DECEMBER 2012

VARIABLE REFRIGERANT FLOW

3%

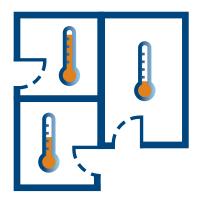
OPPORTUNITY

How much energy is used for heating, ventilation and air conditiong (HVAC) in U.S. office buildings?

OF U.S. OFFICE BUILDINGS RELY ON VRF²

PRIMARY HVAC SYSTEM IN EUROPE, JAPAN AND CHINA³

TECHNOLOGY


How does VRF work?

PROVIDES INDEPENDENT TEMPERATURE CONTROL

TO ROOMS THROUGHOUT BUILDING

USES REFRIGERANT

AS COOLING/HEATING MEDIUM; SUBSTITUTING THIN PIPES FOR DUCTWORK

M&V

Where did Measurement and Verification occur?

PACIFIC NORTHWEST NATIONAL LABORATORY drew from a wide variety of sources to evaluate the performance of VRF for GSA buildings

RESULTS

How did VRF perform in M&V?

34% ENERGY SAVINGS

PROJECTED RELATIVE TO CODE-COMPLIANT HVAC⁴

THIN PROFILE

ADVANTAGEOUS IN HISTORIC BUILDINGS WITH LIMITED ROOM FOR DUCTWORK⁵

COST-EFFECTIVE

WHEN THE PREMIUM IS < \$4/SQ.FT. COMPARED TO CODE-COMPLIANT HVAC⁶

Projected Payback for VRF vs VAV

Reasonable paybacks achievable (shown in white)

VRF vs VAV with Gas Reheat or Cav

34% Projected Energy Cost Savings

Energy Cost Savings, \$/ft²

VRF vs VAV with Electric Reheat

45% Projected Energy Cost Savings

Energy Cost Savings, \$/ft²

		\$.10	\$.14	*\$.18	\$.22	\$.26	\$.30	\$.34	\$.38			\$.13	\$.19	*\$.24	\$.29	\$.34	\$.40	\$.45	\$.50
Added Cost \$/ft²	\$1	10	7	6	5	4	3	3	3	\$1 52 53 55	8	5	4	3	3	3	2	2	
	\$2	20	14	11	9	8	7	6	5		\$2	15	11	8	7	6	5	4	4
	\$3	30	21	17	14	12	10	9	8		\$3	23	16	13	10	9	8	7	6
	**\$4	40	29	22	18	15	13	12	11) pa **\$4	30	22	17	14	12	10	9	8
	\$5	50	36	28	23	19	17	15	13		\$5	38	27	21	17	15	13	11	10
	\$6	60	43	33	27	23	20	18	16		\$6	45	32	25	21	17	15	13	12

* Average GSA Portfolio Energy Cost Savings (based on GSA average usage of 60.7 kBtu/ft², GSA average cost of \$0.89/therm, and EIA average cost of \$0.10/kWh)

** Average Added Cost

DEPLOYMENT

Where does M&V recommend deploying VRF?

PILOT PROJECTS

Research on field performance is limited

¹Variable Refrigerant Flow Systems. Brian Thornton, Anne Wagner (PNNL), December 2012, p.4 ²Ibid, p.11 ³Ibid, p.4 ⁴Ibid, p.13 ⁵Ibid, p.24 ⁶Ibid, p.46

The GPG program enables GSA to make sound investment decisions in next generation building technologies based on their real world performance. www.gsa.gov/gpg