (1773); Jim Crow laws; Native American Graves Protection and Repatriation Act (NAGPRA)
lead
age of exposure, determining 99–100, 100f
culturally modified vs. unmodified teeth, levels in,
116f
poisoning, 38, 105, 116–117, 270
See also isotopic analysis: lead; origin studies; trace element analysis
Leftist movement, 8
Lehman College, 7
Liberia, 88, 92
life expectancy
African Americans in early twentieth-century Arizona, 34
in Cedar Grove cemetery, Arkansas, sample, 133
differences between blacks and mulattoes, 34
for females, 138t
for males, 137t
population comparisons, 34, 136, 138f
in Waterloo Plantation, Suriname, sample, 37
life tables, 120, 134–136, 136t, 137t, 138t, 271
Lift Every Voice, Inc., 10
Linnaeus, Carl, 25
Loango, 108t
long bones
in age estimation, 57
bowing, as sign of nutritional inadequacy, 171, 194–195, 195t, 244–245, 245t
flaring of metaphyses, 245, 245t
flattening, 244, 245t, 247, 252, 253t
with infantile cortical hyperostosis, 241t
infectious lesions by long-bone element, 243t
Native American comparisons, 229, 247, 249t
See also biomechanical stress; enthesopathies; hypertrophies; growth; platycnemia; platymeria

Long Island, 76t
Louisiana, 131, 220t, 271
Lyon, City of, France, 76t

M
Mack, Mark, 17, 61f
Madagascar, 72f, 74
Madinka (African ethnic group), 90t–91t
Maerschalk Plan (1755), 4f
Magennis, Ann, 34, 36
Maine, 76t
Mali, 76t, 79t, 88. See also African sources of enslaved labor: Mali
Malik Shabazz Human Rights Institute, 10
malnutrition
in Cedar Grove cemetery, Arkansas, sample, 33 and craniosynostosis, 247
and dental defects, 36, 143, 270
in First African Baptist Church Cemetery, Philadelphia, sample, 35
in Harney Site Slave Cemetery, Montserrat, sample, 39
and hypercementosis, 38, 39, 96
interaction with infectious disease, 195–198, 196t, 197f, 176t
in Newton Plantation, Barbados, sample, 38
in South Carolina plantation, 34
See also enamel hypoplasia; long bones: bowing, as sign of nutritional inadequacy; porotic hyperostosis
Makua (African ethnic group), 108t
Manhattan, 3, 5f, 42, 76t, 114, 115, 117, 263, 270
Manhattan Island, 3
manumission, 8, 31, 33, 257, 263
conversion to Christianity in exchange for, 5
in exchange for British military service, 8
females and children, proposal for, 264
legal freedom, 124, 255, 257
purchase of, 151
See also laws, regulations, and ordinances: law, 1799 (assurance of gradual emancipation)
Maori (Polynesian ethnic group), 79t
Maravi (African ethnic group), 108t
Maresh, M. M., 229–230
maroons, 29, 39, 257
Mars, Jean Price, 21
Martin, Debra, 34, 36
Marxism, 21, 23. See also neo-Marxism
Maryland, 35, 36, 106, 128, 219, 220t, 263, 264.
See also Catoctin Furnace ironworks, Maryland; Frederick County, Maryland
Massachusetts, 76t
Mauritania, 72f
Mayans, 104, 105
Mayor’s Task Force on the African Burial Ground, 9. See also Federal Advisory Steering Committee
McManus, Edgar J., 153
Mead, Margaret, 22
measles, 260, 261
Melanesia. See Oceania
Memorandum of Agreement, 14
Metropolitan Forensic Anthropology Team (MFAT), 7, 12, 27, 37. See also excavation of the New York African Burial Ground; forensic anthropology; New York African Burial Ground Project: research design: rejection of, submitted by the Historic Conservation and Interpretation and Metropolitan Forensics Anthropology Team
Mexico, 38n, 73f, 102, 104
Meza, Abigail, 38n
Micronesia. See Oceania
Middle Passage, 32, 150, 154, 269
migration of Africans, 271
forced, 120, 126, 150, 156, 172, 262, 264, 270
in search of jobs in New York, 8
voluntary, 120, 125, 126
See also isotopic analysis: in origin and migration studies; trade in enslaved Africans
migration studies. See origin studies
Mintz, Sidney, 23
miscegenation. See interracial marriage and miscegenation
Mokapu, 79t
Monongahela (Native American ethnic group), 249t
Monte Alban, 104
Montserrat, 39. See also Harney Slave Site Cemetery, Montserrat
Moriori, 79t
Morocco, 88. See also African sources of enslaved labor: Morocco
Morrant (freed or escaped captive African), 20
mortality rates
in adults, 121, 122f, 262
assessment of, 120
in Catoctin Furnace ironworks, Maryland, sample, 132
in Cedar Grove cemetery, Arkansas, sample, 33, 133, 135
in colonial America, 260–261
female and male comparison, 121, 123f, 123t, 137t, 139, 262, 263
in First African Baptist Church Cemetery, Philadelphia, sample, 35, 133, 135
in infants, 38–39, 119, 121, 122f, 128, 130, 131, 133, 134, 135t, 136, 139, 260, 262, 263, 270
in Newton Plantation, Barbados, sample, 38, 39, 131
population comparisons, 126–133, 129f, 130f, 130t, 131f, 134, 135t, 139, 270–271
in Site 33CH778, South Carolina, sample, 132–133
in St. Peter Street Cemetery, New Orleans, sample, 131–132
in subadults, 121, 122f, 124, 124t, 130t, 131f, 134, 135t, 139–140, 262, 263, 264
in Waterloo Plantation, Suriname, sample, 37

See also Trinity Anglican Church: mortality data, as a source for
Morton, Samuel, 20, 25, 26
Mota, Arturo, 38n
Mount Pleasant Plains, 39n
Moynihan, Senator Daniel, 32
Mozambique, 72f, 92, 107t
“mulattoes,” 26n. See also life expectancy: differences between blacks and mulattoes
Murray, Robert, 89
musculoskeletal stress markers (MSM), 220t
definition of, 213
distribution by age and sex, 215, 215t
distribution by skeletal element, 216t

See also enthesopathies; hypertrophies
Myrdal, Gunnar, 23, 24
“Myth of the Negro Past,” 22, 23, 24, 25, 32

N
Namibia, 108t
Nanticoke-Moors (Native American ethnic group), 35
National African DNA bank, 89, 91
National Association for the Advancement of Colored People (NAACP), 21, 27
National Center for Health Statistics, 231, 231n
National Historic Landmark, 10, 44
National Historic Preservation Act of 1966, 3, 12, 30, 33, 39n, 43
Section 106, 3, 9
National Institute for Standards and Technology (NIST), 110
National Institutes of Health (NIH), 91, 93t
National Park Service (NPS), 10
National Register of Historic Places (NRHP), 33
National Research Council Committee on the Negro, 26
National Science Foundation (NSF), 93t, 118
Native American Graves Protection and Repatriation Act (NAGPRA), 9, 12, 33, 43
Native American Rights Fund, 12, 33
Native Americans, 9, 25, 33, 70, 204, 272
admixture with Africans and Europeans, 74, 256
archaic populations, 249t
cohabitation between African and Native American groups, 30, 35, 71
collection with African, European and other burial populations, 29, 70, 71, 74, 76t, 78f, 81, 81f, 83f, 88, 93t, 249t
efforts to control the disposition of skeletal remains and sacred objects, 33
efforts toward the reburial of excavated remains, 35–36
investigations of, by physical anthropologists, 28, 28n
investigations of, by Spanish Catholics, 20
See also Alaskan natives; Arawak; Buffalo;
burial population of the New York African Burial Ground: possible Native American burials; Delaware (ethnic group); Eskimo; Huron; Inuit; Labrador; long bones: Mayans; Native American comparisons; Monongahela;
Nanticoke-Moors; Native American Graves Protection and Repatriation Act (NAGPRA);
Native American Rights Fund; Pearson; Plains Indians; Seneca; Sunwatch
Ndumbe, Peter, 91
Negritude movement, 21
Negro History Week, 21
Neo-Marxism, 41. See also Marxism
Nepal, South Asia, 92
Netherlands, 84t, 85
New Amsterdam, 71, 224f
New Calabar. See under African sources of enslaved labor
New Guinea, 77, 79t, 81f, 83f, 105. See also Oceania
New Jersey, 91, 255
“New Negro”, 8, 23
New Netherlands, 126
New Orleans, 130, 131, 133, 199, 220–221, 220t, 226. See also St. Peter Street Cemetery, New Orleans
Newton Plantation, Barbados, 117, 132t, 133, 134t, 147, 174t, 185n, 271. See also under enamel hypoplasias; infectious disease; malnutrition; mortality rates; syphilis
New Wave Research, 101
New York African Burial Ground, 132t
boundaries of excavated areas, 3
colonial African experiences, as a source for, 108
location, 3, 4f
“rediscovery” of, 3, 8, 96
New York African Burial Ground Project
accusations of “reverse discrimination,” 14
alternative research approaches to, 10–11, 12, 13–14, 15
funding for, 15–16, 17, 45, 117
future studies, 16, 117, 234, 264–265
goals of, 13–14
inclusion of African American and African Diaspora expertise, 10, 12, 13, 14, 41–42, 46–47
inclusion of African American students’ expertise, 14
interdisciplinary dialogue as a result of data sharing, 16, 41 (see also Sankofa Conferences)
multidisciplinary expertise, 45–46, 47
objective approaches to archaeological data, 11, 12
opposition and criticism toward the approaches of, 11, 14
research design, 10, 17, 30, 42, 43
absence of, 9
accusations of ethnocentric perspectives, 14–15
rejection of, submitted by the Historic Conservation and Interpretation and Metropolitan Forensics Anthropology Team, 12
redrafting by Michael Blakey and research team, 3, 12
response to the review of, by the General Services Administration, 14
review by the Advisory Council on Historic Preservation, 14
subjective approaches to archaeological data, 10
topics of interest to the public, 13, 16, 43
cultural backgrounds and origins, 43, 46, 108
quality of life brought about by enslavement, 43, 46
modes of resistance to enslavement, 43, 46
transformation from African to African American identities, 43, 46
See also African American bioarchaeology: awareness toward, as a result of the New York African Burial Ground Project; African history: critical and corrective approaches to: as a guide for New York African Burial Ground research;
New York City, 3, 71, 126, 220
economy of, 265, 266f, 267
in the eighteenth century, 3, 5, 80, 119, 120, 151, 153, 197, 227
history of, 46, 85
See also enslaved Africans in New York; New York County; population counts: in New York New York County, 257, 259t. See also population counts: in New York County
New York Landmarks Preservation Commission, 4f, 9, 14. See also excavation of the New York African Burial Ground: requests to end; Memorandum of Agreement
Ngu, Victor, 91
Ngumbi, 108t
Nguni (African ethnic group), 76t
Niger, 88, 90t–91t. See also African sources of enslaved labor: Niger
Nigeria, 76t, 84t, 88, 90t–91t, 92
geology of, 103
See also African sources of enslaved labor:
Nigeria
Niger River, 72f
Niger Valley Exploring Party, 21
Nile Valley
focal point for African bioarchaeological studies, 25–26, 26n
See also Egypt; Nubia
Nkwi, Paul, 91
Norse, Norway, 76t, 79t
North Carolina, 23, 35, 106
Northeastern University, 31
Northwestern University, 22, 23, 24n, 28 establishment of an African Studies program, 21 See also Herskovits, Melville
Norway, 76t, 79t, 84t
Nott, Josia, 20, 25
Nova Scotia relocation of enslaved Africans to, 8
Nubia, 25, 81, 84t
nursing, 102, 104. See also weaning nutrition
as a measure of quality of life, 29, 32, 33–37, 36n, 98, 157, 161, 166, 265
methods used to assess nutritional status
(see elemental signature analysis; enamel hypoplasias; isotopic analysis)
skeletal indicators (see craniometric data; cribra orbitalia; long bones: bowing, as sign of nutritional inadequacy; porotic hyperostosis) See also anemia; diet; growth; infectious disease; malnutrition; rickets; scurvy; stature
Nwokeji, Ugo, 91
Nyumburu Cultural Center, University of Massachusetts, 93t

0
Oakland Cemetery, Georgia, 132t
Oaxaca, 38n, 104
Oaxaca sugar plantation cemetery, 38n. See also burial sites in Central America
Oceania, 81f, 83f, 105. See also Australia; New Guinea
Occupational Safety and Health Administration (OSHA), 49
odontoblasts, 98, 99t
Office of Public Education and Information (OPEI), 18, 126, 261
Ohio River Valley, 247
Old Calabar. See under African sources of enslaved labor origin studies, 26n by craniometric data, 28, 73, 74–80, 77f, 78f, 83f, 84f
database limitations, 70–71, 89
by dental traits, 73–74, 80–85, 81f
by elemental signature analyses, 102–103, 106–107, 109–112, 113f
indicating birth in Africa, 17, 147, 149, 151, 153, 156, 264, 270
indicating birth in the Caribbean, 185
indicating birth in New York, 97, 114, 152, 154, 264, 269, 270
by isotopic analyses, 96, 103–105, 114–115, 115f by molecular genetics, 69–70, 74, 85–89, 90–91t, 155
research goal of the project, 43, 69, 93t, 95
See also culturally modified teeth: African birth, as possible reason for; DNA: mtDNA: African origins, test of; isotopic analysis: in origin and migration studies; New York African Burial Ground Project: topics of interest to the public: cultural backgrounds and origins; runaway advertisements: references to African birth in the form of cultural attributes
Orleans University, 89
Ortiz, Fernando, 21, 29
osteointritis
in age estimation, 57–59
in appendicular skeleton, 208, 209f, 209t, 210f, 210t, 211f, 212f, 213f
causes, 199, 203, 211–212
definition of, 201f
eburnation, 57, 200
female and male comparison, 201, 201t, 208–209, 209t, 210t, 211, 213, 213f, 246t
in First African Baptist Church Cemetery, Philadelphia, sample, 35
osteoporosis, correlation with, 203, 204
population comparisons, 220–221
scoring methods, 200
in vertebrae, 200–204, 201f, 202f, 203f, 208t
See also biomechanical stress; degenerative changes
ostemyelitis, 34, 179, 181f
osteointritis causes, 203, 204
definition of, 200, 201f, 203f
female and male comparison, 201, 202t, 204
scoring methods, 200
by vertebral region, 200–204, 201f, 203f, 208t
Ovambo (African ethnic group), 76t
Owampo (African ethnic group), 108t
Oxford University, 28

P
Pacific Islanders, 43
Pacquet Real (Portuguese brig), 26n
Pakistan, 92
paleodemography, 28, 119, 126, 262, 263, 265
critiques of, 120–121
definition, 120
limitations and problems in, 120–121
political economy, its effect on, 139
See also age determination; life expectancy;
mortality; sex determination; sex ratio
paleoepidemiology, 26, 28n
paleopathology, 24–25, 26, 28, 28n, 170, 172, 264
Paleopathology Association, 61, 169
palisade wall of New Amsterdam/New York, 3, 4f
Pan-Africanism, 8, 21, 24. See also African history:
critical and corrective approaches to: by the
Pan-Africanist movement; Congress of the Pan-
African Association for Prehistory and Related
Studies
Paris, France, 21
Parrington, Michael, 11f, 35, 36
Paynter, Robert, 36
Pearson, 249t
Pecos Pueblo study (1930), 26
Peculiar Institution, The (1956), 32
Pennsylvania, 151
Pennsylvania State University, 89
periostitis
definition of, 171f, 172f, 174
distribution by age and sex, 176f, 177f, 178f, 179f
in Harney Site Slave Cemetery, Montserrat,
sample, 39
in Hull Bay, St. Thomas, sample, 29
as indicator of infection, 174–180
population comparisons, 175–176, 176f, 178,
178f, 180f, 197f, 197t
porotic hyperostosis, co-occurrence with, 171,
195–198, 196t
in subadults, 177–178, 177f
See also infectious disease; treponemal infections
Peru, 73f, 79t, 92
Philadelphia, 36, 130, 133, 147, 149, 198, 260, 263
African community in, 151
See also First African Baptist Church (FABC)
Cemetery
Philadelphia Commuter Rail tunnel, 133
Philadelphia First African Baptist Church
Cemetery. See First African Baptist Church
(FABC) Cemetery
Philadelphia Negro, The (1899), 21
Philippines, 79t, 105
Phylon, 22
physical anthropology of Africans, 25–28,
37. See also Cobb, W. Montague; Hooton,
Earnest; Hrdlička, Aleš; Native Americans:
investigations of, by physical anthropologists;
racial classification and ranking: in physical
anthropology; racial focus in past studies: in
physical anthropology
“Piezas de India,” 120. See also trade in enslaved
Africans: by the Spanish
Pigmies. See Pygmies
Pinkster Day, 6
pinta, 183
Plains Indians, 79t
platycnemia, 110, 182, 244
platymeria, 244
Poland, 76t
Polynesia. See Oceania
population counts of Africans
in colonial states, 263–264
decline of, 8, 258, 261
during post-Revolutionary War, 8
free Africans, 124, 125t, 255, 261t
growth as a function of importation, 34, 258, 263
in New York, 8, 70, 127t, 258, 258t, 261, 263,
264, 267, 270
in New York County, 125, 125t, 261t, 263
rise of, 8, 124, 263
in Texas, 34
undercounts, 120, 126, 260
See also sex ratio
population counts of Euroamericans
in New York, 263, 270
in New York County, 125, 125t, 261t
undercounts, 126
porotic hyperostosis
active lesions, 186, 188t, 192, 251
causes, 185–186
definition of, 63f, 185, 187f, 188f
distribution by age and sex, 188t, 192f, 193–194,
193f, 194f
growth, test for effect on, 240–242, 242t
healed lesions, 186, 188t
infantile cortical hyperostosis, co-occurrence with,
241, 241t
and iron deficiency, 102, 185
nutritional inadequacy, 170, 185–186, 240, 265
periostitis, co-occurrence with, 171, 195–198, 196t, 197t
population comparisons, 186, 190f, 191t, 192–195, 193f, 194f, 196, 197f, 197t, 198
recording, 63f, 185
and rickets, 185–186
and scurvy, 185–186
in subadults, 186–188, 192f
See also cribra orbitalia
Portugal, 21, 74. See also Pacquet Real
Posnansky, Merrick, 31n
post-Columbian period, 25
postexcavation cleaning and reconstruction, 52–54, 53f, 64
facilities, 49, 50f
laboratory organization, 49, 52–53
researchers (see General Services Administration [GSA]; Howard University Cobb Laboratory; John Milner Associates [JMA]; Metropolitan Forensic Anthropology Team [MFAT])
postmodernism, 41
pottery, 6, 29, 39
pre-Columbian period, 28
Presence Africaine, 21, 26n
public engagement with the New York African Burial Ground Project, 13, 15, 19, 20, 272
as a guide for research, 41
descendant community as an ethical client, 43, 45, 69
determination of the New York African Burial Ground disposition, 9, 12, 43
choice of language, 44
demand for proper memorialization of and information about the burial population, 3, 8, 44, 45
expansion of temporal analysis, 44
inclusion of African and Caribbean research, 44, 46
interpretive center for the site, 44, 45
methodological techniques applied to the New York African Burial Ground, 44
reinterment of burials and artifacts, 45
rejection and support of forensic approaches toward race determination, 45
General Services Administration (GSA) as a business client, 43, 45
objections to, 43
social conflicts, in regards to responsibility of enslavement, 43–44

topics of concern to the public (see under New York African Burial Ground Project)
See also descendant community; excavation of the New York African Burial Ground: requests to end
Public Law 103-393, 10
Pygmies (African ethnic group), 84t, 272

R
race estimation. See forensic anthropology; racial classification and ranking
racial classification and ranking, 26, 28, 28n, 272
biological research on mixed-race families, 26n
chronological of, 27, 231, 271
as a justification for racial inequality, 27
in physical anthropology, 25–27, 28
See also African history: New York African Burial Ground Project: objective approaches to archaeological data
racial focus in past studies, 24, 25, 28, 29, 31–32, 40, 40n
in craniometrics, 69
Euroamerican racial reductionism, 20–21, 40, 42
French racial reductionism, 21
as a means of dehumanizing and dehistoricizing African groups, 27
as a means of justifying colonialism, segregation, eugenics, class, and gender inequity, 25
Mount Pleasant Plains study, 39n
in physical anthropology, 25–27, 28, 29, 37
on West Indian plantations, 39
research on racial and anatomical bases for crime, 26n
See also African history: New York African Burial Ground Project: objective approaches to archaeological data
Radcliffe College, 26n
Rankin-Hill, Lesley, 17, 20, 23, 32, 35, 36, 118, 251
Rathbun, Ted, 17, 34, 34n, 35, 36n, 117, 147, 220
Reade Street, 3
Red River, Arkansas, 33, 133
reinterment of remains, 130
at Cedar Grove Cemetery, Arkansas, 33, 132t
at First African Baptist Church Cemetery, Philadelphia, 132t
at Newton Plantation, Barbados, 132t
at Oakland Cemetery, Georgia, 132t
at the New York African Burial Ground, 10, 13, 45, 61, 64, 132t
at Site 38CH778, South Carolina, 132t, 133
at St. Catherine’s Island, Georgia, burial site, 30
at St. Peter’s Cemetery, New Orleans, 132t
reinterment of First African Baptist Church remains at Eden Cemetery, 35

See also Rites of Ancestral Return

Relations and Duties of the Free Colored Men in America and Africa, The (1861), 21
Remley Plantation, South Carolina, 166t
research design. See under New York African Burial Ground Project
resistance to enslavement, 13, 31, 43, 44, 45, 226, 269
assertion of humanity as a form of, 5
maintenance of African cultural practices, 106
by working slowly, 106

See also revolts by Africans

revolts
political upheaval, 126, 139, 159, 259
See also Doctors’ Riot
revolts by Africans, 6, 259, 264, 269. See also 1712 Uprising; 1741 Uprising
Revolutionary War, 8, 126, 255, 258
participation of Africans in military forces, 8, 166t
See also manumission: in exchange for British military service; population counts of Africans: during post-Revolutionary War
Rhode Island, 76t

scurvy, 195, 240
in Cedar Grove cemetery, Arkansas, sample, 33
as possible cause of porotic hyperostosis, 185–186
Sea Islands, Georgia, 30

Section 106. See under National Historic Preservation Act of 1966

Seneca (Native American ethnic group), 271
Seneca Village, New York, 263
Senegal, 76t, 88, 90t–91t, 92, 107t. See also African sources of enslaved labor: Senegal
Senegal River, 72f
Senegambia, 84t, 89, 92. See also African sources of enslaved labor: Senegambia
1712 Uprising, 3, 6, 153, 256, 258. See also executions: as a result of the 1712 Uprising; revolts by Africans
1741 Uprising, 153, 256, 258. See also revolts by Africans

Seville Plantation, Jamaica, 39

sex determination, 55, 56f, 70

sex ratio
in African populations, colonial New York, 259f, 259t
definition of, 125
in enslaved populations, 38, 126, 128t
trade in African captives, its effect on, 256–259, 259f, 259t, 264

Sharpe, John
commentary of African burial practices, 3, 6
Shilstone, E. M., 28
Siberia, 79t, 81, 81f, 83f
sickle cell anemia. See under anemia
Sierra Leone, 8, 88, 107t. See also African sources of enslaved labor: Sierra Leone
Singleton, Theresa, 31, 31n, 32
Site 38CH778, South Carolina, 132t, 134t, 147, 170, 171, 174t. See also mortality rates: in Site 38CH778, South Carolina, sample; periostitis: population comparisons; porotic hyperostosis: population comparisons
Site 2-AVI-1-ENS-1, Hull Bay, St. Thomas, 29
Skinner, Elliot, 24
slavery. See enslaved labor
slave trade. See trade in enslaved Africans; transatlantic trade
smallpox, 198, 260–261
Smithsonian Institution, 26, 28, 29, 30, 31, 33, 36, 132t
 collaboration with John Milner Associates, 35
 Physical Anthropology Division, 37
Smithsonian’s National Zoological Park, 39n
Society of African Culture, 21
Society for the Preservation of the Gospel, 261
Sotho (African ethnic group), 84t
Souls of Black Folk, The (1903), 23
South Africa, 75, 84t, 93t, 107, 204
 population comparisons, 76t, 77f, 79t, 80–81, 81f, 83f, 84f, 85
See also Benin; Cameroon; Cape Province, South Africa; Cape Town, South Africa; Congo; Pygmy; Sotho; Tukulor
South America, 19, 73f, 81, 92. See also burial sites in South America; trade in enslaved Africans:
 South American export sites; Suriname
South Carolina, 17, 35, 106, 166t, 220, 221, 226, 263, 271. See also Belleview Plantation, South Carolina; Charleston, South Carolina; Site 38CH778, South Carolina; Remley Plantation, South Carolina; South Carolina plantation
South Carolina plantation, 128, 132, 133, 220t. See also anemia: on South Carolina plantation; growth: in South Carolina plantation sample; malnutrition: in South Carolina plantation
Spain. See Spanish, the
Spaniards. See Spanish, the
Spanish, the, 74, 92, 131. See also African Diaspora studies: development and evolution of; enslaved Africans in the Caribbean: investigations of, by Spanish Catholics; Native Americans: investigations of, by Spanish Catholics; trade in enslaved Africans: by the Spanish
spondylolysis, 206–208, 207f, 208t
Standards for Data Collection from Human Remains, 13, 54, 60, 61, 63, 145, 157, 169, 170, 185, 228
Stanford University, 24
Staten Island, 79t
State of Bahia-Columbia University Community Study Project, 23
Statistical Package for Social Sciences (SPSS), 75, 77, 80, 110, 133, 145, 228, 234
stature
 compared to CDC growth standards, 237–239, 239t
 enthesopathies, test of association with, 247
 female stature estimates, 237f, 239t
 infectious lesions, test of association with, 244t
 male stature estimates, 237f, 239t
 methods to estimate, 231t, 232t, 233t, 234t, 237f, 238f
 population comparisons, 249t, 250–251, 250f, 251f, 252f
 porotic hyperostosis, test of association with, 240–242, 242t, 251
See also growth: standardization of long-bone lengths
St. Catherine’s Island, Georgia, burial site, 30. See also under fractures; reinterment of remains; trauma
Steering Committee. See Federal Advisory Steering Committee
Steggerda, Morris, 26
stellate scars, 38, 180, 183, 184, 184f, 185
Stewart, T. Dale, 28
St. Peter Street Cemetery, New Orleans, 34, 35, 131, 132t, 174t. See also mortality rates: in St. Peter Street Cemetery, New Orleans, sample stress. See biomechanical stress
St. Thomas, 28, 29. See also Hull Bay, St. Thomas; U.S. Virgin Islands; Water Island, St. Thomas
Study of Some Negro-White Families in America, A (1932), 26n
Sudan, 84t, 107t
sugar
 industry, 38, 105, 262
 plantations, 37, 125, 131, 271
See also Barbadian sugar plantation; Newton Plantation, Barbados; Oaxaca sugar plantation cemetery
Sunwatch (Native American ethnic group), 249t
Suriname, 37, 106, 198
economic development of, 38
See also Waterloo Plantation, Suriname

Sweden, 79t

Swedlund, Alan, 36

Switzerland, 76t

syphilis

congenital, 38, 179, 183–185

eighteenth-century New York compared to Caribbean, 270

endemic, 183, 198

in Newton Plantation, Barbados, sample, 38

resorptive lesions, skeletal evidence of, 184f

venereal, 38, 180, 183–185, 198

in Waterloo Plantation, Suriname, sample, 38, 170, 198

See also saber shin; stellate scars; treponemal infections

Syracuse University, 31, 118

Szwed, John, 23

T

Tabasi, Adunni, 44

Taino. See Arawak (Taino; Caribbean ethnic group)

Tanzania, 24, 84t, 92, 107t

Tasmania, 79t

Tattersall, Ian, 78, 271

Teita, Kenya, 76t, 79t

Tellem, 76t

Teotihuacán, 104

Tetela, 76t

Texas, 166t. See also population counts of Africans: in Texas

Thomas, David Hurst, 30

Thomas, R. Brooke, 36

Ties That Bind Ceremony, 13f

Time on the Cross (1974), 32

Todd, T. Wingate, 27, 28

Togo, West Africa, 72f, 76t, 84t, 107t

Tolai (New Guinea ethnic group), 77, 79t

tooth loss. See antemortem tooth loss

Tories, 8

trace element analysis. See bone chemistry analysis; elemental signature analysis (ESA)

trade in enslaved Africans, 38, 71, 106, 120, 150, 154, 256, 271, 272

African suppliers of captives, 44

age selection in, 257

by the British, 20, 153, 256

Central American export sites, 73f

direct trade with Africa, 124, 153, 184–185, 255, 256, 264

by the Dutch, 126, 256

factors that affected, 256

groups most active in, 74

to New York, 124, 149, 153, 154, 156, 184, 255, 263, 264

sex selection, 257

shipment regions from which captives were acquired, 70–71, 88

smuggling and underreporting of cargo, 120, 255

South American export sites, 73f

by the Spanish, 120, 153

See also African sources of enslaved labor;

Caribbean, the: as intermediary between Africa and New York; Harvard University: keeper of American slave trade records; justification of slavery and inequality, efforts toward: religious justification; trade in enslaved Africans; laws, regulations, and ordinances: slave trade selection; Middle Passage; “Piezas de India”; sex ratio: trade in African captives, its effect on; West Indian sources of enslaved labor

transatlantic trade. See trade in enslaved Africans

trauma

burning at stake, possible evidence for, 6, 6f (see also Burial 137; Burial 354)

in Catoctin Furnace ironworks, Maryland, sample, 35

in Cedar Grove Cemetery, Arkansas, 33

dislocation, 221–222

in First African Baptist Church Cemetery, Philadelphia, sample, 35

gunshot, 224–226, 225f

patterns of, 121, 130–131

osteoarthritis, a result of, 199, 212, 213

periostitis, a result of, 174, 174n

in St. Catherine’s Island, Georgia, sample, 30

violence, evidence of, 30, 33, 35, 222, 224–226, 225f

See also fractures

treponemal infections, 179

differential diagnoses, difficulty in, 183–185, 198

distribution by age and sex, 182–183, 182t, 183t

periostitis, as expression of, 174

sex ratio as factor, 38

tibial pathologies, 182t

in Waterloo Plantation, Suriname, sample, 38, 185

See also syphilis; yaws

Trinity Anglican Church, 5f

ban on African, Jewish, and Catholic burials within (1697), 3, 5

burial population of, 126
burial records for English slaveholding population, 39, 273
mortality data, as a source for, 126–127, 128, 129f, 130f, 130t, 131f, 139
Tukulor (African ethnic group), 84t
290 Broadway site, 3
halt of construction, 3, 10
Types of Mankind (1854), 25. See also Douglass, Frederick: counterargument to racial ranking presented in Types of Mankind

U
Uganda, 107t
United Nations Educational, Scientific, and Cultural Organization (UNESCO), 24
“Route of the Slaves“ Project, 91
Statement on Race (1951), 25
United Nations Human Rights Commission, 10
United Nations World Heritage Site list, 10
United States, 10, 14, 21, 23, 25, 37, 38n, 73f, 92, 117. See also African Diaspora studies: outside of the United States; Americas
United States National Monument, 10
Universal Negro Improvement Association, 21
University Biohazards Committee, 52
University Museum at Oxford, 28
University of Arkansas, 33
University of Capetown, 26n
University of Chicago, 22, 23, 26n
University of Connecticut, 91
University of Kansas, 89, 101, 114, 118
University of Kuwait, 37
University of Leiden, 37
University of Maryland, 89, 92, 272
University of Massachusetts, 33, 36, 37, 93t. See also David C. Driskell Center for Diaspora Studies; Nyumburu Cultural Center
University of Mississippi, 31
University of North Carolina, 114
University of Pittsburgh, 89
University of South Carolina, 34, 118
University of Suriname, 37
University of Tennessee, 37, 39
University of Yaounde I Medical School, 91
Upper Guinea, 92. See also African sources of enslaved labor: Upper Guinea; Guinea; Guinea-Bissau; Gulf of Guinea
U.S. Army Corps of Engineers, 33, 133
U.S. Congress, 3, 33
U.S. Department of Health and Human Services, 213n
U.S. National Museum, 28
U.S. Virgin Islands, 28. See also Hull Bay, St. Thomas; St. Thomas; Water Island, St. Thomas

V
Valais, Switzerland, 76t
Van Borsum patent heirs
restoration to and division of the New York African Burial Ground into lots, 7
Van Cortlandt, Jacobus, 257
Vermillion Accords of the World Archaeological Congress, 12
vindicationism. See African history: critical and corrective approaches to
violence, 26n, 29n
interpersonal, 121, 127, 224, 226, 271
See also fractures: violence, as evidence of; trauma: violence, evidence of
Virginia, 35, 36, 106, 117, 219, 220t, 263
Virgin Islands, 105, 108t

W
Walker, Doug, 101, 118
Warner, W. Lloyd, 23
Washington, D. C., 39n, 91
Water Island, St. Thomas, 28. See also antemortem tooth loss: in Water Island, St. Thomas, sample; culturally modified teeth: in Water Island, St. Thomas, remains; St. Thomas; U.S. Virgin Islands
Waterloo Plantation, Suriname, 37, 38, 170, 174t, 185. See also under life expectancy; mortality rates; syphilis; treponemal infections
Watkins, Mark Hannah, 23
Watters, David, 39
weaning
stress at, 36n, 134, 162, 178, 265, 270
and enamel hypoplasias, 153
time of, determining, 101, 104
See also nursing
Weiss, Kenneth, 89, 134, 135, 136
West Africa, 8, 74, 76t, 77f, 81f, 83f, 84f, 84t, 104, 269
geology of, 103
See also African sources of enslaved labor: West Africa; Central Africa; DNA: West and Central Africa, as a source of New York African Burial Ground genetic diversity; West Central Africa
West Central Africa, 90t–91t, 269. See also African sources of enslaved labor: West Central Africa; Central Africa; Gabon; West Africa
West Indian sources of enslaved labor, 258, 263, 264
Caribbean, 73f, 124, 153, 255, 256
See also African sources of enslaved labor; trade in enslaved Africans; Caribbean, the: as intermediary between Africa and New York
West Indies, 39, 219, 260, 262, 271. See also British, the: occupation of West Indian islands; Caribbean, the; Dominica; enslaved Africans in the Caribbean; French West Indies; Hispaniola; Jamaica; racial focus in past studies: on West Indian plantations; West Indian sources of enslaved labor
Western Sahara, 72f
Whitten, Norman, 23
Wilson, Sherrill, 9, 44
Windward Coast. See under African sources of enslaved labor
W. Montague Cobb Biological Anthropology Laboratory, 13, 61, 63, 65
analysis of skeletal remains, 3, 36, 36n, 169
personnel, 49–50, 51, 51f, 52, 52f, 53, 61f, 64f
skeletal recordation conducted at, 49
transfer of remains to, 13, 13f (see also Ties That Bind Ceremony)
See also Blakey, Michael; Edwards, Jerome Otto; Fuller, Douglas; Hill, M. Cassandra; Jones, Joseph; Mack, Mark
Woodson, Carter G., 21, 26. See also Journal of Negro History
Workshop of European Anthropologists, 37
World Archaeological Congress, 12
Ethical Statement, 43

X
X Coloquio Internacional de Antropología Física, 38n
Xhosa (African ethnic group), 76t

Y
Yale University, 89
Yao (ethnic group), 108t
Yaounde, Cameroon, 91
yaws, 38, 110, 179–180, 183–185, 183n, 198
yellow fever, 34, 260, 261
Yoruba (African ethnic group), 37, 64, 90t, 271. See also Ife

Z
Zaire, 72f
Zalavar, Hungary, 79t
Zambia, 107t, 204, 208
Zande, Kongo, 76t
Zimbabwe, 107t
Zulu (African ethnic group), 76t, 79t