OPPORTUNITY

How much energy is used for heating, ventilation and air conditiong (HVAC) in U.S. office buildings?

OF ENERGY goes to HVAC¹

OF U.S. OFFICE BUILDINGS RELY ON VRF²

primary HVAC system in Europe, Japan and China³

TECHNOLOGY


How does VRF work?

PROVIDES INDEPENDENT **TEMPERATURE CONTROL**

to rooms throughout building

USFS RFFRIGFRANT

as cooling/heating medium; substituting thin pipes for ductwork

M&V

Where did Measurement and Verification occur?

PACIFIC NORTHWEST NATIONAL LABORATORY drew from a wide variety of sources to evaluate the performance of VRF for GSA buildings

RESULTS

How did VRF perform in M&V?

34% **ENERGY SAVINGS**

projected Relative to code-compliant HVAC⁴

THIN

PROFILE

advantageous in historic buildings with limited room for ductwork5

COST-

EFFECTIVE

When the premium is < \$4/SQ.ft. compared to codecompliant HVAC⁶

Projected Payback for VRF vs VAV

Reasonable paybacks achievable (shown in white)

VRF vs VAV with Gas Reheat or CAV

34% Projected Energy Cost Savings

Energy Cost Savings, \$/ft2

		\$.10	\$.14	*\$.18	\$.22	\$.26	\$.30	\$.34	\$.38
	\$1	10	7	6	5	4	3	3	3
100 paper	\$2	20	14	11	9	8	7	6	5
	\$3	30	21	17	14	12	10	9	8
	**\$4	40	29	22	18	15	13	12	11
	\$5	50	36	28	23	19	17	15	13
	\$6	60	43	33	27	23	20	18	16

VRF vs **VAV** with Electric Reheat

45% Projected Energy Cost Savings

		\$.13	\$.19	*\$.24	\$.29	\$.34	\$.40	\$.45	\$.50
	\$1	8	5	4	3	3	3	2	2
ft²	\$2	15	11	8	7	6	5	4	4
Cost \$/ft ²	\$3	23	16	13	10	9	8	7	6
Added C	**\$4	30	22	17	14	12	10	9	8
Ψ	\$5	38	27	21	17	15	13	11	10
	\$6	45	32	25	21	17	15	13	12

^{*} Average GSA Portfolio Energy Cost Savings (based on GSA average usage of 60.7 kBtu/ft², GSA average cost of \$0.89/therm, and EIA average cost of \$0.10/kWh)

DEPLOYMENT

Where does M&V recommend deploying VRF?

PILOT PROJECTS

Research on field performance is limited

Variable Refrigerant Flow Systems. Brian Thornton, Anne Wagner (PNNL), December 2012, p.4 2lbid, p.11 3lbid, p.4 4lbid, p.13 5lbid, p.24 6lbid, p.46

^{**} Average Added Cost