

Data-integrated Building Systems Task Group

GSA Green Building Advisory Committee

12 September 2019

Agenda

- Introduction
- DIBS Overview
- Market Drivers
- DIBS in Green Buildings
- DIBS Programming and Design
- DIBS System Architecture
- DIBS Case Studies
- Federal Examples
- Healthcare Systems Integration
- Key Findings and Challenges
- Recommendations
- Other Related Activities

DIBS Task Group Members

Patrick Cigole Patrick.Cigole@secritical.com Jennifer Frey jfrey@sazan.com Don Horn donald.horn@gsa.gov David Kaneda <u>dkaneda@integralgroup.com</u> Bill Livingood William.Livingood@nrel.gov Clay Nesler Clay.G.Nesler@jci.com Taw North taw.north@tlc-eng.com Andrew Persily and rew.persily@nist.gov Kent Peterson kent.peterson@p2sinc.com Jane Rohde jane@jsrassociates.net

Task Group Coordinator

Michael Bloom michael.bloom@gsa.gov

DIBS Introduction

What is the Problem?

- Buildings underperform to their potential
- Volume of data on building performance is exploding
- Building systems aren't interoperable
- Integrated buildings are "one offs" and expensive

What is the Promise?

• Leverage best practices and emerging standards to deliver "plug & play" data integration to significantly improve building and organizational performance

What was our Approach?

- Interview SMEs in DIBS projects (16)
- Evaluate successful federal and non-federal projects
- Identify organizations that are driving DIBS adoption
- Recommend areas for continued work

DIBS Overview

Definition

 Data-integrated building systems improve building performance by providing advanced sensing, monitoring and controls through the automated exchange of data from building automation, energy management, lighting, security, life safety and other building systems, equipment and devices.

Key Enabling Technologies

• Key enabling technologies include wireless sensing, data analytics, machine learning, device integration, systems interoperability and cybersecurity.

Common DIBS Applications

 Common DIBS applications include fault detection and diagnostics, on-going commissioning, building energy optimization, IEQ management and occupant-based control.

Smart Conference Room Use Case

- 1. A <u>meeting organizer</u> searches for a conference room in the <u>scheduling system</u> with the required amenities and invites the required attendees.
- 2. The <u>building management system</u> releases the conference room <u>temperature</u> <u>controls</u> from setback mode so that the room will be comfortable 15 minutes before the meeting starting time.
- 3. 15 minutes before the meeting start time, the <u>lighting control system</u> adjusts the <u>motorized blinds</u> to allow daylighting without glare using a <u>light sensor</u>. <u>Dimmable</u> <u>ballasts</u> are adjusted to a low level to allow the <u>meeting organizer</u> to prepare for the meeting.
- 4. The light level increases when the <u>room occupancy sensor</u> detects an occupant entering the room and the <u>plug-load control system</u> turns on the <u>switchable</u> <u>outlets</u>.
- 5. At the meeting starting time, the <u>ventilation</u> rates are adjusted to match the number of confirmed attendees. If more attendees participate in the meeting than expected, a <u>carbon dioxide sensor</u> overrides ventilation rates. If fewer attend, the ventilation rates will be further reduced.
- 6. If no one shows up for the meeting, the <u>building management system</u> releases the meeting time in the <u>scheduling system</u> so others can use the room.
- 7. In an <u>fire/life safety</u> emergency, the <u>lighting controls</u> turn up the light level and the color to red.
- 8. When the room is unoccupied and the next meeting is more than 15 minutes in the future, the <u>blinds</u> are closed (assumes cooling season), the <u>lights</u> are turned off, the <u>temperature controls</u> set back, <u>ventilation controls</u> set to minimum and the power outlets turned off.

GSA Green Building Advisory Committee – Data-integrated Building Systems Task Group

Smart Conference Room Scenario

 \bigcirc

DIBS Market Drivers

Energy and Resource Efficiency

- Data analytics for FDD
- Retro-commissioning
- Building optimization

Comfort, Health and Productivity

- High IEQ
- Improved occupant/organizational productivity

Facility Optimization

- Facility layout and workflow
- Collaboration through occupancy sensing and tracking

DIBS Energy Savings Potential

Emerging Opportunities: Achieving Deeper Energy Savings through Integrated Building Systems https://aceee.org/topic-brief/eo-building-systems

DIBS: Sustainability, Resiliency and Better Operations

Operating Cost Savings from Performance Improvements Utility Demand Response & Adjustment Coordination

Improved Productivity & Security

Emission Reductions

Automatic Response to Real-Time Changes in Conditions

Sensors Crowd-Sourcing Air Quality Data

DIBS Supports GREEN BUILDING CERTIFICATION Achievement

Improves Point Contributions

Energy and water reduction Metering & monitoring Lighting quality & control

Creates Exemplary Performance Reduce "unregulated" loads Power-Over-Ethernet (POE) Target Net Zero

Receive Innovation points for new ideas and pilot credits

New Ideas Pilot Projects Case Studies

Certification Plus...

WELL Credits LBC Petals LEED Credit O+M

GPC Category

DIBS Transform the Marketplace Together

Achieve Green Building Certifications

- Change how products are manufactured
- Improve how buildings are designed and built
- Track accountability of impacts

Integrate DIBS into Certifications -Accelerate Data Analysis

- Discover immediate and real impacts
- Improve building performance
- Deliver Occupant Health and Wellbeing

Consider Technology Forward Certifications

• WIREDSCORE[™]

DIBS Programming and Design

Goal Setting – Functional Programming

- Who are your users?
- What activities will occur within space to meet Mission?
- What data is important to collect?
- How will data be analyzed?
- Document Framework

Examples of Identifying Goals

- Reduce absenteeism
- Decrease energy use

Evaluate data collected and analyzed based upon identified goals

Update on annual basis

Photo by Danielle MacInnes on Unsplash

DIBS Programming and Design

Prioritization of Goals

- Evaluate balancing of goals
- Evaluate current evidence for building and occupant outcomes
- Balance building sustainability goals and health & wellness goals
- Programming developed based on goal prioritization
 Use Multi-disciplinary Team for Programming
- Identify current and predict future needs
- Technology consultant recommendations
 - Infrastructure (holistic planning)
 - Systems Planning Correlation Implementation
 - Adaptable to continual change
 - Expect change

Connectivity

- Connection point: Application Programming Interface (API)
- Language for commonality: Ontologies
 GSA Green Building Advisory Committee Data-integrated Building Systems Task Group

Photo by <u>Austin Distel</u> on <u>Unsplash</u>

Residential Building Hub – API Approach

Commercial System-to-System Integration

Different protocols- higher integration costs

Commercial Building Middleware

Different protocols - higher integration costs

Commercial Building without Middleware

With Interoperability

Graphic: Justin Stein and William Livingood, NREL

Interoperability Metadata enables plugand-play

Graphic: Marjorie Schott, NREL

DIBS Systems Integration Investments

2018 Johnson Controls Energy Efficiency Indicator Survey <u>https://www.johnsoncontrols.com/-</u> <u>/media/jci/insights/2018/buildings/files/eei-handout-102018-united-states--</u> final.pdf?la=en&hash=F1AF63E5E025A61E1443CEB9877961E642887CF3

Unisphere Net-Zero Building

Unisphere is the net-zero energy corporate headquarters for United Therapeutics, located in Silver Spring, MD. space.

Integrated Systems:

- Generators
- Lighting Controls Hubs
- Water to water heat pumps
- Geothermal optimization
- Electrochromic glass
- Motorized windows
- BTU Metering
- Hazardous gas detection
- UPS & EPMS

BAS Controlled Systems:

- AHUs, Condenser Water System & Terminal Units
- WWHP & WSHP for Earth Cooling (Labyrinth) System

Monitored Systems:

- Exterior Doors
- Window Shades

Monitoring and Reporting:

Energy dashboard and data analytics package with weather monitoring.

Key to Success:

Pre-construction functional integration mock-up.

University of Baltimore School of Law

192,000 sq. ft., 12 story building located in Baltimore, MD

Integrated Systems:

- Thermal Active Slab (Radiant Heating and Cooling)
- Automated Window Actuation
- Exterior Window Shades
- Rainwater Harvesting

BAS Controlled Systems:

Mechanical Equipment including AHUs, CHW, CW, and terminal equipment

Monitored Systems:

- Weather Monitoring
- FAS Components

Monitoring and Reporting:

Trending and reporting configured for LEED reporting.

Key to Success:

Pre-construction mock-up of integrated systems for contractor and customer demonstration.

DIBS Federal Examples (GSA)

Building Systems Network (BSN)

• Secure Communications (Fiber) for building information

ION Smart Meters

 Remote monitor and analysis of Water, Gas and Electricity

GSAlink

- Continuous commissioning platform
- Links to National Computerized Maintenance Management System (NCMMS)

DIBS Smart Buildings Overview

view

25

DIBS Federal Examples

Trillium Overlay

• Aggregates GSALink and ION Smart Meters into a unified Trillium system (GSA Region 7)

Wireless Sensor Analytics Platform

- Occupancy and Daylighting Controls
- AIRE HVAC Controls
- Space Use Mapping
- Bluetooth Tracking

DIBS Healthcare Integration

All Stats – Building & People

Artificial Intelligence (AI) to sift, sort and analyze data and direct key information to right person or department

- Example: spikes in temperature could be a sign of sepsis for patient – requires continual monitoring versus "human" periodic monitoring
- Example: Preventative Maintenance evaluation to avoid shut-downs or equipment failure leading to outages of a service

Use of Virtual Reality

- Overlay of 3D Image from CT Scan on to Patient for accuracy improvements
- Building design processes with workflow

Voice Assistance

- With AI provides opportunity to compare and provide result
- Healthcare outcomes

Contributors: HF Lenz: Robert Mickle, PE - TLC Engineering: Taw North, RCDD, LEED AP

DIBS Healthcare Integration

Interoperability – Expensive but important in Healthcare Settings

Examples of Interoperability

- Lighting controls and BAS unoccupied space ramp down HVAC system
- Window shade controls and BAS up/down
- Intrusion Detection System and Mass Notification System communication (including emergency lock-down)
- Fire Alarm Systems and Access Control System for Doors (alarm condition)

Standardization

- Equipment
- Data transmitted
- Transmission conduit
- Meshing of data and resultant output
- Mocking up system prior to installation is critical

Benefits

 Increased building occupant safety, IAQ, energy savings, employee performance

Contributors: HF Lenz: Robert Mickle, PE - TLC Engineering: Taw North, RCDD, LEED AP

GSA Green Building Advisory Committee – Data-integrated Building Systems Task Group

Photo by Frederick Tubiermont on Unsplash

DIBS Identifying and Bridging the Gaps

	Gaps	Solutions
People	 Education / Training Workforce Readiness & Development Loss of Knowledge Workers Identify Skills Required for System Integration 	 Set of Competencies needed for Building Development & Operations
Standards	 No Interoperability Standards No Contracting Guidance 	 Develop Interoperability Standards (evaluate existing sources) Develop Contracting Process Guidance for Inclusion of DIBS
Data	 Identifying Use of Data – Once Collected Analyze and Implement Data 	 Use Functional Programming to Define Tracking Meaningful Data Determine Use of Data prior to Collection
ROI Information	 Lack of LCA and LCC Data Technology Line Item Missing in Facilities 	 Provide Framework for Life Cycle Costing – include Operations versus First Cost Operational Guidance to include Technology within Facility Operations Budgets

Photo by <u>Denny Luan</u> on <u>Unsplash</u>

DIBS Key Findings

- Data-integrated building systems (DIBS) are in a nascent phase with very few examples outside of high profile corporate headquarters and institutional facilities. These buildings are one-off, highly customized projects requiring specialized expertise.
- 2. The healthcare sector is the most mature in the adoption of DIBS due to the requirement of integrating and storing data from a myriad of clinical, patient and facility devices.
- 3. Federal implementation of DIBS is lagging due to procurement guidelines which favor standalone systems, the lack of documented life cycle cost data, risk aversion in the contracting chain and cybersecurity concerns.
- 4. Designing buildings for DIBS requires an integrated, multi-disciplinary approach.

DIBS Key Challenges

- Lack of training, education and development of a workforce with specialized systems and data integration skills.
- Lack of interoperability standards including system communication protocols and the common metadata/schema required for "plug-and-play" installation.
- 3. Lack of systems specification and procurement guidelines for DIBS installations.
- 4. Lack of life cycle cost and impact data and a specific budget for data integration and analysis limits the implementation of DIBS in federal and other buildings.

DIBS Recommendations

- 1. Initiate demonstration projects in federal buildings and quantify the costs and benefits of these installations.
- 2. Prepare DIBS specification, implementation and procurement guidelines, leveraging industry efforts from ASHRAE, NEMA, USGBC, GBI and others.
- 3. Define the required skills and competencies for federal building development and operations personnel to support DIBS facilities.
- 4. Support systems interoperability standards development and testing in federal facilities and laboratories.
- 5. Develop guidance for including DIBS in ESPC/UESC contracts taking advantage of energy and non-energy benefits.
- 6. Investigate cybersecurity concerns specific to DIBS and provide guidance for system specification, maintenance and security.
- 7. Circle back with stakeholders and organizations working in this area to share our findings and recommendations.