GPG Outbrief 16 Small Circulator Pumps with Automated Control

Emerging Building Technologies, GPG Program | U.S. General Services Administration | October 11, 2018

GPG-035 Small Circulator Pumps @gsa.gov/gpg

.

- □ Infographic
- 4-page Findings
- □ Full Report
- Additional Resources

Small Circulator Pumps with A	< +				
	eromentuide-Initiatives	(sustainability/amorging_b	uilding_technologies/publi	shed_findings/byac/small_ci	raulat 🛧 💻 O. A. 🖌 🙈 :
Apps M andrea@ten-fold Roogle	Mans O Zoom a P	S Amazon 🔹 Google Phot	os 🖋 Tasks (â) Fakespr	nt + Bookmarks A Insit	CMP >> CMP = Other Bookmarks
GSA TRAVEL	REAL ESTATE	ACQUISITION	TECHNOLOGY	POLICY & REGULATIONS	ABOUT US Q
Home > Governmentwide Initiatives > Sustainabili	ty > Emerging Building Techno	logies > Published Findings > HV	AC > Small Circulator Pumps >		
EMERGING BUILDING TECHNOLOGIES	Small C	irculator P	umps with	Automated	4-PAGE REPORT SUMMARY
Overview	Control				6
About GSA's Proving Ground (GPG)	00110101				[PDF - 291 KB]
Published Findings	Small circulator	pumps propel fluid thro	ugh closed-loop heating	and cooling systems to	4895 · · · · (.17)
Building Envelope	regulate air or w	ater temperature. Resea he Denver Federal Cente	rchers evaluated the tec	hnology in two common	FULL REPORT- SEP 2018
Energy Management	and an air handl	er unit (AHU). They four	d that the pumps reduce	ed energy use 26% to 96%	
HVAC	with payback of	less than 6 years. <mark>View f</mark>	ull-size infographic. [PDF	F - 427 KB]	
Condensing Boilers					[PDF - 4 MB]
Fan Belts	1º nn	SEPTEMBER 2018			
High-Performing RTUs		SIVIALL CI	RCULATUR PU	MPS WITH	
Indirect Evaporative Cooler		O AUTOMA	IED CONTROL		
> Small Circulator Pumps					
Smart Ceiling Fans	OPPORTUNI	ТҮ			
Variable Refrigerant Flow	How much energy		REPLAC	ING 30 MILLION	
Variable-Speed Maglev Chiller	performance	4 /h	TWh U.S. CIR	CULATOR PUMPS	
Variable-Speed Screw Chiller	circulator pumps save?		WITH 50%	HIGHER EFFICIENCY	
Lighting	TECHNOLOG	Y			
On-Site Power & Renewables	How do high-				
Water	performance circulator nump				
Ongoing Assessments	with automated	CDEED		-	
Request for Information	control work?	ELECTRONICALL			
About Pilot to Portfolio (P2P)		COMMUTED MO	TORS	2	
Outbrief Webinars		ONBOARD			
GPG-Proven Technologies with GSA Deployment Potential		CONTROL	AS		
Newsletters					

Recording and Slides Available on gsa.gov/gpg

Advanced Power Strips for Plug Load 2019.02.09

Outbrief #10

Upcoming 2018 GPG Outbriefs—Thursdays, 12 PM ET

Nov 15 Advanced Lighting Controls with LED

Dec 06 Alternative Water Treatment for Cooling Towers

Webinar Recordings

Access all webinars on GSA.gov GSA.gov/GPG

Continuing Education Credit

This GPG webinar offers 1 Continuing Education Learning Unit through the American Institute of Architects

To receive credit:

Complete the post-webinar survey, or contact Michael Hobson, michael.hobson@gsa.gov

How to Ask Questions

Introduction

Jay Fine

Project Manager, GPG jay.fine@gsa.gov 816.806.6683

Webinar Agenda

□ Introduction (5 minutes)

Jay Fine, Project Manager, Emerging Building Technologies

- Small Circulator Pumps with Automated Control (15 minutes) Jesse Dean, National Renewable Energy Laboratory
- On-the-ground Feedback R8, Denver Federal Center (10 minutes) Tyler Cooper, GSA Region 8
- **Q & A (20 minutes)**

Emerging Building Technologies' two programs—GSA Proving Ground (GPG) and Pilot to Portfolio (P2P)—enable GSA to make sound investment decisions in next-generation building technologies based on their real-world performance

GPG-035 Small Circulator Pumps with Automated Control

General Services Administration Public Buildings Service

GPG-035 SEPTEMBER 2018

SMALL CIRCULATOR PUMPS WITH AUTOMATED CONTROL

Energy Savings and Positive Return-on-Investment from Two Applications

Because most small circulator pumps (< 2.5 horsepower) operate at a constant speed and use very little energy, they have typically been overlooked for energy efficiency upgrades. With over 30 million circulator pumps installed in U.S. commercial buildings, however, the opportunity for savings is significant. GSA's Proving Ground (GPG) program commissioned the National Renewable Energy Laboratory (NREL) to evaluate new high-performance variablespeed circulator pumps with automated control that adjust pump speed to meet changing demand. NREL researchers evaluated the new pumps' performance in two common applications: a domestic hot water (DHW) recirculation system and an air handler unit (AHU)-both at the Denver Federal Center (DFC), in Denver Colorado. When the new high-performance variable-speed circulator pumps were attached to the DHW system and compared with market-standard constant-speed baseline pumps, energy savings were between 90% and 96%. A savings of only 26% was achieved with the new AHU pump, because it was compared with a more efficient baseline pump. When compared with a market standard constant anough booling nump, however, anyin

Measurement & Verification

Jesse Dean Senior Research Engineer, M.S., CEM National Renewable Energy Laboratory

Opportunity

4.75TWh

REPLACING 30 MILLION U.S. CIRCULATOR PUMPS WITH 50% HIGHER EFFICIENCY

Over 90% of the currently installed circulator pumps in the U.S. are constant volume pumps powered by standard induction motors https://www.epri.com/#/pages/product/000000003002001762/

High-Performance Circulator Pump

DWH Recirculation Pumps, Small Hot Water and Chilled Water Pumps

- 2.5 HP or smaller
- EC motor
- Local and remote monitoring: temperature, speed, flow, power, head energy, BTU, history
- Built-in control modes
 - Constant speed
 - Constant pressure
 - Proportional pressure
 - Constant temperature
 - AUTOADAPT
 - FLOWADAPT
- Reduced maintenance

Comparison to Standard Pumps

Market Standard

EC motor with variable speed vs. induction **10% to 20% electricity savings***

Optimized impeller 10% to 15% hydraulic savings*

Grundfos Magna3

Built-in control algorithms and nighttime setback **Up to 65% savings***

Measurement & Verification

Monitored Performance in Two Buildings within the Denver Federal Center

Technology for test-bed measurement and verification provided by Grundfos

High-Performance Circulator Pump Size

Two Smallest Pumps Tested

With such small pumps, any reduction in O&M significantly impacts economics

Purple oval-

DHW recirc pump typical operating range

Red oval-

HHW or CW pump typical operating range

Domestic Hot Water Pump Tests

DHW Loop #1: 8 hr/weekdays

Characteristic	DHWP-1 Baseline	DHWP-1 HPCP (40-80)	DHWP-1 HPCP (32-100)
Pump Size	¹ ⁄ ₄ HP	0.37 HP	¼ HP
Duty Point Power (watts)	280	157	77
Wire-to-Water Efficiency	8.2%	14.5%	30.1%
Area Served	1st Floor Cafeteria	1st Floor Cafeteria	1st Floor Cafeteria
Control Modes Tested	_	AutoAdapt & Constant Temp	Constant Temp

DHW Loop #2: 11 hr/weekdays

	Characteristic	DHWP-2 Baseline	DHWP-2 HPCP (40-80)	DHWP-2 HPCP (32-100)
	Pump Size	½ HP	0.37 HP	¹ / ₄ HP
l	Duty Point Power (watts)	370	176	97
l	Wire-to-Water Efficiency	Unknown	23.9%	44.3%
	Area Served	Floors 2-8	Floors 2-8	Floors 2-8
	Control Modes Tested	-	AutoAdapt & Constant Temp	Constant Temp

DHWP Results

DHWP #1 Daily Average Elec Power

DHWP #2 Daily Average Elec Power

DHWP Measured Energy Savings

DHWP Savings Estimate

		DHWP-1		DHWP-2			
	Baseline	Constant Temp. (Model 40-80)	Constant Temp. (Model 32-100)	Baseline	Constant Temp. (Model 40-80)	Constant Temp. (Model 32-100)	
Weekday Total Power (kWh)	2.36	0.23	0.10	4.18	0.26	0.18	
Max. Power (watts)	281	136	12	373	143	72	
Weekday Savings (%)	_	90%	96%	_	94%	96%	
Annual Savings (kWh)	_	554	587	_	1,017	1,039	

DHWP Payback at End-of-Life Replacement

Higher Flow Rates Combined with Smaller Pump Sizes Offered the Best ROI

	% Savings	Annual Energy Savings (kWh/yr)	Annual Energy Cost Savings @ 0.11 kWh (\$)	Annual O&M Savings (\$)	Incremental Cost (\$) over market standard pump	Simple Payback	Savings-to- Investment Ratio (SIR)
DHWP #1 : ¼ HP, 77 watts (duty point) Baseline: ¼ HP, 280 watts (duty point)	96%	587 kW	\$65	\$75	\$575	4.1	3.6
DHWP #2: ½ HP, 97 watts (duty point) Baseline: ½ HP, 370 watts (duty point)	96%	1,039 kW	\$114	\$75	\$575	3.0	4.9

Heating Hot Water Circulator Pump Test

Simultaneous Monitoring for 3 Months

Baseline Grundfos

New ½ HP constant speed pump 3-way valve controls flow through AHU

Grundfos Magna3

Automated flow control Bypass valve closed

AHU Heating Hot Water Results

- Operation problems invalidated 2016-17 data
- AHUs serve different loads making a direct comparison difficult
- AHU19 had low heating runtimes and sometimes switched to cooling during the middle of the day
- Savings were estimated by applying the baseline pump power to the AHU19 pump runtimes

AHU Measured Energy Savings

	AHU-17 Baseline Grundfos	AHU-19 Grundfos Magna 3, 0-10-V-DC Control
Max. Power (watts)	221.6	204.0
On-Peak Avg (kWh/day)	0.144	0.093
Off-Peak Avg (kWh/day)	0.728	0.550
On-Peak Savings (%)	_	35%
Off-Peak Savings (%)	_	24%
Overall Savings (%)	_	25.7%

AHU Economic Performance–Evaluated at End-of-Life Replacement

Very Little Run-time 4/hrs a Day

	% Savings	Annual Energy Savings (kWh/yr)	Annual Energy Cost Savings @ 0.11 kWh (\$)	Annual O&M Savings (\$)	Incremental Cost (\$) over market standard pump	Simple Payback	Savings-to- Investment Ratio (SIR)
AHU 19 : 0.36 HP, 186 watts (duty point) Baseline: ½ HP, 223 watts (duty point) 4 hrs/day run-time	26%	45 kW	\$5	\$75	\$500	6.3	2.4
AHU 19: 0.36 HP, 186 watts (duty point) Baseline: ½ HP, 330 watts (duty point) 20 hrs/day run-time	60%	688 kW	\$76	\$75	\$500	3.3	4.5

Value in Pre-Programmed Control Sequences

- Constant return-water temperature control mode with pump's internal temperature sensor best for DHW pumps
- Control modes internal to the pump or simple 0-10-V DC from BAS recommended for small heating system pumps
- AutoAdapt mode does not work well when pumps are oversized or operating on the lower end of the pump curve

Lessons Learned

Convert 3-way Bypass Valves to 2-way Valves

At a minimum, the flow through the bypass loop must be closed for the pumps to operate correctly.

BAS Integration Increases Installed Costs

Use the pump's pre-programmed internal control modes and rely on the BAS for on/off control.

Correctly Size the Pump

Oversized Pumps Save Energy but are Not as Cost-effective

Use one of these methods to size smaller constant-volume pumps:

- Determine pipe sizes and lengths and then calculate actual head loss from the pipes to estimate flow (GPM) and head required for the pump.
- Observe supply and return temperature differentials to make an educated guess about the existing pump's suitability. For example, if the Delta-T is extremely small (2°F to 5°F), the pump is most likely too large.

Deployment for Small Circulator Pumps

End-of-life Replacement

- DHW recirculation pumps with > 40 hours a week operation
- Heating hot water & chilled water pumps with > 10 hours a day operation
 - Pumps serving multiple heating coils have greater energy savings
 - Convert 3-way valve bypass to 2-way valves
- GSHP circulator pumps with > 40 hours a week operation

GSA Feedback–Denver Federal Center

Tyler Cooper

Supervisory Energy PM GSA Region 8

Installation

Like-for-like Replacement

Minimal additional work if you don't add points to the BAS, which for such small pumps we wouldn't recommend

GRUNDFOS®

Baseline: Armstrong ½ HP

Replacement: Magna ¼ HP

Controls Programming

Minimal Additional Work

- Can select control mode from the pump head. Very fast if you know which mode to select
- Easy to test different control modes because you have real-time power readings
- Local and remote monitoring was valuable
- Smart-phone application is available but not tested

Operations & Maintenance

Annual Review of Pump Energy Recommended

- Reviewing real-time power readings can identify if there are blockages in the system
- Maintenance may be reduced with other new pumps as well

MORE OPERATIONAL VISIBILITY

and reduced maintenance, no greasing of bearings or replacing pump seals

Considerations

Building Issues

- Direction on flow was not labelled so pump was installed backwards
- Retro-commissioning BAS, problems getting pumps to respond

Pump Issues

- Communication error more likely to happen with Model 30-100 (¼ HP) pump
- Power factor improved for Model 42-80 pump, worse for Model 30-100 at low pump speeds
- Mobile access not cleared through GSA IT-Security

Recommendation

Replace Small Pumps at End-of-life with High-performing Pumps

Some discretion on AHUs to know if there is adequate run time. AHU pumps only save energy when they are being used.

Survey and Continuing Education Credit

GPG webinars offer 1 Continuing Education Learning Unit through the American Institute of Architects.

To receive credit:

Complete the post-webinar email survey, or contact Michael Hobson, michael.hobson@gsa.gov

Pumps	with	Auto	: Sma omat	ed C	cula	ol
* Required						
Email addres	SS *					
Your email						
Continuing E	ducatio	n Credit	t			
Check here	to reques	t a certifi	cate for 1	CE units.		
AIA Number						
Your answer						
First and La	st Name					
Your answer						
The informa	tion pres	sented i	n the Ou	ıtbrief w	vebinar v	vas helpful.
	1	2	3	4	5	
Strongly Disagree	0	0	0	0	0	Strongly Agree
l am interest automated c	ed in in: ontrol.	stalling	small ci	rculator	pumps	with
O Yes, in the	next 2 yea	irs.				
O Yes, in the	next 5 yea	rs.				
O Maybe						
O No						

Thank you

For more information: gsa.gov/GPG

Jay Fine, Project Manager jay.fine@gsa.gov 816.806.6683 Kevin Powell, Program Manager kevin.powell@gsa.gov 510.423.3384