JULY 2014

INTEGRATED DAYLIGHTING SYSTEMS

OPPORTUNITY

How much energy is used for lighting in U.S. commercial buildings?

26%

OF
ELECTRICITY
goes to lighting¹

TECHNOLOGY

How do Integrated Daylighting Systems save energy?

AVAILABLE NATURAL LIGHT

offsets use of electric light

Effective where perimeter depth is two times the maximum window height

M&V

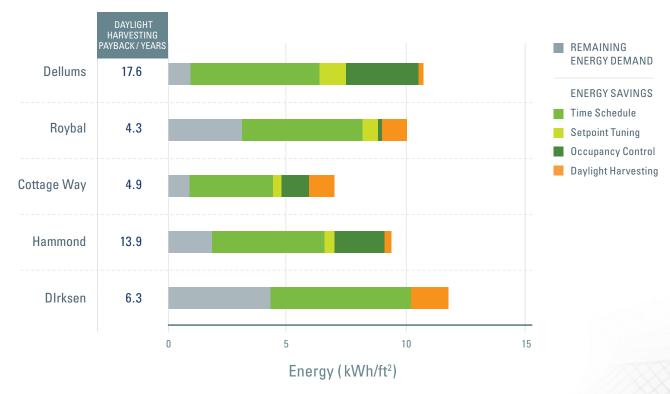
Where did Measurement and Verification occur?

LAWRENCE BERKELEY NATIONAL LABORATORY measured IDS performance at 5 federal buildings to evaluate incremental savings from daylight harvesting

RESULTS

How did Integrated Daylighting perform in M&V?

27%
AVERAGE SAVINGS
0.84 kwh/ft²


BESTPRACTICES

unobstructed sky views, limited seasonal variation, window-to-wall ratio 0.5, visible transmittance of 60%³ <6
YEARS
PAYBACK
with high

occupancy4

Lighting Energy Savings Control Strategies

Increased savings from Occupancy Control leaves little room for savings from Daylight Harvesting

DEPLOYMENT

Where does
M&V recommend
deploying Integrated
Daylighting?

SITES WITH HIGH LIGHTING USE

New construction and retrofits with existing lighting power density greater than 1.1 W/ft² and energy use intensity greater than 3.3 kWh/ft²

Results are for fluorescent lamps, LED lamps have different performance characteristics

¹Integrated Daylighting Systems. Alastair Robinson, Claudine Custodio, Steven Selkowitz (LBNL), July 2014, p.13 ²Ibid, p.42 ³Ibid, p.100 ⁴Ibid, p.7,39