2604 NE Industrial Drive, Suite 230 North Kansas City, Missouri 64117 Telephone: 816.231.5580 Fax: 816.231.5641 www.occutec.com October 9, 2019 Diane Czarnecki Industrial Hygienist Facilities Management Division GSA Public Buildings Service - Heartland Region 2300 Main Street, Kansas City, MO 64108 RE: Goodfellow Federal Center – Bldg. # 105F Drinking Water Sampling Project # 919103 Dear Ms. Czarnecki: Thank you for the opportunity to provide the General Services Administration (GSA) with the above referenced environmental sampling activities. The following is our report. ### INTRODUCTION As requested, OCCU-TEC, Inc. (OCCU-TEC) conducted drinking water sampling for the presence of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) at Building #105F of the Goodfellow Federal Center (GFC) located at 4300 Goodfellow Federal Boulevard in St. Louis, Missouri. Sampling was completed in response to the ongoing environmental condition assessment at the GFC which is documented at the GFC Reading Room located at: https://www.gsa.gov/portal/content/212361. Drinking water sampling was conducted to determine the current levels of PCBs and PAHs in representative sources throughout the complex. Drinking water sampling at Bldg. #105F was conducted on July 26, 2019 by Mr. Austin O'Byrne of OCCU-TEC. ### **METHODOLOGY** The samples were collected individually labeled dedicated laboratory provided one (1) liter (L) glass amber bottles and 44.7 milliliter (mL) volatile organic analysis (VOA) vials with Teflon septa lined screw caps. One (1) liter bottles were filled to the shoulder and capped. VOA vials were filled until a positive meniscus was achieved, and the cap was placed on the vial to prevent airspace. One (1) liter bottles and VOA vials were preserved with laboratory provided preservative and placed on ice for shipment. The samples were then shipped overnight to Eurofins-Eaton Analytical in South Bend, Indiana for analysis. Eurofins-Eaton Analytical is certified by the State of Missouri Department of Natural Resources (MDNR) as an approved drinking water laboratory. Eurofins-Eaton Analytical's Missouri Certification number is 880. Drinking water sampling for the presence of PCBs and PAHs was conducted at six (6) distinct locations within Building #105F. A total of seven (7) samples were obtained including duplicate samples. PCB samples were analyzed as per EPA Method 505 "Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyl Products in water by Microextraction and Gas Chromatography." PAH samples were analyzed by EPA Method 525.2 "Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry." ### RESULTS AND DISCUSSION A summary table of all sampling locations is included in Appendix A. The complete laboratory report for the drinking water sampling from Eurofins-Eaton Analytical is attached in Appendix B. **PCBs** All samples were below the maximum containment level (MCL) and the minimum reporting level (MRL) for the analytical method used. **PAHs** All samples were below the maximum containment level (MCL) and the minimum reporting level (MRL) for the analytical method used. ## **LIMITATIONS** The scope of this assessment was limited in nature. OCCU-TEC collected samples from a select number of drinking water sources in an effort to minimize cost while providing a general overview of the drinking water quality at the site. Sample locations do not encompass every drinking water source at the site. Samples were only analyzed for PCBs and PAHs in accordance with the scope of services requested by GSA. OCCU-TEC is not responsible for potential contaminants not identified in this report. This report was prepared for the sole use of GSA. Reliance by any party other than GSA is expressly forbidden without OCCU-TEC's written permission. Any parties relying on the report, with OCCU-TEC's written permission, are bound by the terms and conditions outlined in the original proposal as if said proposal was prepared for them. OCCU-TEC appreciates the opportunity to work with the GSA on this project. Please contact us if you have any questions regarding this report or if we may be of any additional service. Sincerely, (b) (6) Jeff T. Smith Senior Project Manager (b) (6) Kevin Heriford Environmental Operations Manager (QA/QC) ### **ATTACHMENTS** Appendix A, Sample Summary by Location Appendix B, Water Sample Laboratory Report | | Goodfellow Federal Center - Building | 105F | | |---------------|--------------------------------------|-------------------|--------| | Sample Number | Location | Water Source | Analyt | | | 1st Floor Column M28 - Left Side | Halsey Taylor | PCBs | | 105F-W-01 | 1st Floor Column Wize - Left side | Drinking Fountain | PAHs | | | 1st Floor Column M20 Dight Side | Elkay Drinking | PCBs | | 105F-W-02 | 1st Floor Column M28 - Right Side | Fountain | PAHs | | | 1st Floor Column M29 Dight Side | Elkay Drinking | PCBs | | 105F-W-03 | 1st Floor Column M28 - Right Side | Fountain | PAHs | | | 2nd Floor Column 12F Loft Side | Elkay Drinking | PCBs | | 105F-W-04 | 2nd Floor Column L35 - Left Side | Fountain | PAHs | | | 2md Floor Column 12F Bight Cide | Halsey Taylor | PCBs | | 105F-W-05 | 2nd Floor Column L35 - Right Side | Drinking Fountain | PAHs | | | 1st Floor Column 026 | Sink | PCBs | | 105F-W-06 | 1st Floor Column O36 | SITIK | PAHs | | | 1st Floor Column D24 | Cink | PCBs | | 105F-W-07 | 1st Floor Column P34 | Sink | PAHs | # LABORATORY REPORT If you have any questions concerning this report, please do not hesitate to call us at $(800)\ 332-4345$ or $(574)\ 233-4777$. This report may not be reproduced, except in full, without written approval from EEA. ## **STATE CERTIFICATION LIST** | State | Certification | State | Certification | |-------------------------|---------------|----------------------|------------------| | Alabama | 40700 | Missouri | 880 | | Alaska | IN00035 | Montana | CERT0026 | | Arizona | AZ0432 | Nebraska | NE-OS-05-04 | | Arkansas | IN00035 | Nevada | IN00035 | | California | 2920 | New Hampshire* | 2124 | | Colorado | IN00035 | New Jersey* | IN598 | | Colorado Radiochemistry | IN00035 | New Mexico | IN00035 | | Connecticut | PH-0132 | New York* | 11398 | | Delaware | IN035 | North Carolina | 18700 | | Florida* | E87775 | North Dakota | R-035 | | Georgia | 929 | Ohio | 87775 | | Hawaii | IN035 | Oklahoma | D9508 | | Idaho | IN00035 | Oregon (Primary AB)* | 4074 | | Illinois* | 200001 | Pennsylvania* | 68-00466 | | Illinois Microbiology | 17767 | Puerto Rico | IN00035 | | Illinois Radiochemistry | IN00035 | Rhode Island | LAO00343 | | Indiana Chemistry | C-71-01 | South Carolina | 95005 | | Indiana Microbiology | M-76-07 | South Dakota | IN00035 | | Iowa | 098 | Tennessee | TN02973 | | Kansas* | E-10233 | Texas* | T104704187-18-12 | | Kentucky | 90056 | Texas/TCEQ | TX207 | | Louisiana* | LA014 | Utah* | IN00035 | | Maine | IN00035 | Vermont | VT-8775 | | Maryland | 209 | Virginia* | 460275 | | Massachusetts | M-IN035 | Washington | C837 | | Michigan | 9926 | West Virginia | 9927 C | | Minnesota* | 018-999-338 | Wisconsin | 999766900 | | Mississippi | IN035 | Wyoming | IN035 | | EPA | IN00035 | | | *NELAP/TNI Recognized Accreditation Bodies Revision date: 03/14/2019 110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 North Kansas City, MO 64117 1 800 332 4345 ## **Laboratory Report** Client: OCCU-TEC Inc. Report: 463872 Attn: Jeff Smith Priority: Standard Written 2604 NE Industrial Drive Status: Final Suite 230 PWS ID: Not Supplied **Sample Information EEA** Client ID Method Collected Collected Received ID# Date / Time Date / Time By: 4370107 105F-W-01 505 07/26/19 09:09 Client 07/31/19 08:30 4370108 105F-W-01 525.2 07/26/19 09:09 Client 07/31/19 08:30 4370109 105F-W-02 505 07/26/19 09:15 Client 07/31/19 08:30 105F-W-02 525.2 Client 4370110 07/26/19 09:15 07/31/19 08:30 105F-W-03 505 Client 4370111 07/26/19 09:18 07/31/19 08:30 4370112 105F-W-03 525.2 07/26/19 09:18 Client 07/31/19 08:30 4370113 105F-W-04 505 07/26/19 09:28 Client 07/31/19 08:30 4370114 105F-W-04 525.2 07/26/19 09:28 Client 07/31/19 08:30 4370115 105F-W-05 505 07/26/19 09:32 Client 07/31/19 08:30 4370116 105F-W-05 525.2 07/26/19 09:32 Client 07/31/19 08:30 4370117 105F-W-06 505 07/26/19 09:40 Client 07/31/19 08:30 Client 4370118 105F-W-06 525.2 07/26/19 09:40 07/31/19 08:30 105F-W-07 505 Client 4370119 07/26/19 09:49 07/31/19 08:30 4370120 105F-W-07 525.2 07/26/19 09:49 Client 07/31/19 08:30 ### **Report Summary** Note: In the Method 525.2 analysis, the Anthracene recovery in the LFB at 2.0 ug/L (35%) was outside the acceptance limits of 70-130%. Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis. We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Kelly Blackburn at (574) 233-4777. Note: This report may not be reproduced, except in full, without written approval from EEA. (b) (6) ASM Authorized Signature Title Date Client Name: OCCU-TEC Inc. Report #: 463872 09/19/2019 Sampling Point: 105F-W-01 PWS ID: Not Supplied | | Sei | mi-volati | le Orga | nic Chei | micals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/08/19 08:00 | 08/09/19 05:01 | 4370107 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 08:25 | 4370108 | Sampling Point: 105F-W-02 PWS ID: Not Supplied | | Sei | mi-volati | ile Orga | nic Chei | micals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/08/19 08:00 | 08/09/19 05:25 | 4370109 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:06 | 4370110 | Sampling Point: 105F-W-03 PWS ID: Not Supplied | | Sei | mi-volati | le Orga | nic Cher | nicals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/08/19 08:00 | 08/09/19 05:49 | 4370111 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 09:47 | 4370112 | Sampling Point: 105F-W-04 PWS ID: Not Supplied | | Sei | mi-volati | ile Orga | nic Chei | micals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/08/19 08:00 | 08/09/19 06:13 | 4370113 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 11:09 | 4370114 | Sampling Point: 105F-W-05 PWS ID: Not Supplied | | Sei | mi-volati | ile Orga | nic Chei | micals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/09/19 10:02 | 08/09/19 17:45 | 4370115 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 12:32 | 4370116 | Sampling Point: 105F-W-06 PWS ID: Not Supplied | | Sei | mi-volati | ile Orga | nic Chei | micals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/09/19 10:02 | 08/09/19 18:09 | 4370117 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:13 | 4370118 | Sampling Point: 105F-W-07 PWS ID: Not Supplied | | Sei | mi-volati | le Orga | nic Cher | nicals | | | | | |-----------------|------------------------|-----------|--------------|----------|--------|-------|---------------------|----------------|------------| | Analyte
ID # | Analyte | Method | Reg
Limit | MRL† | Result | Units | Preparation
Date | Analyzed | EEA
ID# | | 12674-11-2 | Aroclor 1016 | 505 | | 0.08 | < 0.08 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 11104-28-2 | Aroclor 1221 | 505 | | 0.19 | < 0.19 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 11141-16-5 | Aroclor 1232 | 505 | | 0.23 | < 0.23 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 53469-21-9 | Aroclor 1242 | 505 | | 0.26 | < 0.26 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 12672-29-6 | Aroclor 1248 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 11097-69-1 | Aroclor 1254 | 505 | | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 11096-82-5 | Aroclor 1260 | 505 | | 0.2 | < 0.2 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 57-74-9 | Chlordane | 505 | 2 * | 0.1 | < 0.1 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 8001-35-2 | Toxaphene | 505 | 3 * | 1.0 | < 1.0 | ug/L | 08/09/19 10:02 | 08/09/19 18:33 | 4370119 | | 83-32-9 | Acenaphthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 208-96-8 | Acenaphthylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 120-12-7 | Anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 56-55-3 | Benzo(a)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 205-99-2 | Benzo(b)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 207-08-9 | Benzo(k)fluoranthene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 191-24-2 | Benzo(g,h,i)perylene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 50-32-8 | Benzo(a)pyrene | 525.2 | 0.2 * | 0.02 | < 0.02 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 218-01-9 | Chrysene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 53-70-3 | Dibenzo(a,h)anthracene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 206-44-0 | Fluoranthene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 86-73-7 | Fluorene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 90-12-0 | 1-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 91-57-6 | 2-Methylnaphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 91-20-3 | Naphthalene \$ | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 85-01-8 | Phenanthrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | | 129-00-0 | Pyrene | 525.2 | | 0.1 | < 0.1 | ug/L | 08/06/19 08:22 | 08/09/19 13:54 | 4370120 | [†] EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices. | Reg Limit Type: | MCL | SMCL | AL | |-----------------|-----|------|-----| | Symbol: | * | ۸ | I I | ^{\$} The state of origin does not offer certification for this parameter. #### **Lab Definitions** Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively. **Internal Standards (IS)** - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard. **Laboratory Duplicate (LD)** - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures. Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively. **Laboratory Method Blank (LMB)** / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples. **Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) -** is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment. Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively. Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively. Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis. Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL). **Surrogate Standard (SS)** / **Surrogate Analyte (SUR)** - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process. Eaton Analytical 110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207 Order # 271 463 872 Batch # | www.EurofinsUS.com/Eaton | .com/Eaton
Shaded area for EEA use only | | CHAIN OF | CHAIN OF CUSTODY RECORD | SD CS | T. | Page 1 of | Jo C | 5) | 10 | |----------------------------|--|-------------------------|----------|-------------------------|--|----------------|-------------|---------|-------|---------| | REPORT TO: Kowin Heritard | riferd | SAMPLER (Signature) | | PWS ID# | STATE (sample origin) | PROJECT NAME | HO# | 16.1.2 | 1.97 | | | Who is Back Dor outer 1000 | ter com | | (b) (6 | | MO | 919103 | | 3 | 5 | Э | | BILL TO: | | | No | POPULATION SERVED | SOURCE WATER | 8 | | SA | | LIM | | | | COMPĽANCE
MONITORING | X | せて | M0 | GFC | | BNIATNO | CODE | L GNUO? | | LAB Number | COLLECTION | SAMPLING SITE | | TEST NAME | ME | SAMPLE REMARKS | CHLORINATED | DE CC | XIATA | IANAI | | | DATE TIME AM PM | | である | | | 525 | YES NO |) # | /W | UΤ | | - | 7-72-14 9:05 X | 105F-W-01 | 4370,107 | SUNCS + Resticides | icides | 801.01EH | × | 7 | SW 5 | Siv | | 2 | 7-24-19 9:15 X | 105F - W- 02 | bal ~ | | | 1601 | 18 45 | 5 | SWIS | 3 | | 8 | 7-24-19 4:18 X | 105F-W-03 | 111 | | | 113 | × 1311 | 3 | 2 | 3 | | 4 | 7-22-19 9:28 X | 105F-W-N4 | 113 | | | 1114 | × | 7 | Div. | 3 | | 2 | X 25:9 91-22-7 | 105F-41-05 | 115 | | | 1116 | × | 7 | 3 | 3 | | 9 | | 105F-W-04 | 117 | | | 811 | × | X | S MS | 3 | | 7 | 7-24-49 5:49 K | 165F-W-07 | 1119 | \rightarrow | | 1/ 120 | × | 7 | 3 | 3 | | 8 | | 4 3 | | | | | | | | | | 6 | | | | | | | | | | | | 10 | | | | | | | | | | | | 11 | | | | | | | | | 1 | | | 12 | | | | | | | | | + | T | | 13 | | | | | | | | | 1 | | | 14 | | | | | TO SECURE AND ADDRESS OF THE OWNER, OWNE | | | | | | | | | | | | | | | | | | | RELINCUISHED BY:(Signature) | DATE | TIME | TIME RECEIVED BY:(Signature) | DATE | TIME | LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT | |-----------------------------------|--------------------------------------|--------------------|--|----------------------------|--|--| | (b)
(6) | 7-20-19 | 1500 | | | LAB | LAB COMMENTS | | | 1.0// | AM PM | | | AM PM | Did not receive one Vial of 105 F.WUC | | RELINAUISHED BY:(Signature) | DATE | TIME | TIME RECEIVED BY:(Signature) | DATE | TIME | method 505. OB | | | | | | | 8 | | | | | AM PM | | | AM PM | | | RELINQUISHED BY:(Signature) | DATE | TIME | RECEIVED FOR LABORATORY BY: | DATE | TIME | CONDITIONS I DON BECEIDT (chark ma): | | | | | (1 | 1/2.1 | 630 | Company of the control contro | | | | | o)
ô) | 1131/19 | 000 | Iced: Wet/Blue Ambient A C °C Upon Receipt N/A | | | | AM PM | | , , , | AM PM | 21% | | MATRIX CODES: | TURN-ARO | JUND TIME | TURN-AROUND TIME (TAT) LEURCHARGES | | | 2 | | DW-DRINKING WATER | SW = Standard | d Written: (15 v | SW = Standard Written: (15 working days) 0% | IV* = Immediate | IV* = Immediate Verbal: (3 working days) | ys) 100% | | T RW-REAGENT WATER | RV* = Rush Verbal: (5 working days) | rbal: (5 working | g days) 50% | IW* =Immediate | IW* =Immediate Written: (3 working days) | 125% | | G EW-EXPOSURE WATER | RW* = Rush Written: (5 working days) | 'ritten: (5 workii | ng days) 75% | SP* = Weekend, Holiday | , Holiday | CALL than 48 hours holding time remaining may | | D SW-SURFACE WATER PW-POOL WATER | | | | STAT* = Less than 48 hours | nan 48 hours | CALL | | WW-WASTE WATER | * Please cal | I, expedited | * Please call, expedited service not available for all testing | | | 06-LO-F0435 Issue 7.0 Effective Date: 2018-10-11 | Ub-LC-1-0435 Issue 7.0 Effective Date: 2018-10-11 Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by EEA. 06-LO-F0435 Issue 7.0 Effective Date: 2018-10-11