GPG Outbrief 04 Condensing Boilers

GPG Program | U.S. General Services Administration | July 13, 2017

GPG-004 Condensing Boilers @ gsa.gov

What is GPG?

HVAC

>

Lighting

Water

Published Findings

Building Envelope

Thermostats

012. Fan Belts

009. Maglev Chiller

Energy Management

029. Smart Ceiling Fans 020. Wireless Pneumatic

013. Indirect Evaporative Cooler

006. Variable Refrigerant Flow

004. Condensing Boilers

On-Site Power & Renewables

Ongoing Assessments

Request for Information

Technology Deployments

Outbrief Webinars

- Infographic
- 4-page Findings
- □ Full Report
- Additional Resources

General Services	ensing Boilers ×	+ :://www.gsa.gov/portal/cc 🔻 🛱] C Q Search			↓ 俞 ☆ 自	•	.
GSA	TRAVEL	REAL ESTATE	ACQUISITION	TECHNOLOGY	POLICY & REGULATIONS	ABOUT US	Q	
Home > Governmen	ntwide Initiatives > Sustain	ability > GPG Program > Published	Findings > HVAC >					
GPG PROGRA	м	Conder	nsing Boile	rs		READ 4-PAGE FIN	DINGS	
Overview			0			Findings:		

GPG-004, Updated July 2014

Condensing boilers capture the heat that is lost through steam in conventional boilers and are therefore more efficient. Under the right conditions, they will outperform conventional boilers by a substantial margin.GSA tested condensing boilers at the Denver Federal Center and the Peachtree Summit Federal Building in Atlanta, Georgia and found energy savings greater than 14%. *Click on the infographic below to enlarge*.

UPDATED JULY 2014 CONDENSING BOILERS OPPORTUNITY How much energy is used for heating in U.S. commercial buildings?

Condensing Boilers >

Condensing Boilers

Condensing Boilers

Assessment NREL 2014 >

Assessment PNNL 2012 >

DOWNLOAD FULL REPORT

DOWNLOAD FULL REPORT

ADDITIONAL RESOURCES

Tool: Energy Cost Savings

(DOE/EERE)

Calculator for Commercial

Boilers: Closed Loop, Space Heating Applications Only

TECHNOLOGY

How do Condensing Boilers save energy?

CAPTURE HEAT THAT IS LOST THROUGH STEAM IN CONVENTIONAL BOILERS

IGH STEAM EFFICIENCY AS 15% more efficient than conventional boilers

95%

M&V

Upcoming GPG Outbriefs—Thursdays, 12 PM ET

August 10Synchronous and Cogged Fan Belts

September 14 Next-Generation Chillers

October 12 Electrochromic Windows

Webinar Recordings

Access all webinars on GSA.gov GSA.gov/GPG

Continuing Education Credits

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, <u>michael.hobson@gsa.gov</u>

How to Chat Your Questions

Introduction

Michael Lowell

Project Manager, GPG mike.lowell@gsa.gov 720.641.8891

Webinar Agenda

- Overview of GPG (5 minutes)
 Kevin Powell, Director, GSA Emerging Technologies
- Condensing Boilers (15 minutes)
 Dylan Cutler, National Renewable Energy Laboratory
- On-the-ground Feedback (15 minutes)
 Doug Baughman, GSA Region 8
- **Q** & A (15 minutes)

Introduction

Kevin Powell

Program Manager, Emerging Technologies <u>kevin.powell@gsa.gov</u> 510.423.3384

The GPG program enables GSA to make sound investment decisions in next generation building technologies based on their real world performance.

Leading by Example

GSA's Proving Ground accelerates market acceptance by objectively assessing innovative building technologies in real-world environments, and deploying those that deliver. To date, GSA has installed 9 technologies across more than 200 buildings. In aggregate, these technologies are delivering \$7.8 Million in annual O&M savings.

GPG Process

Identify promising technologies at the edge of commercialization

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Recommend technologies with broad deployment potential for GSA

Measurement & Verification

Dylan Cutler

R&D Staff, National Renewable Energy Laboratory

GPG-004 Condensing Boilers

General Services Administration Public Buildings Service

Condensing Boilers Reduce Heating Energy Consumption

GSA

Heating accounts for roughly a third of total energy consumption in U.S. commercial buildings, with boilers supplying heat to 34.5% of total floor space.1 Considering GSA's own reliance on boilers for heating, GSA's GPG program recently assessed the performance of condensing boilers at six federal facilities-one at the Peachtree Summit Federal Building, in Atlanta, Georgia, and five at the Denver Federal Center (DFC) in Lakewood, Colorado. Condensing boilers perform more efficiently than conventional boilers by extracting more of the heat energy released in the combustion process. For maximum efficiency condensing boilers must operate under the right conditions-the most important of which is return water temperature (RWT). For "condensing mode" to be achieved, RWT must be below 130°F. In the six facilities studied, only three were able to achieve condensing mode more than 30% of the time. Still, all facilities experienced significant reductions in natural gas consumption, with savings greater than 14% when compared

GPG-004. Condensing Boilers

Captures heat that is lost through steam in conventional boilers

15% more efficient than conventional boilers

Opportunity

35% of energy used for heat

33% commercial buildings rely on boilers

Measurement & Verification

PNNL assessed 4 condensing boilers at Peachtree; NREL assessed 22 at DFC

Technology for test-bed measurement and verification, provided by Harsco Patterson-Kelley and Cleaver-Brooks

Measurement & Verification–Denver Federal Center

Test Plan

- Pre-retrofit utility data normalized for outside air temperature from 10/2008 9/2011
- 15-minute trend data from the BAS from 2/2012 4/2012

Building	OAT	SWT	RWT	Pump Enabled	Pump Speed	Coil Position
25	1	1	1	1	1	\checkmark
45	1	1	1	1	 ✓ 	✓
54	1	1	1			
710A	1	\checkmark	\checkmark	1	1	
810	1	\checkmark	1	1		1

Monitored points for Denver Federal Center

Savings in Atlanta and Denver

Peachtree - Average Savings 14%

Condensing boiler plant thermal performance

Denver - Average Savings 24%

Annual pre- and post-retrofit natural gas consumption (dekatherms/yr)

4-6 Year Payback with End-of-Life Replacement

Life-cycle cost-effective when only 3-5% more efficient than a high-efficiency boiler

Building	Cost high-efficiency boiler 84%-86% efficiency	Cost condensing boiler 86%-98% efficiency	Energy Cost Savings	Projected Payback (yrs)
Peachtree (normalized)	\$384,800	\$426,100	\$11,425	3.7
DFC, 25	\$629,084	\$697,406	\$15,326	4.5
DFC, 45	\$183,836	\$203,801	\$6,361	3.1
DFC, 54	\$524,236	\$581,171	\$9,161	6.2
DFC, 710A	\$122,557	\$135,868	\$2,344	5.7
DFC, 810	\$629,084	\$697,406	\$16,368	42.6 Boilers not due for replacement

Efficiency Hinges on Return Water Temperature Below 130°F

Lower RWT results in greater efficiencies

Operating with RWT below 130°F

- Use a outdoor temperature reset on supply water
- Reduce hot water flow rate
- For new builds/deep retrofits
 - Install high Delta-T coils
 - □ Use 2-way valves with variable speed pumps
 - □ Use a primary piping system with 1 water loop

Best Practices for Condensing Boilers

- Conduct a load calculation to meet max load without excess capacity
- Select boilers with low turndown ratio/minimum flow requirement
- Use stainless steel for vent stacks
- Operate multiple smaller boilers in parallel at low loads
- Consider using condensing boilers for 75% of building's heating load

GSA Deployment Opportunity

Best suited as end-of-life replacement

For conventional boilers where return water temperature < 130F is possible

On-The-Ground Feedback

Doug Baughman, R8

Energy Program Specialist Denver Federal Center

Condensing Boilers at the Denver Federal Center

Between 2006–2007, 20 condensing boilers installed

- Existing non-condensing hot water boilers inefficient and expensive to maintain \$100,000 over 2 years. Condensing boilers saved tens of thousands in refractory repairs.
- More compact—in 1 installation, 1 small boiler replaced 3 large boilers.
- New boilers saved 21% compared to campus data from previous winter and winter was much colder.
- 4 to 5 year payback.

Installation Experience

Boiler layout needs to work with flue vent and stack layout

- Breaching a common vent stack did not work for condensing boilers but worked fine for non-condensing boilers.
- Can a product be too new? R&D still working on operating program when boilers were installed but luckily boilers were installed in the summer.

Galvanized Venting Didn't Work

One installation used improper materials for the venting

• Galvanized vent pipe experienced acidic condensation leaching within 5 years.

Stainless Steel Replacement

Vent pipe replaced with proper venting installation in 2015

• Lesson learned: communicate, don't accept less than required, hire a good contractor.

Building 25, Denver Federal Center

Overall Feedback

- Current control strategy uses outside air to reset the supply temperature. Other strategies such as using the building load (return water temperature) could bring additional savings.
- Annual combustion tests show 90-93% efficiency.
- Annual maintenance less intensive but still time consuming.
- Condensing boilers heat water directly allowing faster response to changing conditions.
- 5 out of 5 stars.

GSA Deployment of Condensing Boilers

GSA deployment-127 Boilers

- Throughout the portfolio, largest number in Region 6
- BA54, BA55, ARRA and ESPC financing
- Wide range of manufacturers and models installed

Survey and Continuing Education Credit

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, <u>michael.hobson@gsa.gov</u>

E							
	mail addres:	s *					
Yo	our email						
С	ontinuing Ed	lucation	n Credit				
	Check here t	o reques	t a certific	ate for 1	CE unit.		
н	low many pe	ople lis	tened in	on you	r phone	line?	
	Choose 👻			,,			
Т	he informati	on pres	sented in	the Ou	tbrief w	ebinar v	vas helpful.
	0	1	2	3	4	5	
	Disagree	0	0	0	0	0	Strongly Agre
Ŀ	am intereste	d in co	ndensin	a hoiler	9		
C) Yes, in the n	ext 2 year	rs.	g boller	5.		
C) Yes, in the n	ext 5 year	rs.				
C) Maybe						
C) No						
C	omments or	questi	ons abo	ut the w	ebinar (or cond	ensing
	onero.						

Thank you!

For more information: gsa.gov/GPG

Kevin Powell, Program Manager <u>kevin.powell@gsa.gov</u> 510.423.3384 Michael Lowell, Project Manager <u>mike.lowell@gsa.gov</u> 720.641.8891