GPG Outbrief 08 Socially Driven HVAC Optimization

GPG Program | U.S. General Services Administration | December 7, 2017

GPG-025 Socially Driven HVAC Optimization @ gsa.gov

• • +

- Infographic
- 4-page Findings
- □ Full Report
- Additional Resources

	REAL ESTATE	ACQUISITION	TECHNOLOGY	POLICY & REGULATIONS	ABOUT US	Q
ome > Governmentwide Initiative	Sustainability > GPG Program > Published Fi	indings > Energy Management	> 025. Socially Driven HVAC >			
GPG PROGRAM	Socially	Driven HV	AC Optimiz	ation	READ 4-PAGE FIN	DINGS
Overview	obelatty	Differint	ne optimiz	acion	[PDF - 542 KB]	
What is GPG?	GPG-025, Decem	ber 2015			GPG Findings 025 - Socially	1
Published Findings	Socially driven HV	/AC optimization uses i	nput from occupants in o	dynamic temperature	Driven HVAC Optimization > (PD)	F - 542 KB]
Building Envelope	management. Res	sults showed 20% cool	ing savings, a 59% reduc	tion in hot and cold calls	ie .	
Energy Management	below to enlarge.	ants more satisfied wit	an their thermat conditio	ns. click on the intograph		
028. Control Optimizatio Chillers	for				DOWNLOAD FULL	REPORT
025. Socially Driven HVA		SUCIALI			Socially Driven	Allow Series
003. Advanced Power St	S				HVAC Optimization Federal Office Build	ling
001. Wireless Sensor Net	orks		TIMIZATION		Bankruptcy Courth Phoenix, Arizona >	ouse [PDF - 4 MB]
HVAC	0000000000					
Lighting	OPPORTUNIT	Ŷ				
On-Site Power & Renewab	s How is temperatu typically controlle	d in SET TO A PRE	DETERMINED RANGE	OR "DEADBAND"	ADDITIONAL RES	OURCES
Water	commercial buildi	ings? Does not account to Wastes energy by o	r individual thermal preference ver-conditioning, particularly ir	is i unoccupied spaces	 Case Study: Kee Employees Proc 	ping ductive
Ongoing Assessments	TECHNOLOGY	r			through Therma (Smart Building	al Comfort s Center/
Request for Information	How does Socially			A OCCUDANTS	NEEC, 2015)	
Outbrief Webinars	Driven HVAC Optimization work	IN TEMPE		CEMENT	 Overview: Smar How Intelligent 	t Offices, Building
Technology Deployments		TRACKS USER PRE Optimizes energy sav	FERENCES OVER TIME, FINE rings by widening the deadband	TUNES THE DEADBAND when there is no occupant input	Solutions are Cf Occupant Exper (Navigant Resea 2015)	nanging the rience arch, 4Q
			BMS <			

Upcoming GPG Outbriefs—Thursdays, 12 PM ET

- January 18 Next-Generation Chillers
- February 8 Plug Load Control
- March 22 Honeycomb Solar Thermal Collector
- April 19 Electrochromic Windows

Webinar Recordings

Access all webinars on GSA.gov GSA.gov/GPG

Continuing Education Credits

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, <u>michael.hobson@gsa.gov</u>

How to Chat Your Questions

Introduction

Michael Lowell

Project Manager, GPG mike.lowell@gsa.gov 720.641.8891

Webinar Agenda

- Overview of GPG (5 minutes)
- Socially Driven HVAC Optimization (15 minutes)
 Dan Howett, Oak Ridge National Laboratory
- On-the-ground Feedback (15 minutes)
 Gabriel Sanchez and Mark Levi, GSA
- **Q & A (15 minutes)**

Introduction

Kevin Powell

Program Manager, Emerging Technologies <u>kevin.powell@gsa.gov</u> 510.423.3384

Emerging Technologies' two programs – GSA Proving Ground (GPG) and Pilot to Portfolio (P2P) – enable GSA to make sound investment decisions in next generation building technologies based on their real world performance

Leading by Example

GSA's Proving Ground accelerates market acceptance by objectively assessing innovative building technologies in real-world environments, and deploying those that deliver. To date, GSA has installed 9 technologies across more than 200 buildings. In aggregate, these technologies are delivering \$7.4 Million in annual O&M savings.

GPG Process

Identify promising technologies at the edge of commercialization

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Identify technologies with broad deployment potential for GSA, coordinate results with broader federal and CRE community.

Measurement & Verification

Daniel Howett R&D Staff, Oak Ridge National Laboratory

GPG-025 Socially Driven HVAC Optimization

General Services Administration Public Buildings Service

Smart Temperature Control Optimizes Comfort and Saves Energy

GSA

Traditionally, heating, ventilation, and air conditioning (HVAC) systems in commercial buildings are set to maintain indoor air temperature within a predetermined range, or "deadband." Relying on a fixed deadband, however, does not take into account individual thermal preferences and often leaves occupants feeling too hot or too cold. It can also waste energy by overconditioning, particularly in spaces that are intermittently occupied or unoccupied altogether. Socially driven HVAC optimization addresses these problems by including direct input from occupants. From a web page or smartphone, occupants request temperature changes to their local environment; in response, the system immediately delivers a 10-minute stream of hot or cold air. Control software tracks user preferences over time, fine-tuning the deadband to provide occupant comfort and widening it to optimize for energy savings when there is no input. To put socially driven HVAC to the test, GSA's GPG program commissioned Oak Ridge National Laboratory (ORNL) to conduct measurement and verification (M&V) at the Federal Building and

Opportunity

How is temperature typically controlled in commercial buildings?

Temperature is set to a predetermined range or "deadband"

- Individual thermal preferences are not used
- Wastes energy by over-conditioning, particularly in unoccupied spaces

Background: Current "Temperature Management" for Occupants

1. Occupant goes to wall and adjusts thermostat setting

Thermostat stays that way until re-adjusted by occupant, coworker, or building staff

2. Occupant enters a work order and waits for building staff

And waits, and waits, and waits...

- 3. Occupant tires of waiting, opens window, or buys electric heater Building staff wonders about increased energy usage
- 4. Occupants in a cube farm debate the "best temperature", and use Option 1 or 2 "Losers" of the debate implement Option 3

Uses Direct Input from Occupants in Temperature Management

Premise: If occupants have direct control of their space conditions, they will be comfortable under a wider range of conditions.

- 1. Occupants use desk-top or mobile app to send warm or cool request Receive immediate 10-minute stream of warm or cool air.
- 2. Technology constantly adjusts temperatures to save energy

But keeps occupants "comfortable" based on feedback.

Tracks user preferences over time, fine-tunes the deadband by widening it when there is no occupant input.

Image source: Comfy

Connects to the Existing BMS

Request from the app translated into a BACnet command to temporarily adjust the setpoint.

Measurement & Verification, Phoenix Arizona

ORNL assessed Socially Driven HVAC at the U.S. Bankruptcy Courthouse, Phoenix, AZ

Technology for test-bed measurement and verification provided by Comfy

Test Plan

- Insure that technology provided a consistent burst of air in response to occupant input.
- Measure whether technology could adjust space temperatures to an energy-saving setting while maintaining occupant comfort.
- Track occupant comfort.

Space Temperature 3/21/2014, Date that HRT went active. "Too Hot" Input
 "Too Cold" Input

Satisfied Occupants

Reduced Hot & Cold Calls

59% REDUCTION IN HOT AND COLD CALLS

Controlled System & Influenced Deadband

Energy Cost Savings for Large Building, 498,500 ft²

GSA Potential Deployment Opportunity

	Location	Large Office Cost Savin	s - 498,500 ft² gs (\$ /ft²/yr)
CLIMATEZONE	CITY	2° Shift ¹	4° Shift ²
1A	Miami, FL	\$0.06	\$0.13
2A	Houston, TX	\$0.06	\$0.12
2B	Phoenix, AZ	\$0.07	\$0.13
ЗA	Atlanta, GA	\$0.08	\$0.15
3B-coast	Los Angeles, CA	\$0.11	\$0.15
3B	Las Vegas, NV	\$0.06	\$0.15
3C	San Francisco, CA	\$0.09	\$0.16
4A	Baltimore, MD	\$0.09	\$0.16
4B	Albuquerque, NM	\$0.05	\$0.10
4C	Seattle, WA	\$0.09	\$0.16
5A	Chicago, IL	\$0.06	\$0.10
5B	Boulder, CO	\$0.06	\$0.10
6A	Minneapolis, MN	\$0.05	\$0.09
6B	Helena, MT	\$0.06	\$0.10
7	Duluth, MN	\$0.06	\$0.10
8	Fairbanks, AK	\$0.09	\$0.12

Prioritize Where Thermal Comfort Is an Issue

- Savings will be greatest in facilities that are only intermittently occupied and have narrow deadbands and high energy costs.
- Modeling estimates cost savings for different locations, office sizes and deadband shift.

On-The-Ground Feedback

Gabriel Sanchez, R6 Smart Buildings Program Manager

Installation

Biggest Hurdle Was Getting Tenants Signed In to the Correct Location

- Many tenants didn't know their zone; i.e.
 7th floor, Room 721, Area B...
- Once signed up, users accessed the application on a web interface or on mobile.

Controls

Two Control Modes

- Learning mode and standard mode. Administrator mode controlled entire zones.
- Technology adjusts setpoints in the background but you can manually adjust upper and lower ends. In one zone with no requests, we went in and raised the setpoint ½ degree. Still no requests, so raised it ½ degree more.

SETPOINTS CHANGE BY ZONE

The Value of Data

- Real data from users showed a wider range of thermal comfort.
- Data also could be used to find problems, in one instance with many requests, we found a broken thermostat.

Weekly Usage & Temperature Report

*Only includes zones with at least 1 request. No temperatures

Zone	# Cool My Space requests	# Warm My Space requests	# I am Comfy requests	Temp Avg when Cool My Space requested	Temp Avg when Warm My Space requested
G603	1	0	0	÷	-
TU-1N-10	7	0	0	76.4°F	-
TU-1S-6	7	1	0	74.7°F	73.7°F
TU-1S-7	2	0	0	78.8°F	-
TU-1S-17	0	8	0	-	75.1°F
TU-2N-2	4	0	0	76.8°F	-
TU-2N-8	3	0	0	77.7°F	-
TU-2N-15	11	0	0	76.9°F	-
TU-2N-18	8	2	1	77.7°F	74.6°F
TU-2N-21	11	0	0	74.1°F	-
TU-2S-6	2	1	0	74.8°F	74.1°F
TU-2S-11	164	0	0	76.0°F	-
TU-2S-N4	5	0	0	71.6°F	-
TU-3S-11	1	0	0	76.2°F	-
TU-3S-16	1	0	0	80.4°F	-
TU-4N-8	0	3	0	-	75.0°F
TU-4N-15	24	0	0	76.6°F	-
TU-4N-16	2	0	0	75.8°F	-
TU-4N-17	7	0	0	76.9°F	-
TU-4S-4	1	3	0	73.4°F	73.9°F
TU-4S-5	11	4	0	74.2°F	72.5°F
TU-4S-9	1	0	0	78.2°F	÷
TU-4S-16	1	1	0	76.7°F	75.4°F
TU-5N-9	1	0	0	77.8°F	-
TU-5N-10	1	3	0	78.0°F	74.7°F

recorded for courtrooms, since they contain multiple zones

Group Decision Making

Eliminated False Hot & Cold Calls

- Occupants report "I am Hot/Cold".
- Everyone in the zone is notified of the request and has a chance to vote.
- The system determines what to do.
- Facility manager does not get involved.

Tenant Satisfaction Improved

Tenant Satisfaction Scores (TSS)* Average thermal comfort on a scale 1–5

3.2	2014 installed in March
4.3	2015 in place all year
3.0	2016 removed in March
2.8	2017 not in use all year

*Surveys conducted in May/June, 5 = highest level of comfort

Cost-Effectiveness

Limitations

- For a building occupied 10-hours, 5-days a week hard to make it cost-effective with energy savings alone.
- Reduction in hot and cold calls could lead to maintenance savings but these are hard for GSA to realize because of fixed O&M contracts.
- GSA tenant agreements may limit ability to change setpoints.

Bottom Line

Tenant Preferences

- Technology could design entire temperature profile of the building based on personal preferences.
- A technology that is geared to the tenant and that I'd like to see in all buildings.

Pacific Rim Experience

Mark Levi, R9 50 United Nations Plaza Facilities Management Division

Pacific Rim Experience

Challenges of Installing as Part of an ESPC at the LA Courthouse

- Licensing costs were high, pay by the square foot and that can really add up.
- Savings could not be guaranteed.
- IT-Security
 - Comfy decided not to pursue IT scanning and remediation and is focusing on other commercially viable opportunities.
 - Federal-government IT-Security process should be more efficient with more inter-agency cooperation and sharing.

Survey and Continuing Education Credit

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, michael.hobson@gsa.gov

Thank you for your n	articipation	in CPC Out	briefe			
* Required	articipation	i in GPG Out	briefs.			
Email addres	s *					
Your email			83			
Continuing Ed	ducation	n Credit t a certific	ate for 1 (CE unit.		
AIA Number						
Your answer						
First Name ar	nd Last	Name				
First Name ar	nd Last	Name				
First Name ar Your answer	nd Last	Name				
First Name ar Your answer The informati	nd Last on pres	Name sented ir	n the Ou	tbrief w	ebinar	was helpful.
First Name ar Your answer The informati	nd Last on pres	Name sented ir 2	n the Ou 3	tbrief w 4	ebinar 1	was helpful.
First Name ar Your answer The informati Strongly Disagree	on pres	Name sented ir 2	n the Ou 3	tbrief w 4	ebinar 5	was helpful. Strongly Agree
First Name ar Your answer The informati Strongly Disagree	on pres	Name sented ir 2	the Ou 3	tbrief w 4	ebinar 5	was helpful. Strongly Agree
First Name an Your answer The informati Strongly Disagree I am intereste	on pres	Name sented ir 2 O	n the Ou 3 O Socially	tbrief w 4 O Driven F	ebinar 5 O IVAC O	was helpful. Strongly Agree
First Name ar Your answer The informati Strongly Disagree I am intereste O Yes, in the n	on pres 1 Od in ins	Name sented ir 2 stalling S	a the Ou 3 O Socially	tbrief w 4 O Driven F	ebinar 5 O IVAC O	was helpful. Strongly Agree
First Name ar Your answer The informati Strongly Disagree I am intereste O Yes, in the n O Yes, in the n	on pres 1 od in ins ext 2 year	Name sented ir 2 otalling S rs. rs.	a the Ou 3 O Socially	tbrief w 4 O Driven F	ebinar 1 5 O IVAC O	was helpful. Strongly Agree
First Name ar Your answer The informati Strongly Disagree I am intereste O Yes, in the n O Yes, in the n O Maybe	on pres 1 od in ins ext 2 year	Name sented ir 2 Stalling S rs. rs.	n the Ou 3 O Socially	tbrief w 4 O Driven H	ebinar 5 O IVAC O	was helpful. Strongly Agree

Your answer

Thank you!

For more information: gsa.gov/GPG

Kevin Powell, Program Manager <u>kevin.powell@gsa.gov</u> 510.423.3384 Michael Lowell, Project Manager <u>mike.lowell@gsa.gov</u> 720.641.8891