GPG Outbrief 05 Synchronous & Cogged Fan Belts

GPG Program | U.S. General Services Administration | August 10, 2017

GPG-012 Synchronous & Cogged Fan Belts @ gsa.gov/gpg

- □ Infographic
- 4-page Findings
- □ Full Report
- Additional Resources

🖲 😑 🔵 🧟 🥵 Sy	nchronous and Cogged Fa	× +						
🗲 🛈 🕰 https:/	/www.gsa.gov/portal/con	tent/188023		🖾 (90%) C	Q Search	合 自 🕹	^ ♥	≡
Most Visited -	Ġ Google 🛛 🕀 Getting S	tarted M Gmail 🚯 7-0	Day Forecast 🕤 TShe	eets :: login 🛛 💝 Home - Dr	opbox 🛛 🗭 GovDelivery Admi	W Space (punctuatio	-	>>
GS۸	TRAVEL	REAL ESTATE	ACQUISITION	TECHNOLOGY	POLICY & REGULATIONS	ABOUT US	٩	
Home > Governm	nentwide Initiatives > Sustainal	oility > GPG Program > Published	Findings > HVAC >					

SPG PROGRAM
Overview
What is GPG?
Published Findings
Building Envelope
Energy Management
HVAC
029. Smart Ceiling Fans
020. Wireless Pneumatic Thermostats
013. Indirect Evaporative Cooler
012. Fan Belts
009. Maglev Chiller
006. Variable Refrigerant Flow
004. Condensing Boilers
Lighting
On-Site Power & Renewables
Water
Ongoing Assessments

Synchronous and Cogged Fan Belts

GPG-012, March 2014

Cogged V-belts and synchronous-drive fan belts are a low-investment way to reduce the inefficiencies in ventilation fans caused by belt slippage and bending resistance. GPG, Rocky Mountain Region, put both belts to the test on two different fans in Denver, Colorado, and found significant energy savings with a simple payback of less than four years. *Click on the infographic below to enlarge*.

2 SYNCHRONOUS & COGGED FAN BELTS

OPPORTUNITY

How much energy is used for ventilation in U.S. office buildings?

12% of electricity GOES TO FAN VENTILATION'

TECHNOLOGY

How do synchronous and cogged fan belts save energy?

BENDING RESISTANCE BY NOTCHING THE INNER SIDE OF THE BELT SYNCHBONOUS RELTS ALSO

REDUCE FRICTION AND

The diameter	_	
Findings: Synchronous & Coggod		
Fan Belts >	13	

DOWNLOAD REPORT

Synchronous and Cogged Fan Belt Performance Assessment >

ADDITIONAL RESOURCES

 Guidance: Replace V-Belts with Notched or Synchronous Belt Drives (DOE/EERE, 11-2012)

 Tool: Energy Savings Calculator (Gates Corporation)

ADDITIONAL

SAVINGS

POSSIBLE

Belt-driven fans

are also used in

non-ventilation applications

2-5%

MORE EFFICIENT

THAN STANDARD

Request for Information
Outbrief Webinars

Technology Deployments

Upcoming GPG Outbriefs—Thursdays, 12 PM ET

September 14 Catalyst-Based Non-Chemical Water Treatment

October 5 Next-Generation Chillers

November 2 Electrochromic Windows

Webinar Recordings

Access all webinars on GSA.gov GSA.gov/GPG

Continuing Education Credits

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, <u>michael.hobson@gsa.gov</u>

How to Chat Your Questions

Introduction

Michael Lowell

Project Manager, GPG mike.lowell@gsa.gov 720.641.8891

Webinar Agenda

- Overview of GPG (5 minutes)
 Kevin Powell, Director, GSA Emerging Technologies
- Synchronous and Cogged Fan Belts (15 minutes)
 Dylan Cutler, National Renewable Energy Laboratory
- On-the-ground Feedback (15 minutes) Michael Higdon, Equipment Specialist Region 8 John Tegan, GSA Region 3
- **Q & A (15 minutes)**

Introduction

Kevin Powell

Program Manager, Emerging Technologies <u>kevin.powell@gsa.gov</u> 510.423.3384

The GPG program enables GSA to make sound investment decisions in next generation building technologies based on their real world performance.

Leading by Example

GSA's Proving Ground accelerates market acceptance by objectively assessing innovative building technologies in real-world environments, and deploying those that deliver. To date, GSA has installed 9 technologies across more than 200 buildings. In aggregate, these technologies are delivering \$7.4 Million in annual O&M savings.

GPG Process

Identify promising technologies at the edge of commercialization

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Recommend technologies with broad deployment potential for GSA

Measurement & Verification

Dylan Cutler

R&D Staff, National Renewable Energy Laboratory

Synchronous and Cogged Fan Belts

General Services Administration Public Buildings Service

SYNCHRONOUS AND COGGED FAN BELTS

Ventilation fans consume a significant portion of the electricity used in U.S. commercial buildings. In fact, ventilation accounts for approximately 12% of total commercial-building electricity use.1 Total fan energy use is higher still, due to the presence of beltdriven fans in cooling towers and other non-ventilation applications. Inefficiencies account for some of this electricity use, specifically losses that occur during the transfer of energy between motor shafts and fans. Two innovative fan belt technologies that replace the standard V-belt address this issue. Cogged V-belts reduce the amount of material on the inner surface of the belt, and are designed to reduce the bending resistance as the belt travels around the sheave. Synchronous drive belts have teeth that integrate with slots in the sheave (much like a bicycle or motorcycle drive) and are designed to reduce both belt slippage and frictional losses. Belt manufacturers claim energy savings of up to 5% for synchronous drive belts² and 2% for cogged V-belts.³ While this is a small portion of overall building electricity use (between 0.3% and 0.5%) this technology offers a simple and inexpensive way of

GPG-012. Synchronous and Cogged Fan Belts

Reduced friction and bending resistance for more efficient fan performance

Synchronous belts also reduce slippage by integrating teeth with slots on the motor pulley

Opportunity

Additional savings possible

Belt-driven fans are also used in non-ventilation applications

Measurement & Verification

NREL assessed belts on CV and VAV fans at the Byron Rogers Federal Courthouse

Technology for test-bed measurement and verification, provided by Gates Corporation

Measurement & Verification-Byron G. Rogers Federal Building

Test Plan

- Motor/fan combinations tested with original, standard V-belts to obtain a baseline
- Measured real and apparent electricity consumption, fan speed, motor speed, and sound level with original V-belts, then cogged V-belts and then with synchronous drive belts.
- Motor power consumption normalized for both fan speed and air density changes

Installation/Operations & Maintenance

75% lower O&M for synchronous

- 1 Synchronous drive belt replaced 2 V-belts on CV fan
- 4 V-belts on VFD fan
- Torque start can damage synchronous drive belts on CV fans

Cogged O&M is equivalent to standard V-belts

Fan Energy Savings with VFD Drive

Weather-adjusted and fan-speed-normalized savings Over baseline standard V-belts

VFD Frequency [Hz]	Cogged Savings [W]	Synchronous Savings [W]	Cogged Savings [%]	Synchronous Savings [%]
15	71.9	154.8	9.3%	20.1%
20	56.6	126.0	3.7%	8.1%
25	76.2	123.9	2.8%	4.6%
30	86.6	110.7	1.9%	2.5%
35	327.0	337.1	4.8%	4.9%
40	334.5	345.0	3.4%	3.5%
45	446.6	480.8	3.2%	3.5%
50	601.3	689.6	3.2%	3.7%
55	195.2	378.5	0.8%	1.6%
60	385.2	707.8	1.2%	2.3%

2-20% ENERGY SAVINGS

FOR SYNCHRONOUS ON VFD 2% AT 60 HZ, 20% AT 15 HZ Cogged fan belts offered half the savings

VFD Fan Lifecycle Cost Analysis

For fans with VFD drives, synchronous drive belts are the most cost-effective

Cost	V-Belt	Cogged V-Belt	Synchronous Drive Belt
Initial Costs	\$379	\$419	\$1,280
Replacement Costs	\$379	\$419	\$372
0 & M Costs	\$92	\$92	\$23
Energy Costs	\$4,772	\$4,690	\$4,608
Lifecycle Costs	\$37,694	\$37,187	\$36,809

Assumes equal lifespans of 3 years. Manufacturer claims a longer lifespan which would enhance economics.

Energy Use for Synchronous Belt on CV Fan

Fan energy consumption with constant volume (CV) Energy use increases without adjustments to fan control

		Compared to Orio	ginal V-Belt
Belt Type	Increase in Fan Speed [RPM]	Increase in Power Consumption [W]	Increase in Efficiency (normalized for fan speed) [%]
Tensioned V-Belt	2.5	45.9	0.001%
Synchronous Drive Belt	21.5	261.5	1.871 %

Fast Payback for Both Belts

Less than 4 year payback for synchronous, repeat installations have immediate payback; cogged payback < 1 year

Synchronous cost-effective at \$0.024/kWh or 6.8 hrs/day; cogged cost-effective at \$0.015/kWh or 4.3 hrs/day

Installation Lessons Learned – Synchronous Drive Belts

- **Ensure correct size**—Have experienced installer measure pre-existing diameter, belt length, and fan/motor shaft speeds.
- **Consider range of mobility in the motor mount**—the motor may need to move more or less to accommodate synchronous drive belts
- Use soft start for CV fans—by reducing initial torque can reduce the chance for tooth jump and wear on the belt

Correct Fan Choice and Expert Installation are Key

- For VFD fans, the synchronous belts showed savings at all ranges of fan operation.
- For CV fans, cogged V-belts are the best solution.
 - Synchronous drive belts pose risks when combined with the CV fan's high-torque starts and increased operational speed. Savings will be greatest on small-diameter motors or fan sheaves and in instances where the installed V-belt was oversized for the sheave diameter.
- No significant change was noted in the sound levels generated by different belt operation.

GSA Deployment Opportunity

Standard v-belts at end-of-life -

- Replace with cogged on all CV fans
- Consider synchronous on VFD fans (best for fans with high operating hours)

New construction and major renovation -

Install synchronous drive belts with VFD fans

On-The-Ground Feedback

Michael Higdon, R8

Equipment Specialist

Byron Rogers Courthouse

Synchronous Fan Belt on VFD Parking Garage

- 40 hp, 1185 RPM reduced by 67% to 375 RPM in normal operation
- Installed in 2012; 48,000 hours of use
- Shows very little wear

Byron Rogers Courthouse

Synchronous Fan Belt on CV Restroom Ventilation

- 10 hp at 1760 RPM, no VFD control, no soft start
- Installed in 2012; 16,000 hours of use
- Nearing end of life, belt is jumping teeth at startup
- Radiates noise throughout the mechanical room
- Originally sized too large and off center and wasn't tight enough, wore away on the side of the belt.

Alfred A. Arraj Courthouse

Synchronous Fan Belts on Air Handlers

- Installed in August 2011
- 17,500 hours of use
- Have not been replaced except for one on July 20th 2017 because sheave and pulley slipped out of alignment
- 7-9% measured electrical savings

On-The-Ground Feedback

John Tegan, C.E.M. GSA Region 3 Building Operations

R3 Experience

Cogged belts are standard operating procedure

- As EISA Reqs R3 opted to have NREL Perform initial Building Studies
- All NREL reports recommended replacing standard V-belts with cogged belts
- R3 O&M vendors embraced these findings and switched to cogged belts when performing PM's / at their earliest feasible opportunity
- Cogged are the only belts that are stocked now
- Work was performed as part of O&M contract no \$ outlay or specific project for belts
- Cogged belts are now considered as BEST PRACTICE and operating in the most energy efficient way possible

GSA Deployment

Deployment of Synchronous and Cogged Fan Belts

• Cogged fan belts are standard operating procedure in regions 1, 3, 5

Survey and Continuing Education Credit

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, <u>michael.hobson@gsa.gov</u>

GPG Ou Cogged	tbrie Fan	f 05 Belt	Syno s – F	chron ollov	ious v-up	and Survey
Thank you for your p	articipation	in GPG Out	briefs.			
* Required						
Email addres	s *					
Your email						
Continuing Ec	lucatio	n Credit				
Check here t	o reques	t a certific	ate for 1	CE unit.		
The informati	on pres	ented in	the Ou	thrief w	hinar	was helpful
The informati	1	2	3	4	5	was neipitai.
Strongly	0	0	0	0	0	Strongly Agree
3						
l am intereste	d in ins	talling s	synchro	nous and	d cogge	ed fan belts.
O Yes, in the n	ext 2 yea	rs.				
O Yes, in the n	ext 5 yea	rs.				
Maybe						
O No						
Comments or cogged fan be	questi elts.	ons abo	ut the w	vebinar c	or sync	hronous and
SUBMIT						

Thank you!

For more information: gsa.gov/GPG

Kevin Powell, Program Manager <u>kevin.powell@gsa.gov</u> 510.423.3384 Michael Lowell, Project Manager <u>mike.lowell@gsa.gov</u> 720.641.8891