Measuring Circadian Light: Impact on Health and Well-being

Mariana G. Figueiro, PhD Mark S. Rea, PhD Lighting Research Center Rensselaer Polytechnic Institute Troy, NY, USA April 2015

Why is light so important?

- Light reaching the retina can impact
 - > Visual system enables us to see
 - > Sensory system conveys information
 - Circadian system enables us to maintain synchronization with the solar day

Circadian system

 Plants and animals exhibit patterns of behavioral and physiological changes over an approximately 24-hour cycle that repeat over successive days these are circadian rhythms

circa = about; dies = day

 Circadian rhythms are influenced by exogenous and endogenous rhythms

Lighting

Research Center

Light is the primary synchronizer of circadian rhythms to local position on Earth

..also the major disruptor Lighting Research Center

Circadian disruption

Circadian disruption has been associated with:

- > Poor sleep and higher stress
 - Eismann et al., 2010
- > Increased anxiety and depression
 - Du-Quiton et al., 2009
- > Increased smoking
 - Kageyama et al., 2005
- > Cardiovascular disease
 - Young et al., 2007; Maemura et al., 2007
- > Type 2 diabetes
 - Kreier et al., 2007
- > Higher incidence of breast cancer
 - Schernhammer et al., 2001, Hansen, 2006

Light and human performance Vision + Circadian + Message

Daysimeter

Daysimeter was developed under a G x E an U01 from the National Institute on Drug Abuse Measures circadian light/dark and activity/rest Used to calculate circadian entrainment disruption and sleep quality

Further developed to be used in Alzheimer's disease (AD) patients under an R01 from the National Institute on Aging

Won the 2010 The Scientist's annual Top 10 Innovations contest

Have been worn by dayshift and rotating shift nurses, 8th graders, Veterans with PTSD, older adults with early sleep onset

Currently being worn by AD patients to measure the impact of a tailored light treatment on sleep and behavior of this population

Lighting Research Center

Project overview

Proposed tasks

> Perform building measurements (summer and winter)

- Wayne N. Aspinall Federal Building, Grand Junction, CO
- Edith Green-Wendell Wyatt Federal Building, Portland, OR
- Federal Center South Building, Seattle, WA (winter only)
- GSA Central Office, Washington, DC
- > Collect personal light exposure with the Daysimeter
 - Hypothesis
 - Buildings with more access to daylight would provide more circadian stimulation to workers
 - Better sleep quality and mood, especially in summer months, when there is more daylight availability

Methodology Building measurements

Lighting Research Center

- Performed morning, midday, afternoon and evening spot photometric measurements during winter and summer months
 - > Illuminance measurements
 - > Luminance measurements
 - > Spectroradiometer measurements
- Performed lighting experience survey

Methodology Building measurements

 Placed stick Daysimeters to collect continuous light measurements

- > Deskspaces located on all four façade orientations
- > Windows located on all four façade orientations
 - Circadian stimulus and photopic lux estimated at each deskspace and compared to how much it reached the window

Edith Green-Wendell Wyatt Federal Building Portland, OR

Lighting Research Center

Results: Spectroradiometric measurements Edith Green-Wendell Wyatt Federal Building

Winter

Late Spring

	Illuminance	Approx Contrib (+/- 1	imate ution 0%)	Color Temperature	Circadian Stimulus (up to 0.7)		Illuminance	Approx Contrib (+/- 1	imate oution 0%)	Color Temperature	Circadian Stimulus (up to 0.7)
Deskspace		Electric	Day	ССТ	Average	Deskspace		Electric	Day	ССТ	Average
Locations	Lux	(%)	(%)	(K)	CS	Locations	Lux	(%)	(%)	(K)	CS
А	678	33%	67%	5031	0.39	А	865	30%	70%	5321	0.45
В	335	86%	14%	3296	0.32	В	344	81%	19%	3632	0.29
Orientations						Orientations					
Е	456	62%	38%	4180	0.36	Е	675	59%	41%	4272	0.36
Ν	393	66%	34%	4012	0.34	Ν	1001	40%	60%	5017	0.49
S	766	50%	50%	4183	0.40	S	302	65%	35%	4170	0.29
W	412	59%	41%	4279	0.35	W	413	57%	43%	4396	0.32
Floors						Floors					
4	379	71%	29%	3685	0.31	4	415	68%	32%	3968	0.33
12	571	50%	50%	4498	0.41	12	487	63%	37%	4242	0.34
17	570	57%	44%	4308	0.37	17	896	35%	65%	5175	0.43

Overall, building receives good circadian stimulation, especially in higher floors and on deskspaces close to windows

- Deskspaces located near the window receive more light
- North and East façades receive more daylight contribution
- Daylight contribution increases with floor heights

There is a seasonal difference in the contribution of daylight into the space

- Greater contribution of daylight in the North façade during late spring
- Increased daylight contribution in the South façade during winter

Federal Center South

(Photo courtesy of Litecontrol, Inc.)

Results Federal Center South (winter only)

	11)	luminance		Color Temperature	Circadian Stimulus (up to 0.7)
Deskspace	Photopic	Electric	Day	ССТ	Average
Locations	Lux	(%)	(%)	(K)	CS
А	598	11%	89%	4558	0.29
В	203	65%	35%	3594	0.21
С	404	11%	89%	5492	0.38
D	168	69%	31%	3659	0.15
Е	389	19%	81%	4663	0.30
F	2208	0.4%	99.6%	5329	0.43

- Deskspaces located close to windows (A) and below skylights (C) are the ones with the greatest CS/daylight contributions
- Deskspaces located near the atrium has the highest CS/daylight contribution, but glare is also an issue

Photometric measurements GSA Central Office (1800 F Street, Washington, D.C.)

	Illuminance	Approximate Contribution (+/- 10%)		Color Temperature	Circadian Stimulus (up to 0.7)
Deskspace		Electric	Day	ССТ	Average
Locations	Lux	(%)	(%)	(K)	CS
А	360	63%	37%	4029	0.26
В	322	65%	35%	3917	0.23
Orientations					
Е	457	69%	31%	3873	0.31
N	336	81%	19%	3905	0.23
S	232	56%	44%	4138	0.25
W	265	48%	52%	4054	0.19
Floors					
G	279	73%	27%	3776	0.19
2	378	63%	37%	3984	0.29
7	391	56%	44%	4151	0.29

- Deskspaces are parallel to windows, so there is not much difference in CS measurements between deskspaces A and B
- Building orientation may not reflect seating arrangements
- Ground floor has the lowest CS values and the least contribution from daylight

Subjective evaluation

Compared to other offices, this lighting is...

Personal light exposures

- The LRC collected personal light exposures using the Daysimeter and related these measurements to health and sleep outcomes
 - Subjects were invited to participate in the 7 day study during winter and summer months
 - Subjects were asked to fill out sleep quality and mood questionnaires once at start of the study

Wayne N. Aspinall Federal Building Grand Junction, CO

Personal light exposures Wayne N. Aspinall Federal Building

		v	Vaking Aver	age		Work Avera	ge	Post-Work Average		
		Ari-mean (CS)	Illuminance Ari-mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)
	Mean	0.19	824	36	0.21	834	84	0.12	1000	24
Vinte	Median	0.18	728	32	0.21	418	76	0.11	75	19
>	Std Dev	0.04	559	15	0.04	826	29	0.03	1900	11
er	Mean	0.28	1308	111	0.26	1197	178	0.28	1247	64
Ш.	Median	0.29	1036	112	0.23	916	122	0.30	1359	74
ŝ	Std Dev	0.06	864	42	0.06	962	94	0.07	502	22
	p value	0.004*	0.21	0.005*	0.007*	0.03*	0.02*	<0.001*	0.76	0.003*

Asterisks (*) indicate statistically significant values.

- Workers were exposed to the highest CS during working hours
- CS values were significantly higher in summer than winter months
 - CS values in winter months were at threshold for activation of circadian system (0.1)

Circadian entrainmnet and sleep quality Wayne N. Aspinall Federal Building

		Pha	isor	Sleep			
		Magnitude	Angle (hours)	Actual Sleep Time (min)	Sleep Efficiency (%)	Sleep Onset Latency (min)	
	Mean	0.35	1.10	341	70%	93	
Vinter	Median	0.33	1.16	357	70%	84	
5	St Dev	0.07	1.05	42	6%	22	
7	Mean	0.36	0.51	373	79%	18	
u u	Median	0.37	0.53	386	77%	16	
SL SL	St Dev	0.08	0.75	48	7%	13	
	p value	0.53	0.23	0.014*	<0.001*	<0.001*	

Asterisks (*) indicate statistically significant values.

- In general, phasor magnitudes were lower than in dayshift nurses and in teachers, which is between 0.4 and 0.5
- Phasor angles are higher in winter months because of the evening activity that occurs in dim light
- Sleep durations was generally short and sleep efficiency low
- Significant increase in sleep duration and sleep efficiency and significant reduction in sleep onset latency in summer than in winter

Phasor analyses Wayne N. Aspinall Federal Building

Figueiro and Rea, in press

Edith Green-Wendell Wyatt Federal Building Portland, OR

Lighting Research Center

Personal light exposures Edith Green-Wendell Wyatt Federal Building

		Waking Average			\ \	Nork Avera	ge	Post-Work Average		
		Ari-mean (CS)	Illuminance Ari-mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)
	Mean	0.15	219	34	0.19	280	91	0.06	31	10
Vinte	Median	0.14	162	26	0.17	178	62	0.05	27	9
>	Std Dev	0.05	150	20	0.06	218	79	0.03	17	4
er	Mean	0.26	1094	94	0.28	1277	192	0.22	743	51
mmur	Median	0.24	838	80	0.31	952	207	0.22	754	44
S	Std Dev	0.06	904	51	0.09	1483	117	0.08	451	35
	p value	<0.001*	<0.001*	<0.001*	0.01*	0.02*	0.01*	<0.001*	<0.001*	<0.001*

Asterisks (*) indicate statistically significant values.

- Workers were exposed to the highest CS during working hours
- CS values experienced by subjects were above threshold (0.1)
- CS values were significantly higher in summer than winter months

Circadian entrainment and sleep quality

Edith Green-Wendell Wyatt Federal Building

		Pha	asor	Sleep			
		Magnitude	Angle (hours)	Actual Sleep Time (min)	Sleep Efficiency (%)	Sleep Onset Latency (min)	
	Mean	0.37	1.93	367	79%	19	
/inter	Median	0.37	1.92	361	80%	. 11	
S	Std Dev	0.09	1.03	42	8%	29	
r	Mean	0.35	0.27	355	78%	22	
u u u	Median	0.37	0.35	334	79%	16	
SL	Std Dev	0.1	1.23	59	7%	18	
	p value	0.43	<0.001*	0.46	0.85	0.58	

Asterisks (*) indicate statistically significant values.

- In general, phasor magnitudes were lower than in dayshift nurses and in teachers, which is between 0.4 and 0.5
- Phasor angles are higher in winter months because of the evening activity that occurs in dim light
- Sleep durations was generally short and sleep efficiency low
- No significant differences in phasor magnitudes or sleep parameters between winter and summer months

Phasor analyses Edith Green-Wendell Wyatt Federal Building

Lighting Research Center

Personal light exposures GSA Central Office and Regional Office Building

		Waking Average			Work Average (out of office)			Work Average (at office)			Post-Work Average		
location		Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)	Ari-Mean (CS)	Illuminance Ari-Mean (Lx)	Illuminance Geo-Mean (Lx)
	Mean	0.10	221	31	0.09	139	26	0.15	189	85	0.05	77	14
AI	Median	0.10	171	27	0.09	169	23	0.13	161	77	0.04	32	12
	Std Dev	0.03	186	17	0.05	262	21	0.07	121	55	0.03	188	9
	Mean	0.11	222	32	0.09	131	26	0.15	204	91	0.05	82	14
800	Median	0.10	169	28	0.09	169	23	0.14	172	83	0.04	33	12
	Std Dev	0.03	192	17	0.05	264	22	0.07	118	54	0.03	197	10
	Mean	0.09	212	26	0.10	210	24	0.06	54	26	0.03	25	10
ROB	Median	0.09	176	20	0.09	236	21	0.06	55	29	0.02	16	8
	Std Dev	0.04	145	18	0.02	262	10	0.03	15	11	0.04	25	8
	p value	0.49	0.91	0.47	0.81	0.30	0.88	0.01*	0.02*	0.02*	0.25	0.57	0.34

Asterisks (*) indicate statistically significant values.

- Except for ROB (control building), participants received the highest CS during working hours
- CS exposures were significantly lower in ROB (control) building

Circadian entrainment and sleep quality GSA Central Office and Regional Office Building

		Phas	sor	Sleep					
	location	Magnitude	Angle (hours)	Actual Seep Time (mins.)	Sleep Efficiency (%)	Sleep Onset Latency (mins.)			
	Mean	0.27	1.94	346	76%	27			
All	Median	0.27	2.02	344	77%	18			
	Std Dev	0.07	1.21	43	9%	29			
щ	Mean	0.27	1.91	345	76%	23			
800 1	Median	0.27	1.99	344	77%	17			
н	Std Dev	0.07	1.21	40	9%	23			
	Mean	0.23	2.17	355	72%	51			
ROB	Median	0.23	2.12	366	75%	35			
	Std Dev	0.07	1.33	65	10%	49			
	p value	0.19	0.63	0.58	0.30	0.02*			

Asterisks (*) indicate statistically significant values.

- Phasor magnitudes were lower than in dayshift nurses and in teachers, which is between 0.4 and 0.5
- Sleep durations was generally short and sleep efficiency low
- In the control building, participants had
 - Shorter phasor magnitudes, suggesting more circadian disruption
 - Lower sleep efficiency

Research Center

- Significantly greater sleep onset latency
- Lighting Sample size in control building is small

Phasor analysis (all days) GSA Central Office

Lighting Research Center

Phasor analyses (working days) **GSA** Central Office

Discussion

- Amount of circadian stimulation was significantly higher in summer than in winter months
 - Highest amount of light was received during work hours, except for the control building
- Sleep efficiency and sleep duration was low in this population
 - But, sleep efficiency was significantly improved in summer compared to winter months in Grand Junction, Colorado, but not in Portland, Oregon
 - Sleep onset latency was greater in participants in ROB building compared to 1800 F street building
- We were not able to show a relationship between light exposure and mood outcomes
 - > Sample size is small
 - > Need larger sample size in the control building without daylight

Discussion

- Building orientation, deskspace location and floor height, influenced the amount of circadian stimulation received by workers
 - In general, North façade, higher floors, and deskspaces closer to windows received the highest amount of daylight
 - In winter, south and east façades received more light than in summer months
- Furniture layout, shades positions, placement of luminaires need to be taken into consideration if we want to increase daylight penetration in the building
 - > Care should be taken to avoid direct and reflected glare
 - Electric lighting will play an important role in deskspaces located in the south, west and perhaps east façades and in deskspaces located away from windows

Limitations and future work

- Lack of a larger sample size in control building
- Workers will not stay in a single place in office
 - Pendant measurements may be underestimating circadian light exposures
- Telecommute may reduce overall light exposure
 - Workers receive the greatest amount of light at work (except for the control building)
- Individual differences may play a role
 - It is not known how people cope with dark winters, especially in the NW (coffee intake?)
- CS threshold is not known; neither is the relationship between amount and duration of exposure
 - > A CS of 0.1 seems to be the threshold, but further studies are needed to test this hypothesis

How can this information change practice?

How can this information change practice?

- Development of the Daysimeter and a model of the SCN's limit cycle oscillator helps the LRC to "write a prescription" so that a person can receive a light-dark pattern that matches their desired rise and sleep times
 - A biological watch may track a person's circadian time and provide a recommendation for when to receive or avoid light

Sponsors:

National Institute on Aging (R01AG034157) National Institute on Drug Abuse (U01DA023822) Office of Naval Research (N00014-11-1-0572) Army Research Office

Lighting Research Center

Project Sponsor: General Services Administration

LRC Project Team: Jennifer Brons, MS Mark Rea, PhD Russ Leslie, MArch Barbara Plitnick, RN Geoff Jones Sharon Lesage Greg Ward Andrew Bierman, MS Kassandra Gonzalez Rebekah Mullaney Dennis Guyon

Thank you! www.lrc.rpi.edu

